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Abstract: Some current approaches in damage detection have led to the implementation
of statistical algorithms, based on the so-called ”local approach” assumption. The reference
parameter is the modal signature of a state-space model of the studied system, and the tests
aim at detecting small deviations in this signature without explicitly computing it. Moreover, the
system inputs are assumed to be random white noises, modeling all the various and unknown
influences on the system, either environmental or operational. Working with the outputs in
time-domain, various tests were designed and experimented - e.g. the subspace-based chi-square
test.
On the other hand, efficient system identification algorithms working in the frequency domain
have been designed, first dealing with experimental conditions - meaning there are known
controlled inputs - but also offering promising perspectives with regards to the operational
conditions - without any measurement of the inputs.
In this paper, a frequency-domain statistical test for change detection is proposed, based on this
recent frequency-domain modal analysis method and on the local approach to change detection.

Keywords: Statistical methods/signal analysis for FDI; Fault detection and diagnosis;
Vibration and modal analysis; Frequency domain identification.

1. INTRODUCTION

Vibration monitoring by identification technics has been
been the subject of much research works Zimmerman et al.
[1995], Balageas et al. [2006], Doebling et al. [1998], Farrar
[2001], Maeck [2003]. Typically, the aim is to monitor
small changes in a structure’s modal parameters before
those can pose a threat to the structure’s operation.
Ideally this should be done without actually estimating
the modal model, which becomes extremely expensive
in term of computer resources when dealing with actual
structures. This is of importance both in the design process
- in aeronautics, plane parts have to undergo numerous
fatigue tests - and in operational conditions - monitoring
the status of a bridge, or an in-flight plane wing for
example. When working in operational conditions, there
is an additional problem, that is we usually don’t have
any control on the system inputs - for example, a bridge
is subjected to effects from the traffic on it, the wind, the
temperature...

One approach to the vibration-based structural health
monitoring problem is the statistical local approach. De-
tails may be found in Benveniste et al. [1987], Basseville
[1998], Basseville et al. [2004]. This approach relies on the
two following assumptions :

• the input forces can be modeled as a non-stationary
white noise ;

• let θ be the modal parameter describing the system
response to random perturbations. Then given a
reference value θ∗ of the modal parameter, and a
sequence (Yi)i=1..n of n samples obtained under an
unknown value θ, we assume that θ∗ and θ are close
enough, that is :

θ − θ∗ =
1√
n

δ , with δ independent of n (1)

It has led to the design of subspace-based damage-
detection algorithms, in the form of a statistical χ2-test,
see Basseville et al. [2000], Basseville et al. [2001]. Another
application follows from considering the χ2-test as a func-
tion of θ : the model validation consists then in finding a
value for θ that minimizes the test . In addition it may also
provide confidence intervals on the modal parameters, see
Basseville et al. [2006], Mevel and Goursat [2006], Canales
and Mevel [2007].

While all this work was done on the time domain, powerful
frequency domain modal analysis tools were designed,
see Cauberghe [2004], Guillaume [2006]. They present
many interesting features, such as working on structures
with hundreds or thousands of inputs. This is especially
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noteworthy in the light of the difficulties encountered by
subspace-based methods in this regard. Transposing the
monitoring problem from the time domain to the frequency
domain had already been suggested in Benveniste and
Delyon [2000]. In this paper we extend their work while
integrating the algorithms already developed for frequency
domain modal analysis.

In the first section, we outline some aspects of frequency-
domain system identification algorithms dedicated to
modal analysis. The second section shows how we derive a
statistical test to monitor changes in the modal structure.
In the third section we explain the actual implementation
and validation of this test, running it on the model vali-
dation problem.

2. FREQUENCY-DOMAIN MODAL ANALYSIS

This section recalls some aspects developed in Cauberghe
[2004] Guillaume [2006] that are needed for the later parts
of this paper.

