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Abstract: This paper deals with the computational issues encountered in the construction
of invariant sets of uncertainty LTI systems, the presented results being useful in the more
general framework of piecewise linear systems affected by parametric uncertainty. The main
contribution is the efficient computation of upper and lower bounds of the maximal positively
invariant (MPI) set. These turn to be meaningful approximations when iterative construction
procedures are employed, especially if no finite-time algorithms exists to construct the exact
MPI set. In order to decrease the computational complexity, the interval search procedures are
used to avoid the treatment of the regions which do not meet the neighboring properties.
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1. INTRODUCTION

The set theoretic methods provide versatile tools for
the engineering problems involving constraints, bounded-
disturbances or construction of domains of attraction for
stabilizing compensators. In this framework, the invariance
is an important concept in control theory and practice,
mainly due to the fact that it can be used as a versatile
stability ingredient (Blanchini [1999]). Basically, the posi-
tive invariance is understood in the sense that if the system
state enters in some subspace it will remain within at all
future instants.

Model Predictive Control (MPC) has imposed itself as
a flexible optimization based technique with constraints
handling capabilities due to its time-domain formulation
(Maciejowski [2002]). In the same time, the optimization
fundament imposes the feasibility as a crucial demand as
long as it represents the main ingredient for the stability of
the entire closed loop (Mayne et al. [2000]). In this context,
the positive invariance is an important ingredient assuring
that the feasibility at the initial time will imply the
feasibility at all future instants. Subsequently, the use of
terminal constraints and the positive invariance arguments
represent the current methodologies for obtaining stability
guarantees.

The advances on the explicit solution for multiparametric
programming made the analysis of the MPC laws easier
(Bemporad et al. [2002]). Even if the terminal conditions
are not imposed at the design stage, one can obtain the
region of the state space where the closed loop system will
perform adequately for any receding horizon control by
post-processing. Different other receding horizon control
schemes need to construct the maximal positively invariant
set or approximate it accordingly (Gondhalekar and Imura
[2007]).

Knowing that for constrained linear systems, the predic-
tive control problems lead to piecewise affine control laws,
the problem of invariant set construction is equivalent to
the analysis of the stability (invariance) of piecewise affine
systems. In this framework, the difficulties are originated
by the fact that iterative algorithm do not offer guarantees
for the decidability. This is due to the fact that the sets
are not finitely parameterized (see related discussions in
Gilbert and Tan [1991], Rakovic et al. [2004], Vidal et al.
[2000], Alamo et al. [2005]).

The present paper propose the parallel use of two proce-
dure which offer upper and lower approximations converg-
ing towards the maximal positively invariant (MPI) set. By
using such an embedding technique, an invariant set can be
obtained within a given precision. The main contribution
is the use of the interval search routines (deBerg et al.
[2000]) for decreasing the computational load. Without
a particular care, the construction of upper and lower
approximation becomes impractical due to the fact that
the exploration of the possible transitions between the
local linear dynamics has an exponential complexity.

In the following, section 2 recalls some basic facts about
predictive control design and the explicit formulation of
the control laws. Sections 3 and 4 describe in detail the
construction of the maximal invariant set approximation.
In section 5 the use of interval analysis for the computa-
tional amelioration is discussed while section 6 presents
numerical examples illustrating the procedure. Finally the
conclusions are drawn in section 7.

Notations: It is considered in the following that the poly-
hedron objects are bounded and can be expressed in
a dual constraints-generators representation. This means
that two transformations are available: P = poly(V ) pass-
ing from a set of vertices V to a halfspace intersection P
and V = vertice(P ) passing from the halfspace represen-
tation P to the associated set of vertices V . Each region is
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defined as an intersection of a finite number of halfspaces
Pi = {x|HPi

x 6 KPi
}.

The construction procedures will intensively use geomet-
rical operations as: the union and intersection of two
polyhedrons are defined respectively as P1 ∩ P2 = {x|x ∈
P1 and x ∈ P2} and P1 ∪ P2 = {x|x ∈ P1 or x ∈ P2}.
Polyhedron differences P1\P2 = {x|x ∈ P1 and x /∈ P2}.
Several software packages offer the capabilities to handle
these operations in a trusty and efficient manner.

