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Abstract: In this paper we discuss estimation of parameters from quantized data. Extending
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1. INTRODUCTION

Traditionally control/estimation and communication were
considered and tackled as separate problems, the con-
trol/estimation algorithms assuming “perfect” communi-
cation was available. This is no longer possible when it
comes to designing control and communication strate-
gies with severe performance requirements and/or band-
width limitation. This is particularly evident for Wireless
Sensor Networks (WSN) in which cheap sensors might
produce very coarsely quantized measurements (one or
few bits) and very restrictive energy-consumption require-
ments might impose severe limitations to the data com-
munication rate.

Essentially for these reasons the recent years have wit-
nessed an increasing interest in the interplay between
sensing, communication, estimation and control.

In this paper we shall be concerned with implications of
quantization in parameter estimation and system identi-
fication. The literature on this topic is vast but rather
scattered in the fields of Signal-Information Processing,
Communications, Control and Statistics making it impos-
sible, in this short note, to exhaustively survey the litera-
ture. In particular we shall limit our interest to the “large
sample” case, studying simple algorithms which allow to
perform estimation using only, possibly coarsely, quantized
observations. We shall also be interested in algorithms
which, even though non distributed in nature, are prone
to distributed implementations, i.e. can be implemented in
a network only through local communications.

This problem, with particular reference to WSN, has been
recently studied in some papers by Ribeiro and Giannakis
(2006a,b) and solved via Maximum Likelihood (ML) es-
timation. However, besides a few simple exceptions, the
estimators proposed in Ribeiro and Giannakis (2006a,b)
require performing a non-linear search over parameter
space. In fact computing the ML estimator requires finding

⋆ This work has been supported in part by the national project New

techniques and applications of identification and adaptive control

funded by MIUR

the minimum of a (non-linear) function of the parameters.
This has two drawbacks: the first regards computational
complexity and the second the fact that this approach
requires this optimization to be centralized (i.e. all data
have to be available to a central processing unit).

Parameter estimation from quantized measurements in-
cludes, of course, also system identification when input-
output data have to be transmitted over a bandlimited
communication channel. With respect to the latter, the
recent papers Wang et al. (2006b,a); Wang and Yin (2007)
demonstrate that, provided the system is excited by a
periodic input 1 , system identification using quantized ob-
servations boils down to estimating a constant corrupted
by white noise from quantized measurements, thus mo-
tivating Example 1 below. Note that Example 2 below,
which could not be tackled with the techniques in Wang
and Yin (2007), is also important in System Identification
since, as already discussed for the binary case in Wang
et al. (2006b), assuming perfect knowledge of the noise
distribution is often unrealistic 2 .

We have to remind that, besides the engineering commu-
nity, also statisticians have for long time been interested
in categorical data analysis, in which measurements are
“categories” or “classes” and the parameters to be es-
timated describe the (parametric) class of probabilistic
models describing the data (e.g. parametric multinomial
models, see Fisher (1928); Birch (1961); Cox (1984); Zacks
(1971) for some early references and also Section 2 for more
details). It is also worth recalling that the very recent
and thorough paper by Morales et al. (2006) discusses
asymptotic efficiency of minimum φ-divergence estimators
of (continuous) parameters from quantized observations.
ML estimators are a special case of minimum φ-divergence

1 See e.g. Wang and Yin (2007) Section 10.
2 The reader has just to keep in mind that the problems stated
in Examples 1 and 2 are not oversimplified cases but find important
applications in System Identification. In this paper we shall not enter
into the question of how, from the estimation of a constant, one
recovers the parameters of a linear systems. We refer the reader to
Wang et al. (2006b,a); Wang and Yin (2007).
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and hence more classical results found in the statistics
literature mentioned above are re-captured under this gen-
eral framework.

The framework discussed in this paper is strongly related
(and in fact extends) the Quasi-Convex Combination Es-
timator (QCCE) discussed in Wang et al. (2006a); Wang
and Yin (2007). In particular, with respect to Wang and
Yin (2007), we improve along the following directions: (i)
we allow for partially unknown (parametrized) noise dis-
tribution functions; in particular note that the simulation
setup reported in Section 5, referring Example 2, is not
covered by the results in Wang and Yin (2007) since the
noise variance is not assumed to be known. We state a
sufficient condition under which the two-stages estimator
is asymptotically ML, hence (ii) proving asymptotic effi-
ciency using standard tools in asymptotic statistics for the
whole class of estimators (regardless of the specific para-
metric model); instead in Wang and Yin (2007) asymptotic
efficiency of the QCCE estimator was shown by direct
comparison with the Cramér-Rao lower bound. We remind
the reader that the proof in Wang and Yin (2007) was
limited to the case in which θ is a scalar location parameter
and the noise distribution is completely known while here
the parametric model is much more general.

As an illustrating example, using the technique of this pa-
per we also tackle two other problems discussed in Ribeiro
and Giannakis (2006b), in particular a scalar parameter
estimation problem with unknown noise variance (Exam-
ple 2) and a vector parameter estimation with unknown
noise variance (Example 3); in the paper Ribeiro and
Giannakis (2006b) instead an iterative method, based on
minimization of the likelihood, was proposed.

We stress that we work under the assumption that the
quantization is fixed; of course the asymptotic results
can be utilized to optimize the partition as to minimize
estimation error variance (maximizing information); this
has already been done, to some extent, e.g. in Venkitasub-
ramaniam et al. (2007); Ribeiro and Giannakis (2006a);
Wang et al. (2006a) and will not be addressed here. Also
a relevant question when dealing with quantization is when
and whether the information contained in quantized data
converges to the non-quantized case as the number of
partitions grows. This problem has been studied by several
authors; we refer the reader to the papers Vajda (2002);
Liese et al. (2006) and references therein for an up-to-date
account of the results available.

