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1. INTRODUCTION

The set invariance theory has been subject to an exten-
sive study over the last 50 years due to its close rela-
tionship with basic concepts of control theory, some of
which are control synthesis under uncertainty, reachability
analysis and stability theory. Indeed, utilization of set in-
variance concepts permits control synthesis for uncertain,
constrained, control systems guaranteeing a–priori that
the controlled dynamics exposed to the uncertainty are
well behaved. A more detailed exposition of set invariance
and its applications in control can be found in the mono-
graphs (Aubin, 1991; Blanchini and Miani, 2008). The
main issues in set invariance are theoretical considerations
and algorithmic procedures related to the maximal and the
minimal invariant sets (Bertsekas, 1972; Aubin, 1991; Kol-
manovsky and Gilbert, 1998; Raković et al., 2005; Art-
stein and Raković, 2008; Raković, 2007; Blanchini and
Miani, 2008). Since the computation of the maximal and
the minimal invariant sets can be prohibitive in many
cases, the characterization and the computation of in-
variant approximations of the maximal and the min-
imal invariant sets have been considered; see, for in-
stance, (Kolmanovsky and Gilbert, 1998; B. D. O’Dell and
E. A. Misawa, 2002; Raković et al., 2005; Raković, 2007).

In this paper, we discuss a method that generates invariant
sets at any step of the underlying set recursion. Conditions
under which the corresponding sequence of invariant sets
is monotonically non–decreasing and converges, in finite
time, to the maximal invariant set are given. The proposed
algorithm is “dual” to the method discussed in (Raković,
2007). Explicit formulae for the estimate of the Hausdorff
distance between the corresponding set iterates and the
maximal invariant set are derived.
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work DPI2007-66718-C04-01.

Paper Structure: Section 2 presents preliminaries. Sec-
tions 3 discusses the computation of invariant approxi-
mations of the maximal invariant set and analyzes cor-
responding convergence issues. Sections 4, 5 and 6 com-
ment on computational considerations and provide a few
illustrative examples and conclusion.

Basic Nomenclature and Definitions: The sets of
non–negative, positive integers and non–negative real
numbers are denoted, respectively, by N , N+ and R+, i.e.
N := {0, 1, 2, . . .}, N+ := {1, 2, . . .} and R+ := {x ∈ R :
x ≥ 0}. For two sets X ⊂ Rn and Y ⊂ Rn and a vector
x ∈ Rn, the Minkowski set addition is defined by X⊕Y :=
{x + y : x ∈ X, y ∈ Y } and the Minkowski (Pontryagin)
set difference is X ⊖ Y := {z ∈ Rn : z ⊕ Y ⊆ X}. Given
the sequence of sets {Xi ⊂ Rn}b

i=a, a ∈ N, b ∈ N, b > a,

we denote
⊕b

i=a Xi := Xa ⊕ · · · ⊕ Xb. Given a set X
and a real matrix M of compatible dimensions (possibly
a scalar) we denote by MX the image of X under M
so that MX := {Mx : x ∈ X} and, similarly, we
denote by M−1X the inverse image of X under M so that
M−1X := {x : Mx ∈ X}. Given a matrix M ∈ Rn×n,
ρ(M) denotes the largest absolute value of its eigenvalues.
A set X ⊂ Rn is a C set if it is compact, convex, and
contains the origin. A set X ⊂ Rn is a proper C set if it is
a C set and the origin is in its non–empty interior. A set
X ⊆ Rn is a symmetric set if X = −X. Given a non–empty
closed subset X of Rn, the collection of non–empty com-
pact subsets of X is denoted by Com(X ). The collection
of C subsets of X is denoted by ComC(X ). The collection
of proper C subsets of X is denoted by ComCP(X ). For
X ∈ Com(X ) and Y ∈ Com(X ), the Hausdorff semi–
distance and the Hausdorff distance (metric) of X and Y
are, respectively, given by:

hL(X,Y ) := min
α

{α : X ⊆ Y ⊕ αL, α ≥ 0} and

HL(X,Y ) := max{hL(X,Y ), hL(Y,X)},

where L is a given, symmetric, proper C set in Rn.
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2. PRELIMINARIES & PROBLEM FORMULATION

Consider the following autonomous discrete-time linear
time-invariant (DLTI) system:

x+ = Ax + w, (2.1)

where x ∈ Rn is the current state, x+ is the successor state,
A ∈ Rn×n is the state transition matrix and w ∈ Rn is
an unknown disturbance taking values in the set W ⊂ Rn.
The variables x and w are subject to hard constraints:

x ∈ X and w ∈ W. (2.2)

In this paper we invoke the following assumptions:

Assumption 1. The set W is a C set in Rn.

