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Abstract: In the present paper we consider a general nonlinear output regulation problem
in which the regulated error is unmeasurable. It is assumed that the interconnection of the
controlled plant with the exosystem observed through the measured output satisfies some
appropriate observability conditions that allow the design of an asymptotic observer. Then,
the contribution of this paper consists in showing that in the latter scenario, a design based on
certainty equivalence is effective for determining a controller that achieves semiglobal output
regulation.

1. INTRODUCTION

A central problem in automatic control consists in control-
ling the output of a system so as to achieve asymptotic
tracking of prescribed reference signals and asymptotic
rejection of disturbances. In the context of time-invariant
finite-dimensional systems, it can be assumed that the
reference signals and the disturbances, which together are
called exogenous inputs, are solutions of an autonomous
system referred as exosystem. The problem with this setup
has been coined as the output regulation problem (or
servomechanism problem).

A general solution to the output regulation problem for
linear systems has been presented in the works by Davison
[1976] and by Francis and Wonham [1976]. A solution
for nonlinear systems near an equilibrium point has been
provided by Isidori and Byrnes [1990], Huang and Rugh
[1990], and Huang and Lin [1994]. Under appropriate
assumptions, the local results in Isidori and Byrnes [1990]
and Huang and Lin [1994] have been extended to obtain
solutions to the so called semiglobal output regulation
problem which corresponds to considering arbitrary large
compact sets of initial states (see Khalil [1994] , Isidori
[1997], and Serrani et al. [2000]). Recently, some of the
semiglobal results have been generalized to the case of
nonlinear systems that do not necessarily posses equilibria,
setting the so called “non-equilibrium theory” of output
regulation (see Byrnes and Isidori [2003], Delli Priscoli
et al. [2006], and Marconi et al. [2007]).

In most works on output regulation the regulated error
is assumed to be part of the measurable output, but
some contributions that are not based on such assump-
tion are available in the literature. In the case of linear
systems, when only tracking is pursued, design methods
are presented in Hara and Sugie [1988] and in Sugie and
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Vidyasagar [1989], whereas when tracking and disturbance
rejection with respect to constant exogenus inputs are pur-
sued, design methods are available in Imai [1997] and Imai
et al. [1998]. In Serrani [2006] and in Fiorentini et al. [2006]
the authors consider output regulation problems for linear
systems in which the measurement of the regulated error is
corrupted by a harmonic disturbance. Similar scenarios for
nonlinear passive systems and for Euler-Lagrange systems
are investigated in Pisu et al. [2006], in Zarikian and
Serrani [2007], and in Pisu and Serrani [2007].

In this paper, we consider a general nonlinear output
regulation problem in a non equilibrium setting in which
it is not assumed that the regulated error is measurable;
on the other hand, it is assumed that the interconnec-
tion of the controlled plant with the exosystem observed
through the measured output is diffeomorphic to a system
into Gauthier-Kupka’s observability canonical form (see
Gauthier and Kupka [2001]); consequently, it is known
how to design a high-gain observer for such interconnec-
tion. The contribution of this paper consists in showing
that in the latter scenario, a design based on certainty-
equivalence is effective for determining a controller that
achieves semiglobal output regulation. The latter result
generalizes in some directions what presented in Serrani
[2006] as it will be better explained in the concluding
section.

The rest of the paper is organized as follows. In Section
2 the output regulation problem is formulated and the
main assumptions are stated; in Section 3 the certainty-
equivalence regulator is introduced and its effectiveness is
formally proved. Concluding remarks end the paper.

Notation. For x ∈ Rn, |x| denotes the Eucledian norm
of x and, for A ⊆ Rn, |x|A = infy∈A |x − y| denotes the
distance of x from A; int(A) denotes the interior of A, and
cl(A) denotes its closure. For B ∈ Rn×n, |B| denotes the
2-norm of B.
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Let (1) denote the number of the differential equation
ẋ = f(x, µ) (1)

where f : Rn × Rm → Rn is a function that is locally
Lipschitz with respect to x, and where µ represents a
parameter. We denote by ψ(1) : E → Rn, (t, x0, µ) →
ψ(1)(t, x0, µ), the flow generated by (1). ψ(1) is defined
on E = {(t, x0, µ) : x0 ∈ Rn, µ ∈ Rm, t ∈
(−t−(1)(x0, µ), t+(1)(x0, µ))} where t−(1), t

+
(1) : Rn × Rm →

(0,∞], and (−t−(1)(x0, µ), t+(1)(x0, µ)) is the maximal inter-
val of existence of the solution ψ(1)(·, x0, µ).

