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Abstract: In analysis and design of a system, the first goal is to obtain an appropriate model
of the system. Because of the complex dynamics of discrete event systems (DESs), it is very
difficult to obtain a model of unknown DESs from given input and output data. This paper
discusses an identification and realization method of a class of DESs by neural networks. We
consider a class of DESs which is modeled by using finite state automata. In identification and
realization of systems by using neural networks, it is essentially important to develop a suitable
architecture of neural networks. We already proposed two neural network architectures: one
is a class of recurrent neural networks and the other is a class of recurrent high-order neural
networks, which are capable of representing FSA with the network size being smaller than the
existing neural network models. In this paper we present an identification method of DESs,
which makes it possible to obtain sparse realization, that is, to obtain networks with simpler
structure. It is shown through numerical experiments that presented method makes it possible
to obtain simpler neural networks which can exactly simulate target DESs.

1. INTRODUCTION

Discrete event systems (DESs) are dynamic systems with
state changes driven by occurrence of events and many
practical systems can be modeled as DESs. Recently, there
have been increasing research interests of DESs and also
hybrid systems which are those that combine continuous
and discrete dynamics and involve both variables that take
values in a continuum and those that take values in a
finite or countable set. In many control systems, controlled
objects are continuous dynamical systems and controllers
are implemented as discrete event systems.

In analysis and design of any system, the first goal is to
obtain an appropriate mathematical model of the system.
Because of the complex dynamics of DESs, it is very
difficult to obtain a mathematical model of unknown
DESs. Therefore it has been strongly desired to develop
identification and realization methods of DESs from given
input and output data. One of the promising approaches
to the problem is to develop a method by using neural
networks. In this paper we discuss an identification and
realization problem of a class of DESs by neural networks.
We consider a class of DESs represented by finite state
automata (FSA), which is one of the most familiar model
representations of DESs.

In recent years, the problem of representing and learning
FSA with artificial neural networks has attracted a great
deal of interest in the area of brain science. Several models
of neural networks for representing and learning FSA have
been proposed and their computational capabilities have
been investigated (Minsky [1967], Alon et al. [1991], Giles
et al. [1992], Zegn et al. [1993], Giles et al. [1995], Kuroe
[2005]).

The first problem that comes out in the approach is
to investigate what architectures of neural networks are
suitable for identification and realization of DESs. We
have already proposed architectures of neural networks
which are suitable for identification and realization of a
class of DESs represented by FSA (Kuroe et al. [2007]).
Two neural network models are proposed: one is a class
of recurrent neural networks (RNNs) and the other is a
class of recurrent high-order neural networks (RHONNs).
They are both capable of representing the DESs with the
network size being smaller than the existing models.

In this paper we present an identification method of the
DESs from a given set of input and output data by using
those neural networks. In those neural network models
there are a lot of zero-valued parameters which are to
be determined in identification. It is, therefore, essentially
important to obtain sparse realization, that is, to obtain
a neural network with as many zero-valued parameters
as possible. The identification problem is reduced to a
learning problem of the neural networks. The presented
method makes it possible to obtain sparse realization
by introducing a cost function which reflects a measure
of network complexity in formulation of the learning
problem. We perform several identification experiments
to verify performance of the presented method. It is
shown through the experiments that the proposed method
successfully obtains sparse realization of the target DESs.

2. PROBLEM FORMULATION

2.1 Model of Discrete Event Systems

In this paper we consider a class of DESs M described by
finite state automata, which is defined by
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M = (Q, q0,Σ,∆, δ, ϕ) (1)

where Q is the set of state symbols: Q = {q(1), q(2), · · · , q(r)},
r is the number of state symbols, q0 ∈ Q is the initial state,
Σ is the set of input symbols: Σ = {i(1), i(2), · · · , i(m)}, m
is the number of input symbols, ∆ is the set of output
symbols: ∆ = {o(1), o(2), · · · , o(l)}, l is the number of
output symbols, δ: Q × Σ → Q is the sate transition
function and ϕ: Q × Σ → ∆ is the output function.

We suppose that a DES M operates at unit time intervals.
Letting i(t) ∈ Σ, o(t) ∈ ∆ and q(t) ∈ Q be the
input symbol, output symbol and state symbol at time
t, respectively, then a DES M is described by the discrete
dynamical system of the form:

M :

{

q(t + 1) = δ(q(t), i(t)), q(0) = q0

o(t) = ϕ(q(t), i(t))
(2)

The objective of this paper is to discuss the identification
and realization problem of the DESs described by (1) or
(2) by using neural networks.