Assumption 2. The set X is a proper C set in Rn.

Assumption 3. The matrix A is strictly stable (ρ(A) < 1).

To discuss invariance related issues we follow the set–
dynamics approach (Artstein and Raković, 2008) and
associate the map R (·) : Com(Rn) → Com(Rn) with
the system (2.1) and the disturbance set W given by:

R(X) := AX ⊕ W. (2.3)

When W ∈ Com(Rn), the function R (·) maps, indeed,
Com(Rn) to itself. In addition, if X ∈ ComC(Rn) and
W ∈ ComC(Rn) then R(X) ∈ ComC(Rn).

Definition 1. The set Ω ⊂ Rn is an invariant set for
the system (2.1) and constraint set (X ,W ) if and only
if Ω ⊆ X and Ax + w ∈ Ω for all x ∈ Ω and all w ∈ W ,
i.e. iff Ω ⊆ X and R(Ω) ⊆ Ω (AΩ ⊕ W ⊆ Ω).

We use the term invariant set rather than robust positively
invariant set (as is customary in the literature); no con-
fusion should arise. We denote by ComInv(A,W,X ) the
collection of all, compact, invariant subsets of X :

ComInv(A,W,X ) := {Ω : Ω ∈ Com(X ), R(Ω) ⊆ Ω}.
(2.4)

Definition 2. The set Ω ⊆ Rn is the minimal invariant
set for the system (2.1) and constraint set (Rn,W ) over
the collection of invariant sets ComInv(A,W,Rn) if and
only if Ω ∈ ComInv(A,W,Rn) and Ω ⊂ Φ for all Φ ∈
ComInv(A,W,Rn) such that Φ 6= Ω.

Definition 3. The set Ω̄ ⊆ Rn is the maximal invariant
set for the system (2.1) and constraint set (X ,W ) over
the collection of invariant sets ComInv(A,W,X ) if and
only if Ω̄ ∈ ComInv(A,W,X ) and Φ ⊂ Ω̄ for all Φ ∈
ComInv(A,W,X ) such that Φ 6= Ω̄.

The minimal invariant set is, under Assumptions 1 and 3,
unique and is given explicitly by:

X∞ =
∞

⊕

i=0

AiW, (2.5)

and is, furthermore, a C set in Rn. The main results
of (Kolmanovsky and Gilbert, 1998) yield that the col-
lection of invariant sets ComInv(A,W,X ) is non–empty if
and only if the minimal invariant set X∞ and the state
constraint set X are such that X∞ ⊆ X . In addition, the
maximal invariant set is finitely determined when Assump-
tions 1–3 hold and X∞ ⊆ interior(X ) (Kolmanovsky and
Gilbert, 1998). Hence, we also invoke:

Assumption 4. The minimal invariant set X∞ and the
state constraint set X are such that X∞ ⊆ αX for some
α ∈ [0, 1).

We denote by Com(X ,X∞) the collection of all compact
subsets of X that contain the minimal invariant set X∞:

Com(X ,X∞) := {X ∈ Com(X ) : X∞ ⊆ X} (2.6)

and invoke the map B (·) : Com(X ,X∞) → Com(X ,X∞):

B(X) :=
(

A−1(X ⊖ W )
)

∩ X . (2.7)

Clearly, under Assumptions 1–4, the function B (·) maps,
indeed, Com(X ,X∞) to itself. The standard viability
algorithm (Bertsekas, 1972; Aubin, 1991; Kolmanovsky
and Gilbert, 1998; Blanchini and Miani, 2008) for the
computation of the maximal invariant set is given by:

Ωk+1 := B(Ωk), k ∈ N, Ω0 := X . (2.8)

The set sequence {Ωk}
∞
k=0

generated by (2.8) is, under As-
sumptions 1–3, a monotonically non–increasing sequence
of compact sets that is bounded below by the minimal
invariant set X∞ and hence it converges. Furthermore,
its limit is the maximal invariant set Ω∞ and, under
Assumptions 1–4 there exists a finite k∗ ∈ N such that
Ωk∗+1 = Ωk∗ and, consequently, Ω∞ = Ωk∗ is a proper
C set in Rn. The smallest integer k∗ ∈ N such that
Ωk∗+1 = Ωk∗ is referred to as the determinedness index
and, in this case, we say that the maximal invariant set
is finitely determined. However, even in the case when the
maximal invariant set is finitely determined with the cor-
responding determinedness index k∗, none of the iterates
Ωk, k < k∗, enjoys invariance property and, moreover, the
determinedness index k∗ can be reasonably large render-
ing the set iteration (2.8) computationally expensive and
corresponding iterates relatively complex sets.