Fix µ ∈ Rm; then, for A ⊆ Rn such that t+(1)(x0, µ)) =
∞ ∀x0 ∈ A, we denote by ω(A) the ω-limit set of A (under
the flow ψ(1)(·, ·, µ)) (see [Hale et al., 2002, pp. 7-8] and
also [Byrnes et al., 2005, p. 317] for a definition of ω-limit
set of a set).

Given a locally Lipschitz function V : A → R, with
A open subset of Rn, we denote by DV +

(1) the function
DV +

(1) : A× Rm → R defined by

DV +
(1)(x, µ) = lim sup

h→0+

1
h

[
V (ψ(1)(h, x, µ))− V (x)

]
. (2)

Note that DV +
(1)(x, µ) is equal to the upper Dini derivative

of g(t) = V (ψ(1)(t, x, µ)) evaluated at t = 0. If V is
continuously differentiable on A, then

DV +
(1)(x, µ) =

∂V

∂x
(x)f(x, µ) ∀(x, µ) ∈ A× Rm , (3)

and in this case we denote DV +
(1)(x, µ) with V̇(1)(x, µ).

2. PROBLEM FORMULATION AND MAIN
ASSUMPTIONS

Consider the problem of output regulation for the smooth
system

ẋ = f(x, u, w)
e = h(x,w)
y = k(x,w)

(4)

in which x ∈ Rn is the state, u ∈ R is the control input,
w ∈ Rd is the exogenus input, e ∈ R is the regulated error,
and y ∈ R is the measured output. The initial state of (4)
x(0) is unknown but ranges in a known arbitrary compact
set X ⊆ Rn. The exogenus input w is supposed to be
generated by the smooth exosystem

ẇ = s(w) (5)
whose initial state w(0) is unknown but ranges in a known
arbitrary compact invariant set W ⊆ Rd.

Note that it is not assumed that e = y i.e. e is measurable;
as a result, the problem formulation departs from the
standard framework of output regulation and includes, as
a special case, the situation in which the measurement of
the error is corrupted by a disturbance generated by the
exosystem.

The regulator is modeled by equations of the form
χ̇ = ϕ(χ, y)
u = ρ(χ, y) (6)

with ϕ and ρ locally Lipschitz, and with initial condition
χ(0) ∈ Rp ranging in a fixed (but otherwise arbitrary)
compact set ∆ ⊂ Rp.

Let
E = {(x,w, χ) : e = 0} . (7)

Controller (6) solves the problem of semiglobal output
regulation if

• the positive orbit of X×W ×∆ under the flow of (4),
(5), and (6) is bounded;

• E (uniformly) attracts X × W × ∆ under the flow
of (4), (5), and (6) (see [Hale et al., 2002, p. 8] and
also [Byrnes et al., 2005, p. 317] for a definition of
(uniform) attractivity of a set with respect to another
set).

We assume that when both x and w are measurable,
a memoryless solution u = u∗(x,w) to the proposed
semiglobal output regulation problem is available; more
precisely we make the following assumption.
Assumption 1. There exist a smooth function u∗(x,w)
such that system

ẋ = f(x, u∗(x,w), w)
ẇ = s(w) (8)

restricted to the locally invariant cylinder Rn×W satisfies
the following

• the positive orbit of X ×W under the flow of (8) is
bounded;

• let A = ω(X ×W ); then
A ⊆ {(x,w) : h(x,w) = 0} ; (9)

• A is locally asymptotically stable with a domain of
attraction D ⊃ X ×W .