2.1 Modal model and parameters

We assume the studied system follows the following equa-
tion :

My′′(t) + Cy′(t) + Ky(t) = f(t) (2)
with Nm degrees of freedom, M, C, K ∈ RNm×Nm the
mass, damping, and stiffness matrices, respectively, and
y(t), f(t) ∈ RNm the response and excitation vectors,
respectively. Transforming to the Laplace domain leads to
the following transfer function :

Y(s) = H(s)F(s) (3)
with

H(s) =
(
Ms2 + Cs + K

)−1
(4)

From there we derive the full modal model of size Nm×Nm

:

H(s) =
Nm∑
m=1

(
Qm

ΦmΦT
m

s− λm
+ Q∗

m

Φ∗mΦ∗Tm

s− λ∗m

)
(5)

where λm is the m-th pole, Φm ∈ CNm is the associ-
ated modeshape and Qm is a scaling factor. The natural
frequencies are ωm = Im(λm)/2π with damping ratios
ζm = −Re(λm)/|λm|. Now, when measuring frequency
responses functions, we usually get data only for a limited
number of inputs Ni and outputs No, with the property
that Ni � No. We then introduce a smaller modal model
with size No ×Ni :

H(s) =
Nm∑
m=1

(
ΦmLT

m

s− λm
+

Φ∗mL∗Tm

s− λ∗m

)
(6)

where the Lm ∈ CNi are the modal participation factors
Maia and Silva [1997], Heylen et al. [1998], Ewins [2000].

2.2 Common-denominator transfer function model

Since direct estimation of these modal parameters is ham-
pered by the inherent non-linearity of the model, common-
denominator transfer function description are usually fa-
vored Guillaume [2006]. There are several such descrip-
tions ; the one we will adopt is the so-called Polyreference
implementation.

Given
(
e−iωl

)
1≤l≤Nf

a basis for the Fourier transformation
of the time data to the frequency domain, we define a
polynomial basis function (Ωl)1≤l≤Nf

. For a discrete-time
model, it is usually Ωl = eiωlTs , with Ts the sampling pe-
riod of the time data. The common-denominator transfer
function model is then

H(Ωl) = B(Ωl) (A(Ωl))
−1 (7)

where B(Ωl) =
∑n

j=0 bjΩ
j
l is the numerator polynomial

for output, with bj ∈ CNo×Ni , and A(Ωl) =
∑n

j=0 ajΩ
j
l is

the common-denominator polynomial, with aj ∈ CNi×Ni .
The frequency response function (FRF) between all the
inputs and any given output o is

Ho(Ωl) = Bo(Ωl) (A(Ωl))
−1

with Ho(Ωl) (resp. Bo(Ωl)) the o-th row of H(Ωl) (resp.
B(Ωl)).

Now, given measured FRFs
(
Ĥo(ωl)

)
o,k

, modal analysis

algorithms aim at estimating the coefficients (ai1i2j)i1,i2,j

and (boij)o,i,j . It is then easy to compute the modal
parameters (λm,Φm, Lm)m=1...Nm

of the system. In order
to do so, we define

Eo(ωl) = Ĥo(ωl)A(Ωl)−Bo(Ωl) (8)
Then the cost function

C =
∑

o

∑
l

|Eo(ωl)|2 (9)

=
∑

o

∑
l

trace(EH
o (ωl)Eo(ωl)) (10)

is minimized in a least-square sense, with .H denoting
the Hermitian transconjugate (for details see Guillaume
[2006]).

In the next section, we explain how we use these quantities
to design a statistical test that detects changes in the
system modes without actually computing them.