We recall a few elementary facts (Kuratowski, 1972;
Schneider, 1993) that are of much help.

Lemma 1. Let X, Y and Z be three arbitrary non–empty
subsets of Rn. Then:

(X ∩ Y ) ⊖ Z = (X ⊖ Z) ∩ (Y ⊖ Z) and (2.9a)

(X ∩ Y ) ⊕ Z ⊆ (X ⊕ Z) ∩ (Y ⊕ Z) . (2.9b)

Lemma 2. Let f (·) : X → Y and let f−1(Y ) denote the
inverse image of the set Y ⊂ Y, i.e. f−1(Y ) = {x : f(x) ∈
Y }. Let also f(X) denote the image of the set X ⊆ X with
respect to f (·), i.e. f(X) = {f(x) : x ∈ X}. Then:

f−1 (Y1 ∩ Y2) = f−1(Y1) ∩ f−1(Y2) and (2.10a)

f (X1 ∩ X2) ⊆ f(X1) ∩ f(X2), (2.10b)

for any Y1 and Y2 contained in Y, and similarly, for any
X1 and X2 contained in X .

The following simple observation is also of help:

Lemma 3. Let X and Y be arbitrary C sets in Rn. Then:

Y ∩ X ⊆ (λ1Y ∩ X) ⊕ (λ2Y ∩ X) , (2.11)

for all λ1 and λ2 such that λ1+λ2 = 1 and λ1 ≥ 0, λ2 ≥ 0.

The main objectives of this paper are to:

(i) provide a modification of the viability algorithm (2.8)
such that the iterates of the modified set recursion
are invariant sets and converge, in finite time, to the
maximal invariant set,

(ii) derive estimates of the Hausdorff distance between
the iterates of the modified procedure and the maxi-
mal invariant set, and

(iii) discuss some special families of invariant sets resulting
from the modified set recursion.
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3. INVARIANT APPROXIMATIONS OF THE
MAXIMAL INVARIANT SET

We follow the set–dynamics approach employed in (Artstein
and Raković, 2008) and utilize set–dynamics induced by
the mappings R (·) and B (·) restricted to appropriate
spaces. The mapping R (·) induces the set–dynamics:

X+ = R(X) = AX ⊕ W. (3.1)

As shown in (Artstein and Raković, 2008), under Assump-
tions 3 and when W ∈ Com(Rn), the mapping R (·) is a
contraction in Com(Rn) with respect to Hausdorff distance
HL(·, ·) and hence admits the unique fixed point, precisely
the minimal invariant set X∞. Under Assumptions 1–
4, Proposition 4.3 of (Artstein and Raković, 2008) and
invariance of Ω∞ imply that the set dynamics (3.1) result
in the trajectory {Xk}

∞
k=0

such that Xk ∈ Com(Ω∞) and
HL(Xk,X∞) → 0 as k → ∞ for any arbitrary initial
condition X0 ∈ Com(Ω∞), where Ω∞ and X∞ are, respec-
tively, the maximal and the minimal invariant sets. In fact,
under Assumptions 1–4, the set X∞ is the stable attractor
for the set–dynamics (3.1) restricted to Com(Ω∞) and is,
furthermore, the unique set which solves the set equation:

X = R(X) i.e. X = AX ⊕ W. (3.2)

Set–dynamics approach utilized in (Artstein and Raković,
2008) has, inter alia, resulted in the characterization of a
family of outer invariant approximations of the minimal
invariant set offering computational benefits in the linear–
convex setting (Raković, 2007):

Proposition 1. Suppose Assumptions 1 and 3 hold. Then
there exist a symmetric set L ∈ ComCP(Rn) and a scalar
λ ∈ [0, 1) such that, for all k ∈ N ,

AkL ⊆ λkL. (3.3)

Furthermore, for any symmetric set L ∈ ComCP(Rn) and
a scalar λ ∈ [0, 1) such that AL ⊆ λL, sets Sk given by:

Sk := Rk({0}) ⊕ λk(1 − λ)−1µL, (3.4)

where Rk+1({0}) =
⊕k

i=0
AiW and R0({0}) = {0},

µ := HL(W, {0}) = minγ{γ : W ⊆ γL}, are invariant
sets for the system (2.1) and constraint set (Rn,W ) for
any k ∈ N , i.e. ∀k ∈ N : R(Sk) ⊆ Sk.