In addition, we make an “observability” assumption;
specifically, we assume that the interconnection of the
controlled plant with the exosystem observed through
the measured output can be trasformed into a system in
Gauthier-Kupka’s observability canonical form (see [Gau-
thier and Kupka, 2001, p. 22]).
Assumption 2. There exists a smooth global diffeomor-
phism

z = φ(x,w) z ∈ Rñ (10)
where ñ = n+ d that carries system

ẋ = f(x, u, w)
ẇ = s(w)
y = k(x,w)

(11)

into the following Gauthier-Kupka’s observability canoni-
cal form

ż =


ż1

ż2

...
żñ−1

żñ

 =


F1(z1, z2, u)
F2(z1, z2, z3, u)
...
Fñ−1(z1, z2, . . . , zñ, u)
Fñ(z1, z2, . . . , zñ, u)

 = F (z, u)

y = K(z1) .
(12)

with Fi’s such that
∂Fi
∂zi+1

(z1, z2, . . . , zi+1, u) 6= 0

∀(z1, z2, . . . , zi+1, u) ∈ Ri+2 i = 1, . . . , ñ− 1 , (13)
and with K such that

∂K

∂z1
(z1) 6= 0 ∀z1 ∈ R . (14)
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Remark 1. An explicit construction of a local change of
coordinates that puts system (11) into Gauthier-Kupka’s
observability canonical form can be found in [Gauthier and
Kupka, 2001, pp. 22-23]; for the construction of a global
change of coordinates the interested reader is referred to
[Marconi et al., 2004, Lemma 2], and, in the special case
of input-affine systems, to [Isidori, 1995, pp. 460–464].

Denote with
e = H(z) (15)

the regulated-error map in the z coordinates, and let Z,
Ã, and D̃ be the images through φ of X ×W , A, and D
respectively; then, from (9)

H(z) = 0 ∀z ∈ Ã . (16)

3. CERTAINTY-EQUIVALENCE REGULATOR

In this section a certainty-equivalence compensator that
solves the given output regulation problem is proposed. In
this regard observe that Assumption 1 states that if we
can measure both x and w, then a memory-less controller
u∗(x,w) that solves the output regulation problem under
consideration is available; moreover, if the trajectories of
the interconnection of (4) and (5) stay in a compact set,
and if the control u is bounded, then Assumption 2 implies
that an asymptotic state observer for the latter intercon-
nection can be designed (see [Gauthier and Kupka, 2001,
pp. 95–101]). The proposed regulator is thus obtained
replacing x and w in u∗(x,w) with estimates provided by
the asymptotic observer .

In order to introduce the regulator first we need to define
a bound l > 0 on the amplitude of the control input u, and
we need to introduce a compact and convex set Θ ⊂ Rñ
which will be shown to contain the trajectories of system
(12) that start from Z ⊂ Rñ when the latter is controlled
by the proposed regulator.

Denote by
(x,w) = φ−1(z) (17)

the inverse map of (10), and define

ũ∗(z) = u∗(φ−1(z)) . (18)
Consider the system

ż = F (z, ũ∗(z)) = F̃ (z) , (19)
and set

η(z) =
(

1 +
1
|z|∂D̃

)
|z|Ã . (20)

By Assumption 1 and a simple adaptation of [Marconi
et al., 2007, Theorem 4] it follows that there exists a
continuous function V : D̃ → R with the following
properties
P1. there exist class K∞ functions a, a such that

a(η(z)) ≤ V (z) ≤ a(η(z)) ∀ z ∈ D̃ ; (21)
P2. there exists c > 0 such that

D+V(19)(z) ≤ −cV (z) ∀ z ∈ D̃ ;
P3. for all α > 0 there exists Lα > 0 such that for all z1,
z2 ∈ D̃ such that η(z1) ≤ α, η(z2) ≤ α the following holds

|V (z1)− V (z2)| ≤ Lα|z1 − z2| .

Pick b ≥ 0 such that
Ωb = {z ∈ D̃ : V (z) ≤ b} ⊇ Z . (22)

Such b exists since V satisfies property P1. Choose l that
satisfies

l ≥ max
z∈Ωb+1

|ũ∗(z)|+ 1 . (23)

and define U as
U = {u ∈ R : |u| ≤ l} . (24)

Pick a compact and convex set Θ such that Θ ⊇ Ωb+1;
then, by [Gauthier and Kupka, 2001, p. 96] there exists a
smooth F gl : Rñ × R→ Rñ with

F gl(z, u) =


F gl1 (z1, z2, u)
F gl2 (z1, z2, z3, u)
...
F glñ−1(z1, z2, . . . , zñ, u)
F glñ (z1, z2, . . . , zñ, u)

 , (25)

and there exists a smooth Kgl : R → R such that the
following properties hold
P4. F gl(z, u) = F (z, u) and Kgl(z1) = K(z1) ∀(z, u) ∈
Θ× U ;
P5. denote by z′i the vector (z′1, . . . , z