2. MODEL PREDICTIVE CONTROL. EXPLICIT
FORMULATION

Let a discrete time LTI system defined by :
{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

(1)

In Model Predictive Control (MPC), a constrained optimal
control problem over a finite receding horizon must be
solved at each sample time. Generally the cost function
to be minimized has the form:

V (k) =
∑Hp

i=1 ‖y(k + i) − r(k + i)‖2

Qi

+
∑Hu−1

i=0
‖∆u(k + i)‖2

Ri

(2)

such that Hp is the prediction horizon, Hu is the control
horizon and for i > Hu a pre-defined stabilizing control
law is used in order to construct the predictions. Qi = QT

i

and Ri = RT
i are the weighting factor on error and control

variation. r(k+ i) is the reference trajectory (Maciejowski
[2002]). The methodology has real-time limitations for
fast dynamical system and the construction of explicit
solution (Bemporad et al. [2002]) may overcome the on-line
computational burden. This is equivalent to the resolution
of multi-parametric quadratic programs (mp-QP) (ndel
et al. [2003]) where the parameters are the components
of the state vector and the future references.

The feedback control law obtained for linear systems (1)
with linear constraints is a piecewise affine function of the
current state and the future references (Mare and Dona
[2005]):

uk = FFB
i xk + FFF

i







r(k + 1)
...

r(k +Hp)






+Gi (3)

defined over a set of polytopic region Pset =
⋃N

i=1
Pi where

the intersections Pi ∩ Pj are not full dimensional ∀i 6= j.
FFB represents the feedback gain while the FFF stands for
the feedforward gain which multiplies the future references
considered as data for the prediction horizon. The set Pset

represents a partition of the feasible state space and (1)
becomes:

xk+1 = (A+BFFB
i )xk +BFFF

i







r(k + 1)
...

r(k +Hp)






+BGi (4)

When the reference is identically zero, the general solution
(3) is projected into the solution of the regulation problem:

uk = Fixk +Gi (5)

and the closed loop dynamics will be given by:

xk+1 = (A+BFi)xk +BGi (6)

The stability of MPC scheme (6) is a well understood
topic (Mayne et al. [2000]), guarantees can be obtained
through the use of terminal constraints that assure the
positive invariance of the feasible domain with respect
to the closed loop dynamics. An alternative method is
to use receding horizon optimization without terminal
constraints, build the explicit solution and a posteriori
determine the invariant set for the piecewise linear system
(6). By using this former technique one has to obtain the
invariant sets in an efficient way and in the case when the
finite-time determination is not possible, to obtain upper
and lower bounds within a given precision. In the next
section two algorithms are proposed in this direction.

The results can be extended to the reference tracking case
where the construction of invariant sets provides meaning-
ful information about the stability for arbitrary reference.
It should be mentioned that the existing stability results
on this problems are restricted to specific class of signals
(Limon et al. [2005]), or make use of auxiliary concepts as
reference governors to assure the global stability (Olaru
and Dumur [2005]).

3. INVARIANT SET COMPUTATION

The construction of positive invariant sets for piecewise
affine systems as the one in (6) is known to be a difficult
problem (see Rakovic et al. [2004]), especially due to the
finite determination problems.

3.1 Outer approximation of invariant set

Let a piecewise affine autonomous dynamic system defined
by (6). The following algorithm computes an upper bound
Φ ⊇ ΦMPI where ΦMPI is the maximal positively in-
variant set (MPI) of the piecewise affine system (6). In
the following it is supposed that the partition Pset and
the associated control laws are obtained using an explicit
formulation of an MPC problem (see for example Kvasnica
et al. [2004] ) or that (6) is the model of a plant to be
analyzed.

Algorithm 1. Contractive set construction

Input arguments : the matrices A and B, the polytopic

regions Pset =
N
⋃

i=1

{Pi}, and the control laws (5) defined

by Fi and Gi.
Output argument : Φ.