We utilize the power of the set–dynamics approach by
focusing on set–dynamics induced by the mapping B (·)
restricted to the collection of sets Com(X ,X∞):

Y + = B(Y ) =
(

A−1(Y ⊖ W )
)

∩ X . (3.5)

Clearly, set–dynamics (3.5) produces the trajectory {Yk}
∞
k=0

such that Yk = Ωk for all k ∈ N when {Ωk}
∞
k=0

is the
set sequence generated by (2.8) and the initial condition
is Y0 = X . Hence, we discuss the possibility to utilize
set–dynamics (3.5) in order to generate the sequence of
improving inner invariant approximations of the maximal
invariant set Ω∞. The underlying idea is to simply generate
the trajectory {Yk}

∞
k=0

of the set–dynamics (3.5) such that
Yk is invariant and it approaches the maximal invariant set
Ω∞ from the inside. Off–hand intuition might suggest that,
under Assumptions 1–4, the trajectory {Yk}

∞
k=0

of the set–
dynamics (3.5) starting from an initial condition Y0 which
is invariant is a monotonically non–decreasing sequence
of invariant sets converging to the maximal invariant set
Ω∞. However, this is not the case, as shown by our telling
example:

Example 1. Consider the following system:

x+ =

[

1

2
0

0 β

]

x + w,

where β ∈ (0, 1) can be arbitrarily chosen. The disturbance
and state constraint sets are given by:

W = [−1, 1] × {0} and X = 3B∞,

where B∞ denotes the closed unit ∞–norm ball. It is
easy to see that the minimal invariant set X∞ is, for this
example, given by:

X∞ = [−2, 2]×{0} and that R(X∞) = AX∞⊕W = X∞.

By direct inspection, the maximal invariant set Ω∞, for
this example, satisfies Ω∞ = X . Consequently, Assump-
tions 1–4 are all satisfied for this particular example. It is
also clear that the maximal invariant set Ω∞ is the fixed
point of the mapping B (·), i.e. the maximal invariant set
Ω∞ satisfies the set–equation Y = B(Y ). However, the
maximal invariant set Ω∞ is not the unique set that solves
the set–equation Y = B(Y ) because the set Ŷ = [−3, 3] ×
{0} is an invariant set which is also a solution to the

set equation Y = B(Y ) as verified by noticing that Ŷ ⊖
W = [−3, 3] × {0} ⊖ [−1, 1] × {0} = [−2, 2] × {0} and
verifying that:

B(Ŷ ) =

([

2 0
0 β−1

]

([−2, 2] × {0})

)

∩ 3B∞ = Ŷ .

Our telling example illustrates that the condition:

Y = B(Y ), i.e. Y =
(

A−1(Y ⊖ W )
)

∩ X , (3.6)

is only a necessary condition for the set Y to be the maxi-
mal invariant set and, clearly, not a sufficient condition. In
fact, there is no reason to expect that the mapping B (·)
admits the unique fixed point unless additional assump-
tions are invoked. The following observation is of help:

Proposition 2. Suppose Assumptions 1–4 hold. Then there
exist a proper C set in Rn, say S, and a scalar θ ∈ [0, 1)
such that:

R(S) = AS ⊕ W ⊆ θS and X∞ ⊆ S ⊆ X . (3.7)

We discuss in Section 4 some practical choices of the
set S and the corresponding scalar θ ∈ [0, 1). When
Assumptions 1–4 hold Proposition 2 justifies the following
hypothesis that we utilize in our analysis.

Hypothesis 1. The set S ∈ ComCP(X ) and scalar θ ∈
(0, 1) are such that AS ⊕ W ⊆ θS.

Lemmata 1 and 2 imply that the mapping B (·) is additive
with respect to the set intersection:

Lemma 4. Consider the mapping B (·) given by (2.7). Let
S1 and S2 be any two arbitrary elements of the collection
of sets Com(X ,X∞) given by (2.6). Then:

B(S1 ∩ S2) = B(S1) ∩ B(S2) (3.8)

and B(S1 ∩ S2) 6= ∅, B(S1) 6= ∅ and B(S2) 6= ∅.

