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Abstract: A control system is proposed for the regulation problem of the roll-motion of a
manned sea-surface vehicle. Taking into account the roll-ship equations coming from the Conolly
theory, a novel stochastic model has been proposed for the uncertainties driving the total
mechanical torque acting on the vehicle, deriving from the wind and/or the sea-wave action.
The proposed model results in a bilinear stochastic system to which a feedback controller is
applied, giving linear-optimal performance with respect to a classical quadratic index. Open
loop simulations carried out on real data validate the choice of the stochastic model of the
uncertainties, producing a ship-roll time evolution which resembles the real data. Closed loop
simulations on a virtual ship show the e®ectiveness of the proposed control scheme.
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1. INTRODUCTION

In this paper some preliminary - nevertheless meaningful
- results are presented, concerning the on-line controller
section of a larger control device that is being designed
for an high-speed, manned sea-surface vehicle. The system
is developed within a project ¯nanced by the Italian
Ministry of Economic Development under the name of
TMS (Trasmissioni Marine di Super¯cie). The system is
currently being implemented and some preliminary results
provided in this paper are validated on real data gathered
from the prototype vessel realized in the project.

One main component of the project is the design and the
realization of a new type of transmission for a surface
propeller; the second main component is a software sys-
tem embedded in the on-board hardware that integrates
the standard functionalities (supervision of the devices
that are present on board, GPS, engines, fuel, etc.) with
new sophisticated control functions. One such function is
referred to as Navigation Management, and suggests the
optimal courses to reach a destination based on sea con-
dition, comfort requirements, fuel and time available; the
second function is the on-line control of the stability of the
vessel in order to reduce the pitch and roll to a minimum.
Both functions are based on real time measurements of
the horizontal and longitudinal oscillations of the vessel
obtained by sensors installed in its barycentre. The ¯rst
function (Navigation Management) is used at given time
intervals and strongly relies on data mining techniques
applied to the data gathered by the sensors. The second
function is based on the new on-line controller that is the
speci¯c topic of this paper.
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The vehicle is endowed with a couple of °aps that can be
used as actuators by the controller in order to stabilize
the roll-motion. Moreover the vehicle mount a trimmer,
i.e. a device able to vary the slope of the surface drive,
which can be used as well in order to regulate the pitching
of the watercraft. As far as the system's observations
are concerned, the vehicle considered mounts real-time
measurement devices for the pitch and roll angles.

The problem of stabilizing a watercraft against pitch-
ing/rolling has been widely studied in the literature. In
this paper a linear second order system is considered,
modeling the ship-roll motion, according to the Conolly
theory (see Conolly (1968)). Despite of its quite simple
structure, it provides an exhaustive model for small roll
displacements, and it has been widely adopted in the ¯eld
of active ¯n control with the purpose of ship-roll reduction.
Reference papers, among the others, areFortuna et al.
(1996), where a pair of compensators are proposed: one
designed by using classical frequency domain techniques,
one obtained as an adaptive LQ compensator; H1 and
robust adaptive H1 controllers are proposed in Sheng
et al. (1999) and Haipeng et al. (2003), respectively; in
Anantha et al. (2007) a virtual instrumentation-based ¯n
active control is obtained.

A key-role in building the model is played by the external
disturbance torque of the sea waves acting on the water-
craft. Such an uncertain torque is mainly produced by the
wind, but also a®ected by other atmosphere-conditions,
ship moving, earthquake and gravitation of earth and
moon. Many models are available in the literature (see
Bhattacharyya (1978)). Generally, the sea waves are stud-
ied by means of wave energy spectrum (e.g. the Pierson-
Moskowitz spectrum, see Pierson et al. (1964) or Lewis et
al. (1967) for more details), according to the superposition
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of a large number of sinusoidal waves (see Price et al.
(1974)).

In the present paper a way to represent these external
disturbances as stochastic processes is proposed, as well
as to cast them together into the Conolly model, thus
preserving the simplicity and widely-tested utility of such
a kind of watercraft's model. The resulting model will be a
stochastic bilinear one, i.e. linear drift and multiplicative
state-noise, to which the optimal stochastic control theory
is applied in order to perform the regulation task.