2.2 Identification and Realization of Discrete Event Systems

We now formulate an identification and realization prob-
lem of unknown DES described by (1) or (2). We assume
the followings.

Assumption 1. The set of state symbols Q and the initial
state q0 of the DES are unknown.

Assumption 2. The state transition function δ and output
function ϕ of the DES are unknown.

Assumption 3. The sets of input symbols Σ and output
symbols ∆ of the DES are known.

Assumption 4. A set of data of input sequences {i(t)} and
the corresponding output sequences {o(t)} are available.

Those assumptions are natural in the real identification
and realization problems of DESs. The problem is for-
mulated as follows. Given a set of data of input and
output sequences, {i(t)} and {o(t)}, of a target DES M,
determine structures and values of the parameters of a
neural network such that its input and output relation
becomes equal to that of the DES. Two problems arise
in the identification and realization problem of the DESs:
the first one is how to determine architectures of neural
networks suitable for identification and realization, and the
second one is how to determine values of their parameters,
that is, those of connection weights and threshold values.
We first discuss how to determine suitable architectures of
neural networks.

3. RECURRENT NEURAL NETWORKS WITH
HIGH-ORDER CONNECTIONS

We introduce a general class of neural networks in order
to derive suitable architectures of neural networks for
identification and realization of the DESs M described by
(1) or (2). The neural networks considered here possess not
only usual connection units but also high-order connection
units (Kosmatopoulos et al. [1995], Kuroe et al. [1997]).
Figure 1 shows the schematic diagram of the neural
network model considered in this paper. The network

consists of neuron units, connection units, external inputs
and external outputs. Two types of neurons are considered:
dynamic neurons and static neurons. All the neurons
and connection units are arbitrarily connected, and the
connection units allow high-order nonlinear interactions.

O1I1

IM OL

Dynamic neuron Static neuron

High-order unit

Fig. 1. Recurrent neural networks with high-order connec-
tion units.

Let Nd, Ns, Nc, M and L be the numbers of the dynamic
neurons, the static neurons, the connection units, the
external inputs and the external outputs existing in the
network, respectively. The mathematical model of the
dynamic neurons is given by

vd
i (t + 1) =

Nd
∑

j=1

wdd
ij hd

j (t) +

Ns
∑

j=1

wds
ij hs

j(t) +

Nc
∑

j=1

wd
ijzj(t)

+

M
∑

j=1

wdI
ij Ij(t) + θd

i , vd
i (0) = vd

i0 (3)

hd
i (t) = fd

i (vd
i (t)), (i = 1, 2, · · · , Nd) (4)

and the mathematical model of the static neurons is given
by

us
i (t) =

Ns
∑

j=1

wss
ij hs

j(t) +

Nd
∑

j=1

wsd
ij hd

j (t) +

Nc
∑

j=1

ws
ijzj(t)

+

M
∑

j=1

wsI
ij Ij(t) + θs

i (5)

hs
i (t) = fs

i (us
i (t)), (i = 1, 2, · · · , Ns) (6)

where vd
i (t), vd

i0, hd
i (t) and θd

i are the state, the initial state,
the output and the threshold value of the i-th dynamic
neuron, respectively, and us

i , hs
i and θs

i are the state, the
output and the threshold value of the i-th static neuron,
respectively. zj(t) is the output of the j-th connection unit,
Ij is the j-th external input, wdd

ij is the weight from the

j-th dynamic neuron to the i-th dynamic neuron, wds
ij is

the weight from the j-th static neuron to the i-th dynamic
neuron, wd

ij is the weight from the j-th connection unit

to the i-th dynamic neuron, wdI
ij is the weight from the

j-th external input to the i-th dynamic neuron, wss
ij is

the weight from the j-th static neuron to the i-th static
neuron, wsd

ij is the weight from the j-th dynamic neuron
to the i-th static neuron, ws

ij is the weight from the j-th

connection unit to the i-th static neuron, wsI
ij is the weight

from the j-th external input to the i-th static neuron. f d
i (·)
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and fs
i (·) are nonlinear output functions of the dynamic

and static neurons such as threshold or sigmoidal function.