The mapping B (·) is an invariance preserving mapping:

Lemma 5. Consider the mappings R (·) and B (·) given,
respectively, by (2.3) and (2.7). Let Y be any arbitrary
element of the collection of sets ComInv(A,W,X ) given
by (2.4). Then:

Y ⊆ B(Y ), R(B(Y )) ⊆ Y and R(B(Y )) ⊆ B(Y ). (3.9)
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As the final ingredient, we introduce an auxiliary set
sequence {Γk}

∞
k=0

obtained by the simple, but adequate,
scaling of an invariant set S satisfying Hypothesis 1. Let,
for a given set S and scalar θ satifying Hypothesis 1,:

γ := sup
γ
{γ : γS ⊆ X , γ ∈ R+}, (3.10a)

γ̄ := inf
γ
{γ : X ⊆ γS, γ ∈ R+} and (3.10b)

Γk := θ−kγS for all k ∈ N. (3.10c)

The following simple fact is of help.

Lemma 6. Suppose Assumptions 1–4 hold and consider
the set sequence {Γk}

∞
k=0

given by (3.10) where the set
S and a scalar θ satisfy Hypothesis 1. Then for all k ∈ N :
(i) Γk ⊂ Γk+1, (ii) R(Γk+1) ⊆ Γk and (iii) R(Γk) ⊆ Γk.

The set sequence {Γk}
∞
k=0

is utilized for generating im-
proving inner invariant approximations of the maximal
invariant set via the set sequence {Γ̃k}

∞
k=0

given by:

Γ̃k := Γk ∩ Ωk, k ∈ N, (3.11)

where sets Γk and Ωk are given, respectively, by (3.10)
and (2.8). Sets Ωk are iterates of the viability algorithm
and are not necessarily invariant sets. Our next result,
however, establishes invariance of sets Γ̃k for any k ∈ N .

Proposition 3. Suppose Assumptions 1–4 hold and con-
sider the set sequence {Γ̃k}

∞
k=0

given by (3.11) where sets
Ωk and Γk are given, respectively, as in (2.8) and (3.10)
and where the set S and a scalar θ satisfy Hypothesis 1.
Then: (i) R(Γ̃k+1) ⊆ Γ̃k for all k ∈ N , (ii) Γ̃k ⊆ Γ̃k+1

for all k ∈ N and (iii) sets Γ̃k are invariant sets for the
system (2.1) and constraint set (2.2) for any k ∈ N .

Hence, by Proposition 3, the auxiliary set sequence
{Γk}

∞
k=0

is an invariance and monotonicity correction se-
quence for iterates Ωk of the viability algorithm (2.8). In

fact, the set sequence {Γ̃k}
∞
k=0

enables us to demonstrate
that the set–dynamics (3.5) for an adequate initial condi-
tion result in the trajectory {Yk}

∞
k=0

which is a sequence of
monotonically non–decreasing, invariant sets converging to
the maximal invariant set Ω∞. To simplify our statements
we invoke:

Assumption 5. The set sequence {Ωk}
∞
k=0

is generated by
the standard viability algorithm (2.8). The set sequence

{Γ̃k}
∞
k=0

is given by (3.11) where sets Ωk and Γk are given,
respectively, by (2.8) and (3.10) and where the set S and
a scalar θ satisfy Hypothesis 1. The set sequence {Yk}

∞
k=0

is the trajectory of the set–dynamics (3.5) with initial

condition Y0 = Γ̃0.

Proposition 4. Suppose Assumptions 1–5 hold. Then for
all k ∈ N : (i) Γ̃k ⊆ Yk ⊆ Ωk, (ii) Yk ⊆ Yk+1 ⊆ Ωk+1 and
(iii) R(Yk) ⊆ Yk, i.e. sets Yk are invariant for any k ∈ N .

We now turn our attention to the convergence issues
and the estimates of the Hausdorff distance between the
terms of the set sequences {Γ̃k}

∞
k=0

and {Yk}
∞
k=0

and the
maximal invariant set Ω∞.

Proposition 5. Suppose Assumptions 1–5 hold. Then for
all k ∈ N : (i) Γ̃k ⊆ Yk ⊆ Ω∞, (ii) HL(Γ̃k,Ω∞) ≤
HL(Γ̃k,Ωk) = hL(Ωk, Γ̃k), (iii) HL(Yk,Ω∞) ≤ HL(Yk,Ωk) =

hL(Ωk, Yk), and (iv) HL(Yk,Ω∞) ≤ HL(Γ̃k,Ω∞).