The paper is organized as follows. In x2 the proposed
watercraft's model is described in detail, whereas in x3 the
control system is developed in both its main parts, i.e. the
¯ltering and the controller ones. Finally in x4 the results of
numerical simulations are presented, partially carried out
on real data.

2. THE PROPOSED STOCHASTIC MODEL

Denote with ®(t) the roll-angle of a sea-surface vehicle.
According to the Conolly theory (see Conolly (1968)), the
linear roll motion equation in a single degree of freedom
can be written as:

I®Ä®(t) + ¹̄ _®(t) + ¹k®(t) = ¹k»(t) + ¹pu(t); (1)

where I® is the structural moment of inertia, ¹̄ is the
damping coe±cient relative to the surrounding water,
¹k®(t) is the restoring moment, »(t) is the e®ective wave
slope and ¹pu(t) denotes the control torque produced by the
¯ns: ¹p is a coe±cient depending of the translation-speed of
the ship, and u(t) is the ¯n angular position, which is the
control variable. Despite of its quite simple structure (it
is a linear second order system, actually) such a model is
e®ectively exhausting in modeling the ship motion in many
framework, see e.g. Price et al. (1974), Lewis et al. (1967),
Bhattacharyya (1978). As a matter of fact, model (1)
has been widely adopted in the ¯eld of active ¯n control,
with the purpose of ship-roll reduction (e.g. Fortuna et al.
(1996), Sheng et al. (1999), Haipeng et al. (2003), Anantha
et al. (2007)).

By exploiting standard computations, eq.(1) may be
written in the following ¯rst order ordinary-di®erential-
equation (ODE) model:

_®(t) = !(t) (2)

_!(t) = ¡k®(t)¡ ¯!(t) + k»(t) + pu(t): (3)

where !(t) is the roll angular speed and the coe±cients k,
¯, p are given by:

k =
¹k

I®
; ¯ =

¹̄

I®
; p =

¹p

I®
: (4)

Note that »(t) denotes the external and uncertain con-
tribution to the whole torque applied to the ship. Such
an external-torque is due to a sea or wind action and
cannot be deterministically described, as for the other
contributions. Indeed, it depends of the actual sea- and/or
weather-conditions the ship is getting to. Di®erently from
the standard frequency-based approaches (Bhattacharyya
(1978)), it is assumed here that »(t) admits the following

linear stochastic representation, for a suitably ¯xed integer
n:

dz(t) = ¤z(t)dt+ FdW (t); z(t) 2 Rn (5)

»(t) = ¡z(t) (6)

where ¤ is an asymptotically stable matrix and W (t)
is a standard Wiener process. A possible choice for the
matrices (¤; F;¡) is the following:

dz1(t) = ¸1z1(t)dt+ z2(t)dt; (7)

dz2(t) = ¸2z2(t)dt+ z3(t)dt; (8)

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

dzn(t) = ¸nzn(t)dt+ ¾dW (t); (9)

»(t) = [1 0 ¢ ¢ ¢ 0]z(t); (10)

for some ¸i < 0, i = 1; : : : ; n. Let us brie°y comment
on the above equations (7)-(9). Intuitively, any occurrence
of the function z shows a somewhat irregular shape but
time-correlated: it does reproduce some sea-wave or wind
shot action. The probability distribution of such an exter-
nal 'disturbance' is assumed to be generated by a linear
stochastic system driven by white noise, that is the system
of equations (7)-(9) provided the white noise is identi¯ed,
as it is a standard procedure, with the formal deriva-
tive of the standard Wiener-process: dW (t)=dt. Generally
speaking, such a way to represent stochastic occurrences of
functions has been used in the literature even in very dif-
ferent settings. For instance in Germani et al. (1988), in an
image-processing framework, the occurrence of an image
had been stochastically represented as being generated by
the brightness-function derivatives up to an (high) ¯xed
order where the derivative is assumed a (two-dimensional)
white noise. If the time-evolution of »(t) is thought, as it
is reasonable, as to a somewhat 'irregular' periodic wave
(reproducing indeed the shape of the water motion) then
the ¸'s can be interpreted as parameters related to the
wave 'frequency'.