The connection units determine connections among the
neurons and the external inputs, in which high-order
nonlinear interactions are allowed. Let g be a Nd+Ns+M
dimensional vector defined by

g = [hd
1, h

d
2, · · · , h

d
Nd

, hs
1, h

s
2, · · · , h

s
Ns

, I1, I2, · · · , IM ]T . (7)

The model of the high-order connection units is given by
the following equation.

zj(t) = Gj(g(t)), (j = 1, 2, · · · , Nc) (8)

where Gj(g(t)) is defined by

Gj(g(t)) :=
∏

k∈Jj

g
dk(j)
k (t).

In the above equation gk(t) is the k-th element of g(t),
Jj is a subset of the index set {1, 2, · · · , Nd + Ns + M}
and dk(j) is a nonnegative integer. Note that dk(j) is an
exponent, not a superscript.

The external outputs Oi are expressed by

Oi(t) =

Nd
∑

j=1

δd
ijh

d
j (t) +

Ns
∑

j=1

δs
ijh

s
j(t) (9)

(i = 1, 2, · · · , L)

where δd
ij and δs

ij take values 1 or 0. If the output of the j-th
dynamic (static) neuron is connected to the i-th external
output, δd

ij = 1 (δs
ij = 1), otherwise δd

ij = 0 (δs
ij = 0).

4. MODELS OF NEURAL NETWORKS FOR
IDENTIFICATION OF DISCRETE EVENT SYSTEMS

There have been done several works on the representation
of FSA with neural networks or on investigation of rela-
tionship between neural network architectures and FSA.
A typical representative of neural network architectures
for representing FSA is a class of second-order neural
networks (Giles et al. [1992, 1995]). In these neural network
models, each symbol of input, state and output symbols
is expressed by unit basis vector, for example, each state
symbol q(i) be expressed by r dimensional unit basis vec-
tor, that is q(1) = (1, 0, · · · , 0), q(2) = (0, 1, · · · , 0), · · ·,
q(r) = (0, 0, · · · , 1) and state of FSA is represented by
assigning one neuron individually. Then, as the number
of states of a target FSA increases, the number of neurons
required for representing the FSA increases, which makes
it difficult to identify the FSA because of a large number
of network parameters.

We have already proposed two architectures of neural
networks for representing a DES M described by FSA,
which resolve this problem: one is a class of recurrent
neural networks without high-order connections and the
other is a class of recurrent neural networks with high-
order connections (Kuroe et al. [2007]).

4.1 Recurrent Neural Networks

We first show a model of recurrent neural networks (RNN)
without high-order connections for identification and re-
alization of a DES M. We encode all the state symbols

q(i) (i = 1, 2, · · · , r), input symbols i(i) (i = 1, 2, · · · ,m)
and output symbols o(i) (i = 1, 2, · · · , `) of the DES
as binary variables. For example, if the number of state
symbols of a DES is four (r = 4), q(1) = (0, 0), q(2) = (0, 1),
q(3) = (1, 0) and q(4) = (1, 1). Then q(t), i(t) and o(t) in
(2) can be expressed as follows.

q(t) = (s1(t), s2(t), · · · , sα(t)) (si(t) ∈ {0, 1})
i(t) = (x1(t), x2(t), · · · , xβ(t)) (xi(t) ∈ {0, 1})
o(t) = (y1(t), y2(t), · · · , yγ(t)) (yi(t) ∈ {0, 1})

(10)

where α, β and γ are natural numbers, which are deter-
mined depending on r, m and l, respectively, that is, α is
the minimum natural number satisfying r ≤ 2α, β is the
minimum natural number satisfying m ≤ 2β and γ is the
minimum natural number satisfying l ≤ 2γ . Expressing all
the input, state and output symbols of the DES by binary
variables as shown in (10), its state transition function and
output function are expressed as Boolean functions. Let
zi, i = 1, 2, · · · , n (n := α+β) be defined by z1 = s1, z2 =
s2, · · · , zα = sα, zα+1 = x1, zα+2 = x2, · · · , zn = xβ .
By using the fact that (i) any Boolean function can be
represented in conjunctive normal form and (ii) letting
’true = 1’ and ’false = −1’, basic logical operations
AND, OR and NOT can be expressed by combining the
arithmetic operations and the sign function S(·) defined
by S(x) = 1 for x ≥ 0 and S(x) = −1 for x < 0, we can
transform the model of the DES (eq.(2)) into the following
equation.