Remark 1. Clearly, by Proposition 5, we can derive an
upper estimate of the Hausdorff distance between the
terms of the set sequences {Γ̃k}

∞
k=0

and {Yk}
∞
k=0

and the
maximal invariant set Ω∞ without actually employing the
maximal invariant set Ω∞. The proposed upper estimates
can be obtained by computing the Hausdorff semi–distance
between iterates Ωk of the viability algorithm (2.8) and

the terms of the set sequences {Γ̃k}
∞
k=0

and {Yk}
∞
k=0

.
Computationally simpler upper estimates can be obtained
by utilizing the fact that sets Ωk, Γ̃k and Yk are, under
Assumptions 1–4, proper C sets in Rn. To this end, let,
for any k ∈ N ,:

φk := inf
φ
{φ : Ωk ⊆ φYk, φ ∈ R+}, (3.12a)

ϕk := inf
ϕ
{ϕ : Yk ⊆ ϕL, ϕ ∈ R+}, (3.12b)

σk := inf
σ
{σ : Ωk ⊆ σΓ̃k, σ ∈ R+} and (3.12c)

ςk := inf
ς
{ς : Γ̃k ⊆ ςL, ς ∈ R+}. (3.12d)

Utilizing Proposition 5 and (3.12) the guaranteed upper
estimates of the Hausdorff distance between the terms of
the set sequences {Γ̃k}

∞
k=0

and {Yk}
∞
k=0

and the maximal
invariant set Ω∞ are given, for all k ∈ N , by:

HL(Yk,Ω∞) ≤ (φk − 1)ϕk and HL(Γ̃k,Ω∞) ≤ (σk − 1)ςk.

Slightly weaker, but guaranteed and explicit, upper esti-
mates as well as an explicit upper estimate for the deter-
minedness index can be obtained by utilizing Lemma 3
as outlined next. By Proposition 4, our assumptions,
and (3.10) we have the following relations for all k ∈ N :

Γ̃k ⊆ Yk ⊆ Ω∞ ⊆ Ωk ⊆ X ⊆ γ̄S. (3.13)

Since, by (3.10) and (3.11), Γ̃k = θ−kγS∩Ωk and by (3.13)
Ωk = Ωk ∩ γ̄S, it follows that, for all k ∈ N ,:

θ−kγS ∩ Ωk ⊆ Yk ⊆ Ω∞ ⊆ Ωk = γ̄S ∩ Ωk. (3.14)

The relations (3.14) clearly become set equalities when
γ̄S ∩ Ωk ⊆ θ−kγS ∩ Ωk. Due to our assumptions and
Hypothesis 1, S is a proper C set in Rn, θ ∈ (0, 1) and
γ̄ ≥ γ > 1 are finite so that:

γ̄S ⊆ θ−kγS ⇒ γ̄S ∩ Ωk ⊆ θ−kγS ∩ Ωk. (3.15)

The set inclusion γ̄S ⊆ θ−kγS is true if γ̄ ≤ θ−kγ or,

equivalently, for all k ≥ k̄ where k̄ is given by:

k̄ := min
k

{k : k ≥
ln γ − ln γ̄

ln θ
, k ∈ N}. (3.16)

The formula (3.16) provides an explicit upper estimate of
the determinedness index k̄, that can be evaluated directly,
prior to viability computations (2.8), by merely evaluat-
ing (3.10) and (3.16).

Our main results are summarized by:

Theorem 1. Suppose Assumptions 1–5 hold. Then for all
k ∈ N : (i) Γ̃k ⊆ Γ̃k+1 and Γ̃k is invariant set for the
system (2.1) and constraint set (2.2), (ii) Yk ⊆ Yk+1 and Yk

is invariant set for the system (2.1) and constraint set (2.2),

(iii) HL(Γ̃k,Ω∞) ≤ max{0, (γ̄ − θ−kγ)}hL(S, {0}), (iv)

HL(Yk,Ω∞) ≤ max{0, (γ̄ − θ−kγ)}hL(S, {0}). Further-

more, for all k ∈ N such that k ≥ k̄ where k̄ is given
by (3.16) it holds that (v) HL(Γ̃k,Ω∞) = 0 and (vi)
HL(Yk,Ω∞) = 0.
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4. COMPUTATIONAL REMARKS & SPECIAL CASES

Additional structure of disturbance and state constraint
sets, W and X , and the set S permits the characterization
of some specific families of well behaved inner invariant
approximations of the maximal invariant set Ω∞.