Di®erent setting of parameters n, ¸i, ¾ provide di®er-
ent time-correlation function of the disturbance »(t). For
instance, according to the choice of n = 1, the farther
is ¸ from the imaginary axis, the more the process »(t)
will be like to a white noise process. Parameter ¾ in
eq. (9) refers to the variance of the 'white noise', and is
generally time-varying as far as the sea- and/or weather-
conditions change. Nevertheless, since these changes in the
overall weather-conditions reasonably are not frequent in
the control time-horizon considered, it is assumed here ¾
to be a constant, and in order to cast it in the model the
following further equation is considered:

_¾(t) = 0; (11)

so keeping in mind to estimate it later as a system-state
variable of the control system. Similarly as before for the
¸'s, ¾ is related to the external-torque 'wave', but now to
the amplitude of the wave. Thus ¾ may be thought as being
a sea-strength related parameter: the bigger the latter the
larger is ¾.

The sensor-data available on board of the ship are the
measurements of the angular-position ®(t):

dY (t) = ®(t)dt+ ¾0dW 0(t); (12)
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where W 0 is the scalar Wiener process. Thus the measure-
ment error of the sensor is represented as a Gaussian white
noise, with (known) variance ¾0: ¾0 ¢ (dW 0=dt), whereas
dY=dt is the measurement available for processing.

By taking into account the deterministic eqs.(2-3), and
(11) in the stochastic-processes-theoretic formalism of (7)-
(9) and then casting all equations together in a single
vector equation:

dX(t) = AX(t)dt+Hu(t)dt+BX(t)dW (t); (13)

dY (t) = CX(t)dt+ ¾0dW 0(t); (14)

with

X(t)=[®(t) !(t) z1(t) z2(t) ¢ ¢ ¢ zn(t) ¾(t)]
T (15)

A =

·
A11 A12

O(n+1)£2 A22

¸
; H =

·
H1

O(n+1)£1

¸
(16)

B =

·
O2£2 O2£(n+1)

O(n+1)£2 B22

¸
; C = [C1 O1£(n+1)] (17)

and:

A11 =

·
0 1
¡k ¡¯

¸
; H1 =

·
0
p

¸
(18)

A12(i; j) =

(
k; if (i; j) = (2; 1)
0; otherwise:

(19)

A22=

·
¤ On£1

O1£n 0

¸
; ¤=

2
6664

¸1 1 ¢ ¢ ¢ 0

0 ¸2
. . .

...
...

. . .
. . . 1

0 ¢ ¢ ¢ 0 ¸n

3
7775;(20)

B22 =

(
1; if (i; j) = (n; n+ 1);
0; otherwise;

C1 = [ 1 0 ] (21)

where Or£l denotes the null-block in IR
r£l. Such a parti-

tion of the matrices will be useful in the sequel. The ship-
roll regulation problem is stated as the following stochastic
optimal control problem on the ¯nite-horizon [0; T ]:

min
u2U(Y )

J(u); (22)

J(u) =
1

2
E

(
X1(T )

TF11X1(T )

+

TZ

0

³
XT

1 (t)Q11X1(t) + u
T (t)Ru(t)

´
dt

)
; (23)

where X1(t) = [®(t) !(t) ] and Q11 = QT11 ¸ 0, R =
RT > 0, and F11 = F

T

11 ¸ 0. Clearly, the index J may be
rewritten in the more general form:

J(u) =
1

2
E

(
X(T )TFX(T )

+

TZ

0

³
XT (t)QX(t) + uT (t)Ru(t)

´
dt

)
; (24)

under the di®erential constraints represented by system
(13), (14). Matrices Q = QT ¸ 0, F = FT ¸ 0, are
computed according to the partitions:

F =

·
F11 O2£(n+1)

O(n+1)£2 O(n+1)£(n+1)

¸
;

Q =

·
Q11 O2£(n+1)

O(n+1)£2 O(n+1)£(n+1)

¸
:

(25)

An interval [0; T ] ½ IR has been ¯xed to de¯ne the above
index J(u), which represents the control-horizon, whereas
U(Y ) is a set of admissible control functions, anyway
included in the set of all output-feedbacks having ¯nite
variance. The subset U(Y ) will be precisely de¯ned in the
next section.