3. A FREQUENCY-DOMAIN LOCAL TEST FOR
CHANGE DETECTION

3.1 The scalar frequency-domain local test

In Benveniste and Delyon [2000], a frequency-domain test
for change detection in transfer functions is presented. The
model is

yn = G(z)un + vn

with (un)n, (yn)n the measured scalar input and output
sequences, (vn)n a random white noise sequence, and
G(z) the unknown transfer function. The test aims at
deciding if, given a nominal transfer function G0, and the
sequence of input/output couples (un, yn)n, the hypothesis
H0 : G = G0 is acceptable. This test is built using the so-
called local point of view, developed in Benveniste et al.
[1987] : it is assumed that

G−G0 =
1√
K

G̃ (11)

with G̃ unknown but fixed. The inputs and outputs are
transformed to the frequency domain by Discrete Fourier
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Transform (DFT) Ljung [1999] ; however, instead of trans-
forming the whole data set in one pass, the DFT is per-
formed on K successive blocks each of length N , resulting
in
(
UN

k (ω)
)
k=1...K

and
(
Y N

k (ω)
)
k=1...K

. Without perform-
ing this manipulation, we wouldn’t get the limit theorems
we need. The considered statistic is :

ζN
K (G0, ω) =

1√
K

K∑
k=1

UN
k (−ω)

(
Y N

k (ω)−G0(eiω)UN
k (ω)

)
(12)

Then, assuming that the input and noise spectra Suu(eiω)
and Svv(eiω) are both non-zero, the following result holds
Benveniste and Delyon [2000] for K, N →∞ and

√
K

N → 0
:

ζN
K (G0, ω) ∼ N

(
Suu(eiω)G̃(eiω), Suu(eiω)Svv(eiω)

)
(13)

This result in the following χ2-test that decides between
Hyp0 : G̃(eiω) = 0 and Hyp1 : G̃(eiω) 6= 0

χN
K(G0, ω) =

|ζN
K (G0, ω)|2

Ŝuu(eiω)Ŝvv(eiω)
(14)

with the following estimates for the spectra :

Ŝuu(eiω) =
1
K

K∑
k=1

|UN
0,k(ω)|2 (15)

Ŝvv(eiω) =
1
K

K∑
k=1

|Y N
0,k(ω)−G0(eiω)UN

0,k(ω)|2 (16)

The actual use of this approach is hampered by an impor-
tant drawback : it cannot detect changes in the transfer
functions of a structure under operational conditions when
the inputs are unknown. To overcome this drawback, the
idea of the new test proposed here is the following :
instead of using the input and output data sets, we use the
numerator and denominator of the common-denominator
transfer function model. For this we have to rewrite the
statistic, and verify that the convergence result still holds
true in the multidimensional framework.

3.2 The multidimensional frequency-domain local test

Now we explain how to link the identification methods
of the first section and the statistical test of the second
section. We can already see a strong similarity between the
quantities involved in (8) and (12). This similarity inspired
the design of the new statistic.

From now on, we are working in the framework defined in
the first section for frequency-domain modal analysis. We
consider the following model

B(ω) = H(ω)A(ω) + V(ω) (17)
with V(ω) ∈ CNo×Ni a random white noise matrix. Ac-
tually this is simply the common-denominator model with
an additive perturbation. We assume we have reference
data obtained in a nominal state, from which we de-
rive

(
AN

0,k(ω)
)

k=1...K
∈ CNi×Ni and

(
BN

k,0(ω)
)

k=1...K
∈

CNo×Ni , with k = 1 . . .K labeling successive blocks of

time data with length N . The
(
AN

0,k(ω)
)

k=1...K
and(

BN
0,k(ω)

)
k=1...K

will be our reference variables. With

H0(ω) the corresponding nominal transfer function they
satisfy

BN
k,0(ω) = H0(ω)AN

k,0(ω) + VN
k,0(ω) (18)

Let (H(ωl))l=1..Nf
be the new FRFs, measured on data

recorded later. We assume the local alternative hypothesis
holds, that is

H = H0 +
H̃√
K

for an unknown but fixed H̃ (19)

For all 1 ≤ l ≤ Nf , we want to test between the two
hypotheses Hyp0 : H̃(ωl) = 0 and Hyp1 : H̃(ωl) 6= 0.