M :







































si(t + 1) = S(

2n

∑

j=1

aijZj(t) + ns
i − 1)

(i = 1, 2, · · · , α)

yi(t) = S(

2n

∑

j=1

bijZj(t) + ny
i − 1)

(i = 1, 2, · · · , γ)

(11)

where

Z1(t) = S(z1(t) + · · · + zn−1(t) + zn(t) − (n − 1))

Z2(t) = S(z1(t) + · · · − zn−1(t) + zn(t) − (n − 1))

... (12)

Z2n(t) = S(−z1(t) − · · · − zn−1(t) − zn(t) − (n − 1))

and ns
i and ny

i are the number of the elements of {aij :
aij = 1, i = 1, 2, · · · , α, j = 1, 2, · · · , 2n} and {bij : bij =
1, i = 1, 2, · · · , γ, j = 1, 2, · · · , 2n}, respectively. Based on
(11) we can derive an architecture of neural networks
which can exactly represent the DES as follows.

Consider the neural network described by (3), (4), (5),
(6), (7), (8) and (9) where we let Nd = α, Ns = 2α+β + γ,
Nc = 0, M = β, L = γ and fd

i (·) = S(·) and f s
i (·) = S(·).

In the networks we let the state vector of the dynamic
neurons vd = (vd

1 , vd
2 · · · , v

d
α), the external input vector

I = (I1, I2, · · · , Iβ), and the external output vector O =
(O1, O2, · · · , Oγ) be corresponding to the state q, the input
i and the output o of the DES where they are encoded as
binary variables. To realize the first equation of (11), α
dynamic neurons described by (3) and (4) are assigned, in
which we let wdd

ij = 0 for i, j = 1, 2 · · · , α, wds
ij = 0 for i =

1, 2 · · · , α, j = 2α+β + 1, 2α+β + 2, · · · , 2α+β + γ, and
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wdI
ij = 0 for i = 1, 2 · · · , α, j = 1, 2, · · · , β. Note that the

values of θd
i (i = 1, 2, · · · , α) can be determined uniquely

from the values of wds
ij (i = 1, 2 · · · , α, j = 1, 2, · · · , 2α+β)

by the definition of ns
i in (11). To realize (12), 2α+β static

neurons described by (5) and (6) are assigned, in which
we let wss

ij = 0 for i, j = 1, 2 · · · , 2α+β . Note that the

values of wsd
ij (i = 1, 2 · · · , 2α+β , j = 1, 2 · · · , α), wsI

ij (i =

1, 2 · · · , 2α+β , j = 1, 2 · · · , β) and θs
i (i = 1, 2 · · · , 2α+β)

can be determined from (12); wsd
ij and wsI

ij take the values

of ’1’ or ’0’ and θs
i = −(n − 1) (i = 1, 2 · · · , 2α+β). To

realize the second equation of (11), additional γ static
neurons described by (5) and (6) are assigned, in which
we let wss

ij = 0 for i = 2α+β + 1, 2α+β + 2, · · · , 2α+β +

γ, j = 2α+β + 1, 2α+β + 2, · · · , 2α+β + γ, wsd
ij = 0 for i =

2α+β + 1, 2α+β + 2, · · · , 2α+β + γ, j = 1, 2, · · · , α and
wsI

ij = 0 for i = 2α+β + 1, 2α+β + 2, · · · , 2α+β + γ, j =

1, 2, · · · , β. Note that the values of θs
i (i = 2α+β +1, 2α+β +

2, · · · , 2α+β + γ) can be determined uniquely from the
values of wss

ij (i = 2α+β + 1, 2α+β + 2, · · · , 2α+β + γ, j =

1, 2, · · · , 2α+β) by the definition of ny
i in (11). Furthermore

the external outputs described by (9) are assigned, in
which we let δd

ij = 0 for i = 1, 2 · · · , γ, j = 1, 2, · · · , α

and δs
ij = 0 for i = 1, 2 · · · , γ, j = 1, 2, · · · , 2α+β . Figure

2 shows the recurrent neural network thus constructed,
which consists of α dynamic neurons, and 2α+β + γ static
neurons. It can be shown by using (11) and (12) that
the neural networks thus constructed, the recurrent neural
network (RNN), are capable of strictly representing the
DES.
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Fig. 2. Recurrent neural network for representing the DES

4.2 Recurrent High-Order Neural Networks

Here we show a model of recurrent neural networks with
high-order connections, a recurrent high-order neural net-
work (RHONN) for identification and realization of a DES
M. We encode all the state symbols q(i) (i = 1, 2, · · · , r),
input symbols i(i) (i = 1, 2, · · · ,m) and output symbols
o(i) (i = 1, 2, · · · , `) of the DES as binary variables shown
in (10). Similar to the above subsection, by using the
fact that (i) any Boolean function can be represented in
conjunctive normal form and (ii) basic logical operations

AND, OR and NOT can be expressed by combining the
arithmetic operations and the Heviside function H(·) de-
fined by H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0,
we can transform the model of the DES (eq.(2)) into the
following equation.