(1) while (”precision condition” not true)
(2) N = cardinal(Pset)
(3) i = 1
(4) while (i ≤ N)
(5) [H1,K1] = constraint(Pi)
(6) po = ∅
(7) for j = 1, N
(8) [H2,K2] = constraint(Pj)
(9) h = [H1,H2(A+BFi)]

(10) k = [K1,K2 −H2BGi)]
(11) po = po

⋃

polytope(h, k)
(12) end

(13) m = cardinal(po)
(14) Pset = {P1, ..., Pi−1, po, Pi+1, ..., PN}
(15) i = i+m
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(16) N = cardinal(Pset)
(17) end

(18) end

(19) Φ = Pset

The algorithm eliminates at each iteration the subset of
each Pi, i = 1, ..., N that leaves Pset in one step when
applying the dynamic 6.

So for every polytope Pi ∈ Pset (steps 4 ∼ 17) we calculate
its subset such that its image through the affine mapping
equation (6) remains within Pset (steps 7 ∼ 12). At each
iteration (steps 1 ∼ 18), Pset is updated to approach the
invariant set ΦMPI .

Remark 1. If Pset do not change when it is updated (step
14), then the construction stops and the result is the exact
invariant set, otherwise see the discussion in subsection
3.3.

Remark 2. When cardinal(Pset) increases, the algorithm
becomes computationally expensive. Section 5 presents an
amelioration based on interval analysis.

3.2 Inner approximation of invariant set

An expansive computation algorithm will proceed in re-
verse way comparing to algorithm 1. A lower bound for the
invariant set Ψ ⊆ ΨMPI = ΦMPI ⊆ Φ will be computed
starting from an initial positive invariant set (for example
the maximal output admissible region - Gilbert and Tan
[1991] - for the region containing the origin). Alternatively,
by choosing P1, the region in Pset that contain the origin
and by applying algorithm 1 one gets the initial invariant
set Ψ1. The result is stored in Ψ.

Further, the idea is to compute all regions of Pset that
transit in one step to Ψ. Iteratively Ψ is updated to contain
all the sets reaching the invariant set in one step. It can
be shown that Ψ expands and thus a lower bound for the
maximal positively invariant set is obtained.

Algorithm 2. Expansive set construction

Input arguments : the matrices A and B, the polytopic

regions Pset =
N
⋃

i=1

{Pi} and the control laws (5) defined by

Fi and Gi.

Output argument : Invariant set Ψ ⊂ ΨMPI .

(1) Let P1 ∈ Pset be the polytope that contains origin
(2) Use Algorithm 1 to compute the invariant set of P1.

Let the result be Ψ1

(3) StepSet = Ψ1

(4) while(”precision condition” not true)
(5) N = cardinal(Pset)
(6) Interm = ∅
(7) L = cardinal(StepSet)
(8) for i = 1, N
(9) [H1,K1] = constraint(Pi)

(10) po = ∅
(11) for j = 1, L
(12) [H2,K2] = constraint(StepSetj)
(13) h = [H1,H2(A+BFi)]
(14) k = [K1,K2 −H2BGi)]
(15) po = po

⋃

polytope(h, k)
(16) end

(17) Interm = Interm
⋃

po
(18) end

(19) Ψ = Ψ
⋃

Interm
(20) StepSet = Interm
(21) end

Remark 3. In step (2), the result of algorithm 1 must be
a non-empty set (true if the linear dynamic associated to
this region is strictly stable).

Remark 4. Note that the iterative procedure described in
both algorithms implies intermediate compact sets. This
means that instead of treating all the regions of the
partition, only the neighbors of the current set Ψ or the
regions on the frontier of Φ has to be processed. Even if the
number of iterations is increased, the computational effort
per iteration is drastically diminished. There is however
the problem of deciding which are the neighboring regions,
an efficient solution being the use of the interval search (see
section 5).

Remark 5. If Ψ do not change when it is updated (step
19), then the construction stops and the result is the exact
positive invariant set ΨMPI , and this is one possibility to
meet the ”precision condition” in the algorithm. Otherwise
when it is not possible to calculate the exact MPI set
(non-decidability), algorithms 1 and 2 are used together
to bound the exact invariant set and thus the ”precision
condition” will refer to the difference between the outer
and the inner approximation (the volume for example) as
it is discussed in the next section.

3.3 Convergence

Using the algorithmic details of the two algorithms (ex-
pansive and contractive) presented before, the following
propositions demonstrate that an expansive-contractive
invariant set construction converges to the maximal posi-
tively invariant set MPI.