′
i) ∈ Ri and by z′′i

the vector (z′′1 , . . . , z
′′
i ) ∈ Ri, i = 1, . . . , ñ; then, ∃L > 0

such that

|F gli (z′i, z
′
i+1, u)− F gli (z′′i , z

′′
i+1, u)| ≤ L√

ñ
|z′i − z′′i |

∀(z′i, z′i+1, z
′′
i , z
′′
i+1, u) ∈ R2i+3 i = 1, . . . , ñ− 1 (26)

and

|F glñ (z′ñ, u)− F glñ (z′′ñ, u)| ≤ L√
ñ
|z′ñ − z′′ñ|

∀(z′ñ, z′′ñ, u) ∈ R2ñ+1 (27)
P6. ∃ α, β ∈ R with 0 < α < β such that

α ≤

∣∣∣∣∣ ∂F gli∂zi+1
(z1, z2, . . . , zi+1, u)

∣∣∣∣∣ ≤ β
∀(z1, z2, . . . , zi+1, u) ∈ Ri+2 i = 1, . . . , ñ− 1, (28)

and

α ≤
∣∣∣∣∂Kgl

∂z1
(z1)

∣∣∣∣ ≤ β ∀z1 ∈ R . (29)

Consider then the system

ż = F gl(z, σl(u))
y = Kgl(z1) ,

(30)

where σl is a saturation function defined by

σl(r) =
{
r if |r| ≤ l
sgn(r)l if |r| > l .

Observe that as long as z(t) ∈ Θ and u(t) ∈ U systems (12)
and (30) are identical; moreover, note that an asymptotic
observer for system (30) is given by

˙̂z = F gl(ẑ, σl(u)) +G(y −Kgl(ẑ1)) (31)

where G = DgN , Dg = diag(g, g2, . . . , gñ), and g ∈ R
and N ∈ Rñ are design parameters that can be chosen
so that global exponential converge of (31) is achieved
(see [Gauthier and Kupka, 2001, pp. 95–101]). Then, the
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certainty-equivalence regulator proposed here is described
by the following equations

˙̂z = F gl(ẑ, u) +G(y −Kgl(ẑ1))
u = σl(ũ∗(ẑ)) .

(32)

The initial state of (32) ẑ(0) is assumed to range on an
arbitrary compact set Ẑ ⊂ Rñ. Then, the following main
result holds.
Proposition 1. There exist N ∈ Rñ and g > 0 such that
(32) solves the given output regulation problem.

Proof. Consider the interconnection of (4), (5), and (32)
and change coordinates (x,w) into z = φ(x,w) to obtain

ż = F (z, σl(ũ∗(ẑ))) (33)
˙̂z = F gl(ẑ, σl(ũ∗(ẑ))) +G(K(z1)−Kgl(ẑ1)) (34)

e=H(z) . (35)

Note that z(0) ranges on the compact set Z previously
introduced.

Consider the system

ż = F gl(z, σl(ũ∗(ẑ)))
˙̂z = F gl(ẑ, σl(ũ∗(ẑ))) +G(Kgl(z1)−Kgl(ẑ1)) ,

(36)

with (z(0)× ẑ(0)) ∈ Z × Ẑ, and observe that system (33)
and (34) is identical to (36) on the set Θ× Rñ. In system
(36) change coordinate ẑ into

ε = ẑ − z . (37)
Proceeding as in [Gauthier and Kupka, 2001, pp. 99-100]
write the resulting system in the form

ż = F gl(z, σl(ũ∗(z + ε))) (38)

ε̇= (A(z, ε)−GC(z, ε))ε+ F̄ (z, ε) (39)

where A, C, and F̄ satisfy the following properties
P7. there exists λ > 0, N ∈ Rñ, and S ∈ Rñ×ñ, with S
symmetric and positive definite, such that

(A(z, ε)−NC(z, ε))TS + S(A(z, ε)−NC(z, ε)) ≤ −λI
∀(z, ε) ∈ Rñ × Rñ ; (40)

P8. |F̄ (z, ε)| ≤ L|ε| ∀(z, ε) ∈ Rñ × Rñ .