3. THE CONTROL SYSTEM

The state-equation (13), is a linear one with multiplica-
tive state-noise (such an equation is often referred to as
a bilinear one in the literature). Moreover it is a feed-
back equation, in that it includes the additive (output-
measurable) termHu(t). Even thought the cost-index (24)
is the classical ¯nite-horizon quadratic one, the bilinearity
of the state equation makes the overall control problem
di®erent from the classical LQG one, with incomplete
information. Nevertheless this problem has been studied
and solved back in the years by McLane (1971), for
an even more general class of bilinear systems (including
control-dependent noise) but in the complete information
case, that is within the state-feedbacks control functions.
Recently these results have been generalized in Carravetta
et al. (2007) to the incomplete-information case (which
is the case of the present paper) within the linear output-
feedbacks, that is a solution u(t) is sought to the minimum
of the index (24), which belongs to the space Lt(Y ) of all
the IR-valued square-integrable linear transformations of
the random variables fY (¿ ); 0 · ¿ · t · Tg:

min
u(t)2Lt(Y )

J(u); with u;X; Y subject to (13¡14):

In particular it has been shown that a separation property
holds, and the optimal linear output-feedback control is
given by a linear map of the linear-optimal (in the mean-

square sense) state-estimate, namely bX. In the same pa-
per Carravetta et al. (2007) derived a system of output-

driven recursive equations providing bX (that is: the linear-
optimal ¯lter for the considered class of feedback-systems),
thus endowing the overall control-system. The following
Theorem provides the solution to the optimal control prob-
lem proposed, by suitably exploiting the above mentioned
results.

Theorem. Denote uo the control minimizing (24) within
an U(Y ) constituted by all the linear (progressively mea-
surable) maps from the output paths fY (¿ ); 0 · ¿ · Tg.
Then:

u(t)o = Lo(t) bX(t); (26)

with:

Lo(t) = ¡R¡1HT

1

£
V11(t) V12(t)

¤
; (27)
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bX(t) is the optimal linear estimate of X(t), eq.(15), and
the block matrices V11(t), V12(t) come from the solution of
the following Riccati-like backward equations

_V11(t) = ¡A
T

11V11(t)¡ V11(t)A11 ¡Q11

+V11(t)H1R
¡1HT

1 V11(t); (28)

V11(T ) = F11;

_V12(t) = ¡A
T

11V12(t)¡ V11(t)A12 ¡ V12(t)A22

+V11(t)H1R
¡1HT

1 V12(t); (29)

V12(T ) = O2£(n+1):

Proof. According to Carravetta et al. (2007), the solution
to the proposed optimal control problem is:

u(t)o = Lo(t) bX(t); (30)

with

Lo(t) = ¡R¡1HTV (t); (31)

and V (t) is the symmetric, positive-semide¯nite solution
of the following Riccati-like backward equation

_V(t)=¡ATV(t)¡V(t)A¡Q¡BTV (t)B

+V(t)HR¡1HTV(t); (32)

V (T ) = F:

By partitioning V (t) as:

V (t) =

·
V11(t) V12(t)

V T12(t) V22(t)

¸
; V11(t) 2 IR

2£2; (33)

and according to the partition of matrices A, H , B in (16)-
(17), one can immediately derive eq. (27) from (31). Then,
by exploiting the partitions in (32):

·
_V11(t) _V12(t)
_V T12(t)

_V22(t)

¸
= ¡

·
AT11 O

AT12 AT22

·̧
V11(t) V12(t)