Let for an explicit solution (5):

Pset =

N
⋃

i=1

Pi ⊆ X

be a collection of compact N polytopic regions, described
as Pi = {x ∈ X | HPi

x 6 KPi
}, X is the working space

(the region of interest in the state space, considered
bounded) and suppose that in this collection of regions,
P1 is the one that contains the origin.

Proposition 6. Using the Expansive algorithm at any iter-
ation step p the invariant set construction verify:

Ψp ⊆ Ψp+1 ⊆ ΨMPI (7)

where ΨMPI is the maximal positively invariant set.

Proof : The algorithm is initialized with Ψ1 ⊆ P1, an
invariant set with respect to the local dynamic:

xk+1 = (A+BF1)xk

Note that in this case there is no affine part due to the
fact that the region corresponds to the unconstrained
optimum for the finite time control problem (2) and thus
the theory of maximal output admissible sets (Gilbert and
Tan [1991]) can be used for the construction of Ψ1. This
is the meaning of the step (2) of the Expansive algorithm,
which is providing Ψ1 in a finite number of iterations if
(A + BF1) has all the eigenvalues in the unit circle. It is
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also evident that Ψ1 ⊆ ΨMPI as long as it represents the
invariant set for a single region of the whole partition.

We dispose of Ψ1 a non-empty initial invariant set, and
define Ψ2 as the union of all the points in Pset that transit
in one step to Ψ1, so:

Ψ2 =

M
⋃

i=1

ψi (8)

such that:

ψi =

{

x ∈ Pi |
HPi

x 6 KPi

HP1
(A+BFPi

)x 6 KP1
−HP1

BGPi

}

(9)

Knowing that Ψ1 is positive invariant, from equation (8)
we have the inclusion Ψ1 ⊆ Ψ2 and the positive invariance
of Ψ2. ΨMPI is the maximal positively invariant set so

that Ψ2 ⊆ ΨMPI with equality if and only if
⋃M

i=1
ψi = ∅.

The general case of equation (7) follows by induction using
the same arguments.

Proposition 7. Using the Contractive algorithm, at itera-
tion p, the invariant set construction verifies:

ΦMPI ⊆ Φp+1 ⊆ Φp (10)

where ΨMPI is the maximal positively invariant set.

Proof : The initialisation of the Contractive algorithm is
done by simply considering the explicit solution Φ1 = Pset.
Then Φ2 is defined as Φ1 minus all polytopic regions in
Φ1 = Pset that transit in one step outside it, so:

Φ2 = Φ1 −
N
⋃

i=1

Ωi (11)

such that:

Ωi =

{

x ∈ Pi

∣

∣

∣

∣

∣

HPi
x 6 KPi

;
6 ∃j ∈ {1, . . . , N} , s.t.

HPj
(A+BFPi

)x > KPj
−HPj

BGPi

}

(12)

By the definition of the set subtraction and the equation
(11) the inclusion Φ2 ⊆ Φ1 is proved. Φ2 = Φ1 = ΦMPI

if and only if
⋃N

i=1
Ωi = ∅, case when the construction

procedure stops. The general case of equation (10) follows
by induction.

By noting that the expansive algorithm provides at each
step an invariant set while the contractive sequence is
not invariant but always contain the maximal positively
invariant set, we can state the next proposition which
resumes the degree of approximation.

Proposition 8. ∀p ∈ N, ∃ǫmin
p ∈ R such that Ψp ⊕

B(ǫ) ⊃ Φp,∀ǫ > ǫmin
p . Furthermore, ǫmin

p is monotonically

decreasing for p→ ∞. 1

1 ⊕ stands for the addition in Minkowski sens and B(ǫ) is the ball
of ray ǫ centered in the origin.

Proof : The set Ψ1 is bounded as long as it is originated
by the explicit solution of a multiparametric quadratic
programme over a bounded region of the parameters space
X. Then it exists ǫmin

1 such that Ψ1 ⊕ B(ǫ) ⊃ Φ1,∀ǫ >

ǫmin
1 . Then using the propositions 6 and 7, the decreasing

behavior of ǫmin
p is straightforward. More than that, using

(7) and (10) we have ǫ > 0 as long as Ψp ⊆ ΨMPI =
ΦMPI ⊆ Φp.