Fix N as in property P7, and note that ε(0) = ẑ(0)− z(0)
ranges on a certain compact set Γ. Change coordinate ε
into

ε̃ = D−1
g ε , (41)

so to obtain

ż = F gl(z, σl(ũ∗(z +Dg ε̃)) (42)
˙̃ε= g(A(z,Dg ε̃)−NC(z,Dg ε̃))ε̃+D−1

g F̄ (z, D̃g ε̃) .(43)

Observe that if g > 1, ε(0) ∈ Γ⇒ ε̃(0) ∈ Γ; then, in what
follows we assume that g > 1 and ε̃(0) ∈ Γ.

Set
F̂ (z, ε̃, g) = F gl(z, σl(ũ∗(z +Dg ε̃)) . (44)

For all (z, ε̃, g) ∈ Ωb+1 × Rñ × R using a result from
[Yoshizawa, 1975, p. 3] and property P3 of V , it is easy
to obtain

D+V(42)(z, ε̃, g) = lim sup
h→0+

1
h

[
V (ψ(42)(h, z, ε̃, g))− V (z)

]
≤ lim sup

h→0+

1
h

∣∣∣V (z + hF̂ (z, ε̃, g))− V (z)
∣∣∣

≤ L̂|F̂ (z, ε̃, g)|
(45)

for some L̂ > 0. Thus, there exists M > 0 such that
D+V(42)(z, ε̃, g) ≤M ∀(z, ε̃, g) ∈ Ωb+1 × Rñ × R . (46)

Then, it follows that there exists T > 0 independent of g
such that, picked (z(0), ε̃(0)) ∈ Z × Γ, the corresponding
solution (z(t), ε̃(t)) of (42) and (43) is defined on [0, T ] and

z(t) ∈ Ωb+ 1
2
∀t ∈ [0, T ] . (47)

In fact, from (46) we obtain
V (z(t))− V (z(0)) ≤Mt . (48)

Thus, setting T = 1/(2M), (47) holds since V (z(0)) ≤ b.
Set Q(ε̃) = ε̃TSε̃; mimicking the Proof of Theorem 2.2 in
[Gauthier and Kupka, 2001, p. 99] it is easy to obtain that

Q̇(43)(z, ε̃, g) ≤ −(gλ− 2L|S|)|ε̃|2 . (49)
Assume that g is large enough so that gλ − 2L|S| > 0;
then, ε̃(t) is defined for all t ∈ [0, T ] and

|ε̃(t)| ≤ Be−a(g)t|ε̃(0)| (50)
where

B =
(

|S|
λmin(S)

) 1
2

(51)

a(g) =
gλ− 2L|S|

2|S|
. (52)

Note that since g > 1, the following holds
|ε(t)| ≤ |Dg|Be−a(g)t|ε(0)| = Bgñe−a(g)t|ε(0)| . (53)

Consequently, for any r > 0, there exists g∗ > 1 such that
if g > g∗, then for any ε(0) ∈ Γ it occurs that |ε(T )| < r;
in addition, from the previous arguments it is immediate
to derive the following property
P9. ∀T ′ > T such that

z(t) ∈ Ωb+1 ∀t ∈ [T, T ′] , (54)
the following is satisfied

|ε(t)| < r ∀t ∈ [T, T ′] . (55)

The latter property will be useful in proving that the
trajectories of (38) and (39) are bounded. In order to do
so, it is convenient to introduce the following function

q(z, ε) = F gl(z, σl(ũ∗(z + ε)))− F̃ (z) . (56)
We wish to show that there exists a class K∞ function γ
such that

|q(z, ε)| ≤ γ(|ε|) ∀(z, ε) ∈ Ωb+1 × Rñ . (57)
To this purpose, set

q̃(z, ε) = F gl(z, ũ∗(z + ε))− F̃ (z) , (58)
and observe that since q̃ is a smooth function that vanishes
at ε = 0, then there exists a class K∞ function γ̃ such that

|q̃(z, ε)| ≤ γ̃(|ε|) ∀(z, ε) ∈ Ωb+1 × Rñ . (59)
For any z ∈ Ωb+1, let Ez denote the set of all ε ∈ Rñ such
that

q(z, ε) = q̃(z, ε) . (60)
Then

|q(z, ε)| ≤ γ̃(|ε|) ∀(z, ε) ∈ Ωb+1 × Ez . (61)
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In view of the specific choice of l (see (23)), ε = 0 belongs
to the interior of Ez; moreover, there exists ζ > 0 such that

|q(z, ε)| ≤ ζ ∀(z, ε) ∈ Ωb+1 × Rñ . (62)
Thus, it is possible to find a class K∞ function γ that
renders (57) fulfilled.