V T12(t) V22(t)

¸

¡

·
V11(t) V12(t)

V T12(t) V22(t)

·̧
A11 A12
O A22

¸
¡

·
Q11 O
O O

¸

+

·
V11(t) V12(t)

V T12(t) V22(t)

·̧
H1R

¡1HT
1 O

O O

·̧
V11(t) V12(t)

V T12(t) V22(t)

¸

¡

·
O O
O BT22

·̧
V11(t) V12(t)

V T12(t) V22(t)

·̧
O O
O B22

¸
; (34)

with:·
V11(T ) V12(T )

V T12(T ) V22(T )

¸
=

·
F11 O2£(n+1)

O(n+1)£2 O(n+1)£(n+1)

¸
; (35)

the dimensions of the zero-blocks in (34) are straightfor-
ward and are omitted to make more readable the above
computation. By taking into account in (34-35) only the

block-matrix equations concerning _V11(t) and _V12(t), equa-
tions (28), (29) are readily satis¯ed. ²

Equation (26) tells us that the linear optimal map of the
output's paths up to the current time t always has the
form of a ¯nite-dimensional linear map of the mean-square

linear-optimal state-estimate bX(t) (separation property).
Therefore the overall control system is endowed with the

¯lter equations for bX, which by Carravetta et al. (2007)
are given by

d bX(t) = A bX(t)dt+ S(t) bX(t)dt (36)

+
1

¾02
P (t)CT

³
dY (t)¡ C bX(t)dt

´
; (37)

bX(0) = EfXg; (38)

S(t) = HLo(t); (39)

P (t) = ªX(t)¡ªbX(t); (40)

_ªX(t) = AªX(t) + ªX(t)A
T

+S(t)ªbX(t) + ªbX(t)S
T (t) (41)

+B
¡
ªX(t)+¹¹

T(t)
¢
BT; ªX(0)=Cov

¡
X(0)

¢
;

_ªbX(t) = (A+S(t))ªbX(t)+ªbX(t)(A+S(t))
T

+
1

¾02
P (t)CTCP (t); ªbX(0) = 0; (42)

_¹(t) = (A+ S(t))¹(t); ¹(0) = EfXg: (43)

As shown in Carravetta et al. (2004) under suitable as-
sumptions, including existence of a steady-state ¯lter-gain
and system-stability (this latter one indeed satis¯ed in the
present case), the incomplete-information linear optimal
control for bilinear systems admits a steady-state solution,
and the value of the in¯nite-horizon optimal cost func-
tional can be a-priori calculated. For this purpose, consider
the following modi¯ed version of the cost functional of
eq.(24):

J(u)= lim
T7!+1

1

2T
E

8
<
:

TZ

0

³
XT (t)QX(t)+uT (t)Ru(t)

´
dt

9
=
;;

(44)

Such an optimal cost is achieved by applying Theorem 4.1
in Carravetta et al. (2004) to the present case, so that:

Jo = J(uo) =
1

2
trfLo1

TRLo1©g (45)

where Lo1 is the steady-state value of the controller, and

© = lim
T!+1

1

2T

TZ

0

P (t)dt;

with P (t) the covariance of the estimation error, solution
of the ¯lter-Riccati-equation (40-43).

4. SIMULATION RESULTS

Simulations have been produced in order to pursue the
following two aims:

- validate the proposed stochastic model of the sea-wave
uncertainties a®ecting the watercraft, according to real
data measurements available from the prototype vessel
realized in the project mentioned in the Introduction;

- test "in silico" the performances of the proposed optimal
stochastic regulator, according to a closed loop simulation
framework. In this case, the ship parameters are taken
from the literature.
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Fig. 1. Roll angle evolutions: real data
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Fig. 2. Roll angle evolutions: simulation data

Numerical simulations are obtained according to the
Euler-Maruyama algorithm (see Higham (2001)) on the
time interval [0,150], with discretization time ¢ = 0:01.