Remark 9. Both algorithms are iterating while a ”pre-
cision condition” is met. This may take the form of a
finite number of iterations. In this case, the ǫmin

p offers
information about the degree of approximation. Alterna-
tively a threshold on ǫmin can be imposed and once the
algorithms go beyond this limit the expansive invariant set
construction is said to have an acceptable approximation
of the MPI set.

4. ROBUST INVARIANT SET COMPUTATION

Following the same idea of constructing invariant sets for
linear systems controlled by piecewise affine control laws
we are developing here the calculation of robust invariant
set (or positive invariant approximation) for systems af-
fected by polytopic uncertainty which can embed a large
class of nonlinear systems.

Let an uncertain system defined by its nominal dynamic
(developed around an operating point):

{

x(k + 1) = Anx(k) +Bnu(k)
y(k) = Cx(k)

(13)

and d extreme realisations for the dynamics affected by
uncertainty:

{

x(k + 1) = A∆x(k) +B∆u(k)
y(k) = Cx(k)

(14)

such that (A∆, B∆) =
∑d

i=1
αi(Ai, Bi) and

∑d

i=1
αi = 1.

Before adapting the previous algorithms, we need to cal-
culate a controller that stabilize all the dynamics of the
polytopic system by using for example an LMI formulation
(see Kothare et al. [1996]). This controller will be further
use for imposing the terminal cost in MPC formulation
for the nominal model. These precautions are necessary in
order to assure that an non-empty invariant set exists.

The following two algorithms calculate or approximate the
robust invariant set for this kind of systems.

4.1 Outer approximation of robust invariant set

Consider the system defined by (13) and (14). An explicit
solution is obtained using the nominal system and let the
result be a polytopic region Pset in which a controller is
defined as (5). As in algorithm 1 we proceed iteratively by
eliminating all subset of Pi, i = 1, ..., N that goes out Pset

for all uncertainty dynamics.

Algorithm 3. Contractive set construction

Input arguments : the matrices {A1, ..., Ad} , {B1, ..., Bd},

the polytopic regions Pset =
N
⋃

i=1

{Pi} and the control laws

(5) defined by Fi and Gi which is calculated using the
nominal dynamic.
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Output argument : robustΦ.

(1) while (”precision condition” not true)
(2) for dyn = 1, d
(3) steps (2 ∼ 17) of Algo 1 such that:
(4) A = Adyn and B = Bdyn

(5) end

(6) end

(7) robustΦ = Pset

4.2 Inner approximation of robust invariant set

Algorithm 4. Expansive set construction

Input arguments : the matrices {A1, ..., Ad} , {B1, ..., Bd},

the polytopic regions Pset =
N
⋃

i=1

{Pi} and the control laws

(5) defined by Fi and Gi which is calculated using the
nominal dynamic.

Output argument : robustΨ.

(1) Let P1 ∈ Pset be the polytope that contains origin
(2) Use Algorithm 3 to compute the robust invariant set

of P1. Let the result be robustΨ1

(3) StepSet = robustΨ1

(4) while(”precision condition” not true)
(5) N = cardinal(Pset)
(6) Poly = ∅
(7) L = cardinal(StepSet)
(8) for i = 1, N
(9) [H1,K1] = constraint(Pi)

(10) for dyn = 1, d
(11) steps (10 ∼ 16) of Algo 2 such that:
(12) A = Adyn and B = Bdyn

(13) Polydyn = [Polydyn, po]
(14) end

(15) end

(16) robustΨ = robustΨ
⋃

(
⋂

ind=1,d Polyind)

(17) StepSet = robustΨ
(18) end

The difference between algorithm 4 and algorithm 2 resides
in the treatment at each iteration of all the the possible
system dynamics. This results in the intersection of the
invariant sets (step 16) in algorithm 4 comparing with the
step 19 of algorithm 2 where only the nominal model was
considered.

5. COMPUTATION AMELIORATION BY INTERVAL
SEARCH

Interval tree search (see deBerg et al. [2000] for basic
definitions and procedures) is an algorithm which allows
to efficiently identify all the intervals, in a predefined
collection, that overlap a given point or interval. To do so,
two important aspects has to be treated: the data structure
called interval tree and secondly the algorithm to query it.