M :







































si(t + 1) = H(
2n

−1
∑

j=1

a∗

ijz
∗

j (t) + ai2n − γq
i ),

si(0) = si0 (i = 1, 2, · · · , α)

yi(t) = H(

2n
−1

∑

j=1

b∗ijz
∗

j (t) + bi2n − γy
i )

(i = 1, 2, · · · , γ)

(13)

where






















z∗1(t) = z1(t)z2(t)z3(t) · · · zn(t)
z∗2(t) = z2(t)z3(t) · · · zn(t)
z∗3(t) = z1(t)z3(t) · · · zn(t)

...
z∗2n−1(t) = zn,

(14)

a∗

ij and b∗ij are integers, and γq
i and γy

i are real numbers

satisfying 0 < γq
i ≤ 1 and 0 < γy

i ≤ 1. Based on (13) we
can derive an architecture of neural networks which can
exactly represent the DESs as follows.

Consider the neural network described by (3), (4), (5),
(6), (7), (8) and (9) where we let Nd = α, Ns = γ,
Nc = 2n − 1 (n = α + β), M = β, L = γ and fd

i (·) = H(·)
and fs

i (·) = H(·), and g in (7) is defined by

g = [hd
1, h

d
2, · · · , h

d
α, I1, I2, · · · , Iβ ]T . (15)

In the dynamic neurons we let wdd
ij = 0 for i, j =

1, 2, · · · , α, wds
ij = 0 for i = 1, 2, · · · , α, j = 1, 2, · · · , γ

and wdI
ij = 0 for i = 1, 2, · · · , α, j = 1, 2, · · · , β, and in

the static neurons we let wss
ij = 0 for i, j = 1, 2, · · · , γ,

wsd
ij = 0 for i = 1, 2, · · · , γ, j = 1, 2, · · · , α and wsI

ij = 0
for i = 1, 2, · · · , γ, j = 1, 2, · · · , β. Furthermore, in the
high order connection units (8), for each z∗

j defined by
(14), we define an index set J∗

j consisting of indexes of the
elements of the monomial, that is, J∗

1 = {1, 2, 3, · · · , n},
J∗

2 = {2, 3, · · · , n}, · · ·, J∗

2n−1 = {n} and we let Jj = J∗

j for
j = 1, 2, · · · , 2n−1 and dk(j) = 1 for j = 1, 2, · · · 2n−1. In
the external outputs (9), δd

ij and δs
ij are chosen as δd

ij = 0
for i = 1, 2, · · · , γ, j = 1, 2, · · · , α and δs

ij = 1, for j =
i, δs

ij = 0 for j 6= i, i = 1, 2, · · · , γ. Figure 3 shows
the recurrent high-order neural network thus constructed,
which contain at most n-th order product connections in
their connection units. It can be shown that the RHONN
can represent the DES, by using the expressions (13) and
(14) and by letting the states vd

i (t) of the dynamic neurons,
the external inputs Ii and the external outputs Oi be
corresponding to the states qi(t), the inputs ii(t) and the
outputs oi(t) of the DES.

5. IDENTIFICATION OF DISCRETE EVENT
SYSTEMS

5.1 Method

In this section we discuss the identification and realiza-
tion problem of unknown DES by using the RNNs and
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α
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Fig. 3. Recurrent high-order neural network for represent-
ing the DES

RHONNs presented in the above section. For identification
and realization we construct a RNN or RHONN in the
manner discussed in the previous section. Note that, β
and γ can be uniquely determined since the number of the
input states and the output states of a target DES are
known, on the other hand, α cannot be determined since
the number of the states of the DES is not known. That is
to say, in the RNN the number of the external inputs and
outputs can be uniquely determined as M = β and L = γ
a priori, on the other hand, the number of the dynamic
neurons (Nd = α) and the static neurons (Ns = 2α+β +γ)
cannot be determined. In the RHONN, the number of
the static neurons, the number of external inputs and
the number of the external outputs can be determined
uniquely as Ns = γ, M = β and L = γ, but the number
of dynamic neurons Nd = α and the number of the high-
order connection units Nc = 2n −1, (n = α+β) cannot be
uniquely determined. We provide the number of dynamic
neurons (so the number of the static neurons in the RNN
and that of the high-order units in the RHONN) large
enough so that Nd becomes greater than (or hopefully
equal to) α of the target DES.