Observe that for all (z, ε) ∈ Ωb+1×Rñ, using a result from
[Yoshizawa, 1975, p. 3] together with properties P1 and
P2 of V , and using equation (57), it is easy to obtain

D+
(38)(z, ε) = lim sup

h→0+

1
h

[
V (ψ(38)(h, z, ε))− V (z)

]
= lim sup

h→0+

1
h

[
V (z + h(F̃ (z) + q(z, ε)))− V (z)

]
≤ lim sup

h→0+

1
h

∣∣∣V (z + h(F̃ (z) + q(z, ε)))

− V (z + hF̃ (z))
∣∣∣

+ lim sup
h→0+

1
h

[
V (z + hF̃ (z))− V (z)

]
≤ L̃|q(z, ε)| − cV (z) ≤ L̃γ(|ε|)− cV (z)

(63)
for some L̃ > 0. Pick 0 < δ < b and assume that r > 0 is
small enough so that

L̃γ(r)− cδ < 0 . (64)
Let

S = {(z, ε) : δ ≤ V (z) ≤ b+ 1, |ε| ≤ r} . (65)
From previous equations, it is easy to check that

D+
(38)(z, ε) < 0 ∀(z, ε) ∈ S . (66)

We have already shown that the solution (z(t), ε(t)) of (38)
and (39) is defined on [0, T ], that z(t) ∈ int(Ωb+1) ∀t ∈
[0, T ], and that |ε(T )| ≤ r. Then, using (66) and property
P9 it is easy to show that (z(t), ε(t)) is defined ∀t ≥ 0,
z(t) ∈ Ωb+1 ∀t ≥ 0, and |ε(t)| ≤ r ∀t ≥ T . In addition,
(53) implies that

lim
t→∞

ε(t) = 0 . (67)

By standard arguments based on properties of the ω-limit
set of z(t) (see [Isidori, 1999, p.148]), it can be proved that
in a finite time z(t) enters Ωδ. Bearing in mind that l has
been fixed as in (23), then it is easy to obtain that for r > 0
small enough and ∀t ≥ T system (38) and (39) restricted
to Ωb+1 × {ε ∈ Rñ : |ε| ≤ r} is equivalent to system

ż = F̃ (z) + q̃(z, ε) (68)

ε̇= (A(z, ε)−GC(z, ε))ε+ F̄ (z, ε) . (69)
Then, applying a simple modification of [Marconi et al.,
2007, Lemma 1] to system (68), and taking into account
that δ > 0 can be chosen arbitrarily small, it is easy to
obtain that

lim
t→∞

|z(t)|Ã = 0 . (70)

Next, observe that (z(t), z(t) + ε(t)) is the solution of (36)
that starts from (z(0), z(0) + ε(0)); however, since it has
been shown before that z(t) ∈ Ωb+1 ⊆ Θ ∀t ≥ 0, it occurs
that (z(t), z(t) + ε(t)) is also the solution of (33) and (34)
that starts from the same initial state. Then, from (67)
and (70) it is easy to derive that ω(Z × Ẑ) under the
flow of (33) and (34) is equal to Ã × Ã; in addition, by
[Hale et al., 2002, Lemma 2.0.1] the latter set (uniformly)

attracts Z × Ẑ. Since Ã × Ã ⊆ {(z, ẑ) : H(z) = 0} (see
(16)), then the proposition is proved. /

4. CONCLUSION

In this paper we have shown that given a nonlinear out-
put regulation problem in which the regulator error is
not measurable, if appropriate observability conditions
are satisfied, then semiglobal output regulation can be
obtained through a certainty-equivalence controller. The
latter result represents an extension in some directions of
what presented in Serrani [2006]. In both papers certainty-
equivalence controllers are proposed; however, here non-
linear systems are considered instead of linear systems;
in addition, in Serrani [2006] it is assumed that what
makes the regulated error unmeasurable is exclusively the
presence of an unmeasurable harmonic disturbance that is
additive at the controller’s input whereas in this paper we
do not restrict to only such scenario. On the other hand,
while the controller presented in Serrani [2006] is able
to tackle with parametric uncertainties in the exosystem,
the regulator proposed here might not be able to do so.
Moreover, both the compensator presented here and the
one in Serrani [2006] leave open the question of robustness
with respect to uncertainties in the plant.
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