We now define the following statistic :

ζN
K (BN

k,0,A
N
k,0, ω) =

1√
K

K∑
k=1

(
BN

k,0(ω)−H(ω)AN
k,0(ω)

) (
AN

k,0(ω)
)H

(20)

Then the following theorem holds :
Theorem 1. Let Saa

0 (ω) and Svv
0 (ω) be the power spectra

for the common denominator and the perturbation in
the reference state. Assuming Saa

0 (ω)Svv
0 (ω) 6= 0 and

AN
k,0(ω)VN

k,0(ω) has zero mean (at least up to O(1/N)),

we have for K, N →∞ and
√

K
N → 0 :

ζN
K (BN

k,0,A
N
k,0, ω) ∼

N
(
−H̃(ω)Saa

0 (ω), Saa
0 (ω)Svv

0 (ω)
)

(21)

For ease of notation, we will omit the N and ω in the proof.
We have :

ζK(Bk,0,Ak,0)

=
1√
K

K∑
k=1

(Bk,0 −HAk,0) (Ak,0)
H

=
1√
K

K∑
k=1

(
Vk,0 −

H̃√
K

Ak,0

)
(Ak,0)

H

=
1√
K

K∑
k=1

Vk,0 (Ak,0)
H − H̃

1
K

K∑
k=1

Ak,0 (Ak,0)
H

The first term behavior is deduced from the Central
Limit Theorem for triangular arrays of random variables
Ibragimov and Kash’minskii [1981] :

1√
K

K∑
k=1

Vk,0 (Ak,0)
H ∼ N (0, Saa

0 Svv
0 )

The second term is readily recognizable :

H̃
1
K

K∑
k=1

Ak,0 (Ak,0)
H −→ H̃Saa

0

Putting these two terms together brings the announced
result Q.E.D.

From this result, we derive the following χ2-test that
decides between Hyp0 and Hyp1 :
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χN
K(BN

k,0,A
N
k,0, ω) =

ζN
K (BN

k,0,A
N
k,0, ω)

(
ζN
K (BN

k,0,A
N
k,0, ω)

)H

Ŝaa
0 (ω)Ŝvv

0 (ω)
(22)

It is computed for all ω = ωl and for all 1 ≤ l ≤ Nf , with
the following estimates for the spectra :

Ŝaa
0 (ω) =

1
K

K∑
k=1

|AN
0,k(ω)|2 (23)

Ŝvv
0 (ω) =

1
K

K∑
k=1

|BN
0,k(ω)−H0(ω)AN

0,k(ω)|2 (24)

Regarding the choice of K and N , we follow the same rule
of thumb as in Benveniste and Delyon [2000]. The proof
of (21) has shown that there are two terms contributing
to the asymptotic behavior of our statistic. The difference
between the first term and its asymptotic behavior is of
order O( 1√

K
+ 1

N ), while for the second term this difference

is of order O(
√

K
N ). Then the total difference between our

statistic ζN
K (BN

k,0,A
N
k,0, ω) and its asymptotic behavior is

of order O( 1√
K

+ 1
N +

√
K
N ). Minimizing this difference in

K for given N leads to K ∼
√

N .

It remains to validate this proposed test on actual data.
This is done in the next section.

4. IMPLEMENTATION AND VALIDATION OF THE
PROPOSED TEST FOR THE MODEL VALIDATION

PROBLEM

4.1 Model validation

Damage detection and model validation may be viewed as
two instances of a common broader question : does a given
data set (Yn)n match a given signature θ0 ?

In the case of damage detection, we want to know if the
fresh data recorded are still coherent with the reference
structural parameter. To tackle this problem, a large num-
ber of independent recording is needed to obtain informa-
tion about the distribution of the damage detection test
and decide wether there has been significant changes in
the parameter.

In the case of model validation, we have just one data set,
and we want to know if it matches the reference signature,
or if some slight modifications of this parameter leads to a
better fit. This result in testing many different signatures
to minimize a relevant statistical criterion.