By using the neural network thus constructed for a target
DES, the identification problem is solved in the following
manner. For a set of data of input sequences {i(t) : t =
0, 1, 2, · · · , tf} and the corresponding output sequences
{o(t) : t = 0, 1, 2, · · · , tf} of the target DES where tf
is the length of the sequences, we give the input i(t) of
the target DES which is encoded as a binary variable to
the input of the neural network Ij(t), Ij(t) = ij(t), j =
1, 2, · · · ,M(= β) and train the neural network, in such a
way that the corresponding output of the neural network
Oi(t) becomes equal to the output data oi(t), Oi(t) = oi(t).
The problem is to determine values of the parameters of
the neural network so as to minimize:

1

2

tf
∑

t=0

L
∑

i=1

|oi(t) − Oi(t)|
2
.

Note that in the neural network models presented in the
previous section there are a lot of zero-valued parameters
which are to be determined. It is, therefore, essentially
important to obtain sparse realization, that is, to obtain a
network with as many zero-valued parameters as possible.
For this purpose we introduce an additional cost function
wihch reflects complexity of the neural network.

Define the performance index by

J = J1 + ρJ2 (16)

J1 =
1

2

tf
∑

t=0

L
∑

i=1

|oi(t) − Oi(t)|
2

J2 = ‖w‖1 =
∑

k,`=d,s

∑

i,j

∣

∣wk`
ij

∣

∣ +
∑

k=d,s

∑

i,j

∣

∣wk
ij

∣

∣

where ρ > 0 is a weighting coefficient. Note that J2 is the `1

norm of the parameter vector of the neural network, which
can be a measure of complexity of the network. In Ishikawa
[1996], it is shown that, in the learning problem of neural
networks, the choice of `1 norm of the parameter vector as
the cost function brings much fewer nonzero parameters
than that of Euclidean norm ‖w‖2. Therefore the cost
function J2 could bring a sparse realization of the network.

The problem now is reduced to a learning problem of neu-
ral networks, that is to finding values of the parameters of
the RNN or RHONN which minimize the performance in-
dex J . Note that the nonlinear functions S(·) and H(·) are
not differentiable, which implies that the gradient-based
algorithms such as the steepest descent method cannot
be applied to the optimization problem. We replace these
nonlinear functions of each neuron by smooth sigmoidal
functions which can approximate them with reasonable ac-
curacy and utilize the gradient-based algorithms in which
several useful algorithms are available: the steepest descent
algorithm, the conjugate gradient algorithm, the quasi-
Newton algorithm and so on. For instance, the steepest
descent algorithm is described as follows.

ωk+1 = ωk − η ·
∂J

∂ωk
(17)

where ω is the parameter vector. The main problem
associated with these algorithms is the computation of
the gradients ∂J/∂ω. The gradients can be calculated by
deriving adjoint neural networks of the RHONNs (Kuroe
et al. [1997]). The derivation of the gradients is omitted
here.

Note also that the initial values of the dynamic neurons
vd

i (0) can not be given a priori because of the assumption
that the initial states of the DES are unknown. Therefore
we choose as the learning parameters not only the connec-
tion weights and the threshold values but also the initial
states of the dynamic neurons. In the RNN, the learning
parameters are wds

ij (i = 1, 2 · · · , α, j = 1, 2, · · · , 2α+β)

and wss
ij (i = 2α+β + 1, 2α+β + 2, · · · , 2α+β + γ, j =

1, 2, · · · , 2α+β) and values of the initial conditions of the
dynamic neurons vd

i0 (i = 1, 2 · · · , α), the total number of
which is 2(α+β)× (α+γ)+α. In the RHONN, the learning
parameters are wd

ij , θd
i , ws

ij , θs
i and vd

i (0), the total number

of which is also 2(α+β) × (α + γ) + α.