In the framework of the present paper, we are interested
on the regions defined as unions of polytopic sets:

Pset =

N
⋃

i=1

Pi

Each set Pi is defined by its vi vertices;

Pi = {Vl ∈ R
n/l = 1, ..., vi; vi ≥ n}

The projection of polytope’s vertices on each dimension
j ∈ R

n (see Figure 1) is thus given by

Projj(Pi) = {Vl(j)/l = 1, ..., vi}

and allows the construction of the data structure for each
dimension j:

Ij(Pset) =









[min(Projj(P1)),max(Projj(P1))]
[min(Projj(P2)),max(Projj(P2))]

...
[min(Projj(PN )),max(Projj(PN ))]









(15)

which corresponds to a collection of intervals characteriz-
ing Pset.

 

1
x  

2
x  

1
P  

1
P  

1

max1
P  

1

min1
P  

2

max1
P  

2

min1
P  

 

Fig. 1. Retrieving the intervals for P1.

In the algorithm (1), the step 7 and the corresponding
step in algorithm (3) are the most time-consuming parts.
Indeed, this is based on the sequential scanning of all
polytopes in Pset. In this context, the interval search can
provide important ameliorations by performing the inter-
section between Pi and a set of candidate polytopes Pcan

which overlap the projection intervals on each dimension
(see Fig.(2) for illustration). These candidate polytopes set
is determined for a given polytope i as:

Pcan =

n
⋂

j=1

Querry(Ij(Pset); Ij(Pset)(i)). (16)

where Querry(Ij(Pset); Ij(Pset)(i)) is a function which
determines, for the dimension j, all intervals (and corre-
sponding polytopes) of Ij(Pset) that intersect:

[min(Projj(Pi)),max(Projj(Pi))]

Algorithms to create the interval trees and interval query-
ing are explained in (deBerg et al. [2000]).

 

1
x  

2
x  

1

1
I  

2

1
I  

 

Fig. 2. In gray are represented the candidates polytopes
for the intersection with the black one.

6. NUMERICAL EXAMPLE

Let an uncertain system given by its nominal dynamic:
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Fig. 3. Superposition of explicit solution with 9 regions
and robust invariant set (black).







x(k + 1) =

[

1 1
0 1

]

x(k) +

[

1
1

]

u(k)

y(k) = [ 1 1 ]x(k)
(17)

and the polytopic uncertainty:

(A1, B1) =

([

0.7 1
0 0.8

]

,

[

1
1

])

(A2, B2) =

([

0.7 1
0 1.2

]

,

[

1
1

])

(A3, B3) =

([

1.3 1
0 0.8

]

,

[

1
1

])

(18)

In order to illustrate the difference between the nominal
and the robust positive invariant set, a simple optimal
control problem (2) withHp = Hu = 2 and weights Q = I2
and R = 1 is considered. The constraint to be satisfied are:

{

−20 6 y(k) 6 20
−1 6 u(k) 6 1

(19)

Figure (Fig. 3) represents the superposition of the explicit
solution and the invariant set of nominal system (grey
color) and uncertain system (black color). The explicit
solution has 3 regions and the algorithms are providing
upper and lower bounds converging to the exact invariant
and robust invariant set in 5 iterations due to the fact that
all the possible combinations of dynamics are stable.

7. CONCLUSION

Four algorithms for finding the exact or approximate in-
variant and robust invariant set for piecewise affine sys-
tems were presented. The system description is supposed
to be obtained as an explicit solution of a predictive
control problem using the nominal dynamic. The first and
third algorithms starts from this explicit solution and uses
a contractive strategy to converge towards the maximal
invariant and robust invariant set. On the other hand,
the expansive algorithms (2nd and 4th) use an initial
invariant or robust invariant set for the region containing
the origin and subsequently increase it to converge towards
the same maximal invariant and robust invariant set. Both
algorithms 1 and 2 or algorithms 3 and 4 could be used
to bound the exact invariant and robust invariant set in
the case when it is not possible to find this set in a finite
number of steps (non-decidability). The condition to stop
the algorithms iteration may be related to the difference
between the volumes of the upper and lower bounding sets.
It is shown that the use of the interval search algorithm
can ameliorate the computation time.
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