It is quite common for damage detection tests to stem from
modal identification procedures. The subspace-based iden-
tification algorithm Van Overschee and De Moor [1996],
Peeters and De Roeck [1999] led to the subspace-based
χ2-test for damage detection, see Basseville [1998], Bas-
seville et al. [2004]. This test has also been adapted to the
model validation problem, see Mevel and Goursat [2006],
Basseville et al. [2006], Canales and Mevel [2007].

Fig. 1. The χ2-test on the whole frequency band, with
varying perturbation on the first mode.

We now implement the new frequency domain statistical
test developed in the previous section, and run it on a
model validation problem.

4.2 Implementation and results

We used time-domain measures taken during an airplane
in-flight test, see Cauberghe [2004]. During the experi-
ment, the airplane was artificially excited by the flaps by
injecting an excitation signal. Accelerometers were placed
in 7 different locations. This provides us with a dataset of
Ni = 1 input and No = 7 outputs. The actual implemen-
tation of our algorithm runs then as follows.

• First we perform frequency-domain modal analysis
on the full dataset of length n = 24000, and we get
the estimated modal parameters. This will provide us
with reference values of the modes. On our example,
the identified modal frequencies are as follows :

First mode : 98.7 Hz
Second mode : 201.3 Hz
Third mode : 275.7 Hz

• Next, we divide the dataset in K = 28 successive
blocks of length N = 784 : since we wanted K ∼√

N , we took K = n
1
3 and N = K2. On each

block we perform again the modal analysis to get
the corresponding common-denominator model. This
provides the reference values AN

k,0 and BN
k,0 needed

for building the residual (20).
• Then, we artificially change the first mode of the

system, from 95% to 105% of its nominal value. The
modal analysis tools developed in Cauberghe [2004],
Guillaume [2006] were designed to estimate modal pa-
rameters from time data, but also to build a common-
denominator transfer function model from the modal
parameters alone. For each value we thus rebuild the
FRFs under the changed modal conditions. This pro-
vides the H term, simulating the changed conditions
in the residual (20).

• The value of the χ2-test is computed.
• Last, the test is normalized along the frequency band

: this result in the normalized χ2-test value to be 1
when the first mode is equal to its identified value.

The results are displayed in Figures 1 to 4.

Figure 1 displays the whole computation of the χ2-test.
One immediately notices that the FRF corresponding to
the first mode is strongly excited by its own perturbations
; it looks as if the second and third modes also respond to
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Fig. 2. The χ2-test on the whole frequency band, with -1
% perturbation on the first mode (this is a section of
Figure 1 along the frequency axis).

Fig. 3. The χ2-test on the whole frequency band, with -3
% perturbation on the first mode (this is a section of
Figure 1 along the frequency axis).

the perturbations, this may be due to correlation between
the modes.

It is worthy to mention that this curve was computed in
less than a minute, actually in 33 seconds. This mean that
it should be possible to have this algorithm work efficiently
on huge data sets, and structures with many more outputs.

Figures 2 and 3 display the χ2-test on the whole frequency
band for a -1% and -3% perturbation on the first mode
respectively. We indeed see that the first mode presents
a strong response to its own perturbations. The second
mode apparently doesn’t respond, while the third mode
displays a response not as marked as the first but quite
apparent nevertheless.

For the Figure 4 we focus the FRF on the frequency
associated to the first mode, and we look at the variations
of the χ2-test with the perturbations on the first mode.
We see that the minimum of the test is 0.36, attained for
a perturbation of +1.2% of the first mode, corresponding
to a frequency of 99.9 Hz.

5. CONCLUSION

We have presented a new algorithm for damage detection,
working in the frequency domain. It has been tested

Fig. 4. The χ2-test at the frequency of the first mode,
with varying perturbation on the first mode (this is a
section of Figure 1 along the perturbation axis).

on model validation of an experimental system, with
encouraging results.

Future work will involve running the algorithm on the
change detection problem ; transforming the procedure
from input/output to output-only ; adding a Jacobian
to address the localization problem ; and testing the
procedure on huge data sets obtained on systems with
hundreds or thousands of outputs.
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