5.2 Numerical Experiments

Here we present experimental results of identification
and realization of the DESs M by using the RNNs or
RHONNs. We have performed identification for three
examples of the DESs. The first one is a simple DES whose
state transition diagram is shown in Fig. 4. This DES
accepts the sequences consisting of only ’1’. The number of
the state symbols of the DES is two and Σ = ∆ = {0, 1}.
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The second example is a DES whose state transition
diagram is shown in Fig. 5, which accepts the sequence
(10)∗. The number of the state symbols of the DES is three
and Σ = ∆ = {0, 1}. The third one is a DES whose state
transition diagram is shown in Fig. 6. This DES accepts
the sequences which do not include ’000’. The number of
state symbols of the DES is four and Σ = ∆ = {0, 1}.

q0 0 0/
1 0 0/,1/ 1

Fig. 4. Example 1: DES accepting the sequences consisting
of only ’1’

q0

1 0/

0 0/

1 0/0/1

1 0 0/,

Fig. 5. Example 2: DES accepting the sequence (10)∗.

0 0/

0/1

0/1

11/

11/

q0

1 0 0/,

Fig. 6. Example 3: DES accepting the sequences that do
not include ’000’

For identification of these DESs, we construct the RNNs
and RHONNs in the manner discussed in §4.1 and §4.2.
Noting the assumption that the set of the state symbols
and the initial state of the DESs are not known, only the
input and output data are available, we can determine
uniquely the number of the static neurons, the number of
external inputs M = β and the number of the external
outputs L = γ in the RNNs and RHONNs, but we cannot
determine the number of dynamic neurons Nd = α. In
these examples we can choose M = β = 1 and L = γ = 1.
We have performed experiments with changing the number
of dynamic neurons Nd = α. In the learning of the
RNNs and RHONNs we use the smooth nonlinear function

2
1−exp(−ax) −1 for S(·) and 1

1−exp(−ax) for H(·), where a is

a parameter. It is known that FSA with r state symbols is
uniquely identified by using all input sequences of length
2r−1. We train the neural networks by using all sequences
of length 2r − 1 as learning data. We use the conjugate
gradient method to minimize the performance index (16).

Tables 1 and 2 show the minimum values of the perfor-
mance indexes J , J1 and J2 obtained by the learning

experiments of the RNNs and RHONNs where we let
a = 1 and ρ = 0.01. It has been checked that in all the
experiments the target DES are successfully identified and
the obtained neural networks can perform exactly the same
operations as the target DESs do by considering some
tolerances to the threshold values (1 and -1 for RNNs
and 1 and 0 for RHONNs), which are summarized in
Tables 3 and 4. In Table 3 those values mean that, for
example, in the case Nd = 4 of Example 1, the obtained
neural network can perform exactly the same operations
as the target DES does by letting ’true ≥ 1−0.01910’ and
’false ≤ −1 + 0.01910’. In Table 4 those values mean that,
for example, in the case Nd = 4 of Example 1, the obtained
neural network can perform exactly the same operations
as the target DES does by letting ’true ≥ 1−0.03456’ and
’false ≤ 0 + 0.03456’.

In order to estimate the effect of the cost function J2,
we perform learning experiments for some different values
of ρ and investigate the number of nonzero parameters
in the neural networks obtained by the proposed learning
method. Table 5 and Table 6 summarize the effect of the
cost function J2 for the case Nd = 4 of Example 2, where
the number of the parameters which can be treated as zero
valued parameters in the obtained RNN and RHONN are
shown. In those tables, the maximum absolute values of
the tolerances to the threshold values (1 and -1 for RNNs
and 1 and 0 for RHONNs) are also shown, and they mean
that, for example, in the case ρ = 0.01 of Table 5, the
obtained neural networks can perform exactly the same
operations as the target DES does by letting ’true ≥ 1 −
0.1570’ and ’false ≤ −1 + 0.1570’. It is observed that
the number of zero-valued parameters can be drastically
increased by introducing J2.

6. CONCLUSIONS

In this paper we discussed an identification and realization
problem of a class of DESs. We consider a class of DESs
which is modeled by finite state automata. In identification
and realization of systems by using neural networks, it is
essentially important to develop a suitable architecture of
neural networks. We presented identification method of the
DESs by using two architectures of neural networks which
have been proposed by the authors: RNNs and RHONNs.
Emphasis was on how to obtain sparse realization, that
is, to obtain a neural network with as many zero-valued
parameters as possible. It is shown through numerical
experiments that the presented method makes it possible
to reduce the number of nonzero parameters in the obtain
neural networks.
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