The ¯rst aim has been pursued by using a stream of roll-
angle's data coming from a sensor actually placed on the
watercraft. The time evolution coming from real data is
reported in Fig.1. Axis are in time versus degrees in all the
¯gures, unless di®erently speci¯ed. A speci¯c identi¯cation
procedure to properly choose the model/disturbance pa-
rameters is, at present, a work in progress by the same au-
thors: di®erent sets of parameters would produce di®erent
patterns of disturbances (e.g. by increasing the dimension
n a smoother pro¯le is obtained, while by increasing the
absolute value of ¸ the correlation of the noise reduces).
In Fig.2, for example, the roll-angle evolution coming from
simulations is reported, according to the following param-
eters:

k = 100; ¯ = 20; n = 1; ¸ = ¡0:8; ¾ = 0:08:

Both real and simulation data are reported on time interval
of 50sec. It is apparent from trivial visual inspection that,
in this case, the time evolution coming from simulation
data resemble the time evolution coming from real data.

In order to test the proposed optimal algorithm, the ship
parameters (k, ¯, namely) have been taken from reference
Sheng et al. (1999), coming from real data:

k = 0:4874; ¯ = 0:1850

with the control parameter p set equal to 1. The sea-wave
uncertainties parameters are set as follows:

0 50 100 150
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−10

−5

0

5

10

15

Fig. 3. Time evolution of the roll angle disturbance »
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25
Roll angle without control
Roll angle under control

Fig. 4. Time evolution of the roll angle

n = 3; ¾ = 0:15; ¸i = ¡0:8; i = 1; 2; 3:

The roll-angle disturbance evolution coming from this
choice is shown in Fig.3, and provides a roll-angle evolution
compatible with the one reported in Sheng et al. (1999).

The coe±cient ¾0, concerning the output noise variance
of eq.(12), has been set equal to 0.01. The control action
pursues the double aim to stabilize the ship-roll angle with-
out enhancing its pulsatility. Such a purpose is achieved
by suitably setting the weight matrices as follows:

F11 = Q11 = diagf10; 10g; R = 1:

Below are reported the indexes obtained with and without
the application of the proposed control. They are actually
the mean values obtained on a set of 1,000 simulations:

Jfree evolution = 26:2282; Jcontrolled evolution = 2:0204:

The improvements are apparent, and the good perfor-
mances may be also appreciated by looking at ¯g.4, which
shows the controlled roll angle evolution (red solid line)
compared with the free evolution (black dotted line). To
best appreciate the performances of the algorithm, the
following ¯gures have also been reported: ¯gs.5-7 show the
true (red solid line) and estimated (blue dotted line) roll
angle, roll speed angle (time versus degree/s) and roll angle
disturbance, respectively.

5. CONCLUSION

A general stochastic model has been derived (eqs.(13-14))
for a manned sea-surface vehicle and stochastic control
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Fig. 5. Roll angle estimate
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Fig. 6. Roll speed angle estimate
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Fig. 7. Roll angle disturbance estimate

(e.g. the optimization problem formalized by the index
(24) with u(t) 2 Lt(Y )) has been applied in order to
solve the roll-regulation problem of the watercraft. Based
on the Conolly theory, the proposed model aims to give
a representation of the external unpredictable, persistent
disturbances acting on the watercraft with a variable
strength depending on sea/wind conditions. The result is
a general control-system that can be adopted for any kind
of watercraft (possibly changing a few set of parameters).
A ¯rst set of simulations has been carried out from real
data, in order to validate the proposed stochastic model
of the sea-wave uncertainties. More speci¯c validation
tests based on the spectral analysis of the real/simulated

data are a work in progress by the authors. A second
set of simulations has been carried out using parameters
taken from the literature. These results show the high
performance of the overall control-system in terms of
roll-amplitude damping. These results (in particular, in
¯g.4 it is apparent the high level of roll active damping)
have been evaluated extremely promising within the scope
of the TMS project and the on-line controller is now
being implemented in the on-board hardware for complete
testing. The whole system is planned to be released at the
end of the project's activity.
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