The set S and a scalar θ ∈ (0, 1) satisfying Hypothesis 1
can be potentially obtained by employing the standard
convex optimization techniques. Restricting the set S to
be an ellipsoid, say SE := {x ∈ Rn : x′Px ≤ 1}, where
P ∈ Rn×n is a positive definite symmetric matrix, the
following set of constraints:

ASE ⊕ W ⊆ θESE , SE ∈ ComCP(X ), θE ∈ (0, 1) (4.1)

can be posed, under relatively mild assumptions on W , as
an optimization problem involving linear matrix inequal-
ities (Boyd et al., 1994). The following facts are worth
noticing and are relevant when Assumptions 1–4 hold and,
in addition, W and X are polytopes and an ellipsoid SE

and a scalar θE ∈ (0, 1) satisfy (4.1):

Remark 2. The computation of the trajectory of set–
dynamics (3.5) with the initial condition Y0 = γSE where
γ is given as in (3.10) and when SE (ellipsoidal set) and
a scalar θE ∈ (0, 1) satisfy (4.1), i.e. the set sequence
{Yk}

∞
k=0

, is computationally expensive due to the necessity
to compute the Minkowski (Pontryagin) set differences
between sets Yk, k ∈ N and the polytope W . However, the
computation of the set sequence {Γ̃k}

∞
k=0

given by (3.11) is

rather simple and direct since sets Γk = θ−k
E γSE specified

by (3.10) are, in this case, proper C ellipsoidal sets in
Rn and sets Ωk are proper C polytopes in Rn. The inner
invariant approximations of the maximal invariant set
Ω∞, sets Γ̃k = Γk ∩ Ωk, k ∈ N are, in this case, given
by the intersection of an ellipsoid and a polytope for a
finite number of integers and converge, in finite time, to
the maximal invariant set Ω∞ which is polytopic. We refer
to sets Γ̃k as semi–ellipsoidal invariant sets and provide an
illustrative example in Section 5.

Similarly as in (Raković, 2007), when an ellipsoidal set SE

and a scalar θE ∈ (0, 1) satisfy (4.1) there exist of a proper
C polytope in Rn, say SP , and a scalar θP ∈ (0, 1) such
that, for any given δ ∈ (0, 1 − θE),:

(θE + δ)SE ⊆ SP ⊆ SE and (4.2a)

ASP ⊕ W ⊆ θPSP with θP =
θE

θE + δ
∈ (0, 1). (4.2b)

When Assumptions 1–4 hold and, in addition, W and
X are polytopes and a polytopic set SP and a scalar
θP ∈ (0, 1) satisfy (4.2b), the following facts are worth
noticing for the computations:

Remark 3. In this case, the computation of both the
trajectory of set–dynamics (3.5), i.e. the set sequence
{Yk}

∞
k=0

, with the initial condition Y0 = γSP where γ

is given as in (3.10), and the set sequence {Γ̃k}
∞
k=0

given
by (3.11) is computationally feasible. Furthermore, the sets

Yk and Γ̃k are polytopic sets for all k ∈ N and are well
behaved inner invariant approximations of the maximal
invariant set Ω∞ converging to it in finite time.

We also remark that for computational reasons one can
alternatively utilize results of Proposition 1 for the com-

putation of the set S and a scalar θ ∈ (0, 1) satisfying
Hypothesis 1 in the case when the set of inequalities (4.1)
is not feasible but Assumptions 1– 4 are satisfied.

Remark 4. A special, but interesting, case is when the
disturbance set is W = {0}. Essentially, the complete
theoretical analysis of Section 3 is applicable directly
with obvious modifications. In this case, Assumption 4
is implied directly by Assumption 2 and Hypothesis 1
is replaced by the requirement that the proper C set S
and a scalar θ ∈ (0, 1) are such that AS ⊆ θS and
S ⊆ X . For example, it is direct to verify, by utilizing
Lemma 4 and the fact that the iterates of (2.8) satisfy
Ω∞ ⊆ Ωk+1 ⊆ Ωk ⊆ X for all k ∈ N , that sets Yk, k ∈ N
are given by:

Yk = Ȳk ∩ Ωk, k ∈ N, where (4.3a)

Ȳk+1 := A−1Ȳk, k ∈ N with Ȳ0 = γS, (4.3b)

where γ is given as in (3.10). When X and S are proper C

polytopes in Rn, sets Ȳk and Ωk, and consequently Yk are
also proper C polytopes in Rn for k ∈ N . When X and
S are, respectively, proper C polytope and ellipsoid in Rn

and the state transition matrix A is a non–singular matrix,
sets Ȳk and Ωk are, respectively, proper C ellipsoids and
polytopes in Rn for k ∈ N and hence, sets Yk are proper C
semi–ellipsoidal sets in Rn for a finite number of integers
(when the matrix A is singular sets Yk, k ∈ N remain
proper C sets in Rn but might not be semi–ellipsoidal
sets in the proper sense.). In either case, the set sequence
{Yk}

∞
k=0

converges, in finite time, to the maximal invariant
set Ω∞ which is a proper C polytope in Rn.

5. ILLUSTRATIVE EXAMPLES

We provide two illustrative examples.

Example 2. The first example is the system with:

A = 0.9

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

=

[

0.8916 0.1225
−0.1225 0.8916

]

,

where θ = π
23

and

W = 0.01B∞ and X = 100B∞ ∩ {x ∈ R2 : x2 ≥ −20}.

Hereafter B∞ is the closed unit ∞–norm ball and xi

denotes the ith coordinate of a vector x. We computed
the set sequence {Γ̃k}

∞
k=0

given by (3.11) as indicated in
Remark 2. The set SE and a scalar θE satisfying Hypoth-

Fig. 1. The invariant sets Γ̃k and usual iterates Ωk.

esis 1 are obtained by solving the linear matrix inequality
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problem specified in (4.1) and are utilized via (3.10) for

the initial set Γ̃0. The inner invariant approximations, sets
Γ̃k, of the maximal invariant set Ω∞ are shown in darker
gray–scale shading in Figure 1. The iterates Ωk of (2.8)

Fig. 2. The evolution of the “Γ̃” and “Ω” set–dynamics.

are depicted, in lighter gray–scale shading, in the same
figure. Assertions of Propositions 3 and 4 are illustrated
in Figure 1, where it is clear by inspection that Γ̃k ⊆ Ωk

for all k. The finite time convergence of both sequences
{Γ̃k}

∞
k=0

and {Ωk}
∞
k=0

to the maximal invariant set Ω∞ is
also evident in Figures 1 and 2. Results of Propositions 3
and 4 and Theorem 1 and the fact that sets Γ̃k are proper
C semi–ellipsoidal sets in R2 for a finite number of integers
are also illustrated in Figure 2 where the evolution of “Γ̃”
and “Ω” set–dynamics is shown, respectively, in darker and
lighter gray–scale shading.

Example 3. The second example is the system with:

A = 0.95

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

=

[

0.9224 0.2273
−0.2273 0.9224

]

,

where θ = π
13

and W = 0.1B∞, and

X = {x ∈ R2 : −30 ≤ x1 ≤ 70, −10 ≤ x2 ≤ 20, }.

The set SP and a scalar θP satisfying Hypothesis 1

Fig. 3. The evolution of the “Y ” and “Ω” set–dynamics.

are obtained by utilizing the minimal invariant set X∞,
given by (2.5), which is, for this particular example,
computable explicitly and admits representation either

with 52 inequalities or 52 extreme points. The inner
invariant approximations, sets Yk, k ∈ N , of the maximal
invariant set Ω∞ and sets Ωk are shown, respectively, in
darker and lighter gray–scale shading in Figure 3. Results
of Propositions 3 and 4 and Theorem 1 are illustrated in
Figure 3, where it is clear by inspection that Yk ⊆ Ωk

for all k and that the set sequences {Yk}
∞
k=0

and {Ωk}
∞
k=0

converge, in finite time, to the maximal invariant set Ω∞.
In this example sets Yk and Ωk are proper C polytopes in
R2 since SP and X are also proper C polytopes in R2.

6. CONCLUDING REMARKS

We offered a method for the computation of invariant ap-
proximations of the maximal invariant set for constrained
linear discrete time systems subject to bounded, additive,
disturbances. Under mild assumptions, inner invariant ap-
proximations converge, in finite time, to the maximal in-
variant set. We derived estimates of the Hausdorff distance
between the underlying iterates and the maximal invariant
set and the determinedness index.
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