Besides the result per se, which, we should say, is rather
straightforward, the purpose of this paper is also to pro-
vide a link between recent papers published in the areas
of Signal Processing (Ribeiro and Giannakis (2006a,b)),
System Identification (Wang et al. (2006a); Wang and Yin
(2007)), Information Theory (Liese et al. (2006); Vajda
(2002); Morales et al. (2006)) and more classical results in
Statistics (Birch (1961); Cox (1984); Fisher (1928); Rao
(1958)); to the author’s opinion this relation has been
partially overlooked in recent works.

The structure of the paper is as follows: in Section 2
we shall state the problem while in Section 3 we derive,
under suitable conditions, a closed-form estimator which
is asymptotically maximum likelihood (ML). Section 4
applies the result of the paper to three examples which

have been recently studied in the literature Wang and Yin
(2007); Ribeiro and Giannakis (2006a,b) while Section 5
contains some experimental results. In Section 6 conclu-
sions are drawn.

1.1 Notation

Boldface lowercase letters (e.g. x) denotes random vari-
ables (rv’s); x shall be the sample value of x. Given a
sequence of rv’s xN , converging to zero in probability,√

NxN
L→x denotes convergence in law (see e.g. Ferguson

(1996); van der Vaart (1998)). The variance of the limiting
distribution is called asymptotic variance.

Given two sequences of rv’s xN and vN , we shall say that
xN = oP (vN ) if, ∀δ > 0,

limN→∞P [| xN/vN |> δ] = 0.

When two sequences of rv’s (vN and wN) differ only up to

oP (1/
√

N) terms (which we shall denote as vN
·
=wN ), then

(multiplied by
√

N) they have the same asymptotic distri-
bution (see e.g. Ferguson (1996); van der Vaart (1998));
we shall also say that vN and wN are asymptotically
equivalent.

2. STATEMENT OF THE PROBLEM

Let us consider a partition of R
n, i.e. a collection of

sets {Ai}i=1,..,k, Ai ⊆ R
n such that

⋃k
i=1 Ai = R

n,
Ai

⋂
Aj = ∅ for i 6= j and let Qi : R

n → {0, 1}
denote the indicator function of the set Ai.Assume we
are given N independent identically distributed (i.i.d.)
quantized measurements z(j), j = 1, .., N where zi(j), the
i-th component of z(j), is given by

zi(j) = Qi(y(j)), i = 1, .., k j = 1, .., N. (2.1)

We shall be concerned with the problem of estimating a
(vector) constant θ ∈ Θ ⊆ R

s which parametrizes the
(common) distribution function Fy(y; θ) := P [y ≤ y; θ]
from measurements z(j), j = 1, .., N . Whenever needed we
shall make the assumption that the y(j)’s are absolutely
continuous w.r.t. the Lebesgue measure and denote with
fy(y; θ) the density function.

A simple yet important example (see Wang et al. (2006a);
Wang and Yin (2007); Ribeiro and Giannakis (2006a))
is the estimation of a constant from quantized noisy
measurements; this is formalized in Example 1 below.
The distribution function of y(i) is in this case given by
Fy(y; θ) = Fw(y − φ)|φ=θ, i.e. θ is a (scalar) location
parameter.

Note that, our setup encompasses also the case in which
the distribution function Fw(w; η) := P [w ≤ w; η] is only
known up to a (nuisance) vector parameter η (see Example
2 below). In this case the distribution function of yi would
be of the form

Fy(y; θ) = Fw(y − φ; η) θ :=
[

φ⊤ η⊤
]⊤

Let us denote with ei the k-dimensional vector with all
entries equal to zero except for the i-th entry which is equal
to 1. Since the sets Ai are mutually disjoint the variables
z(j) take values in the set {e1, .., ek} with probabilities

pi(θ) := P [z(j) = ei] = P [y(j) ∈ Ai] =

∫

Ai

fy(y; θ) dy

(2.2)
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Let us define ni :=
∑N

j=1 zi(j), i.e. ni is the number of

times the variables y(j) take values in Ai.

The joint probability distribution function of the observa-
tion vector {z(1), .., z(N)} is hence given by

P [z(1) = z(1), .., z(N) = z(N); θ] = N !
k

Π
i=1

pi(θ)
ni

ni!
. (2.3)

Note that the vector n := {n1, ..,nk} follows a multinomial
distribution with parameters p(θ) := {p1(θ), .., pk(θ)}. We
recall that the multinomial distribution is of the expo-
nential type with sufficient statistic (for the parameter θ)
given by 3 n := {n1, ..,nk−1} 4 . It is convenient at this
point to define the relative frequencies p̂i,N := ni/N . Of
course also p̂

N
:= {p̂1,N , .., p̂k−1,N} is a sufficient statistic

for θ. We shall also denote p(θ) := {p1(θ), .., pk−1(θ)} and
define the cumulative probabilities

Pi(θ) :=

i∑

l=1

pl(θ) i = 1, .., k. (2.4)

From sufficiency of p̂
N

, w.l.o.g., it is possible to restrict

the class of estimators θ̂(z(1), .., z(N)) of θ to be of form

θ̂(p̂
N

) = θ̂(p̂1,N , .., p̂k−1,N ), i.e. only functions of the
sufficient statistic.

It follows that the problem is reduced to that of estimating
the parameter θ in a multinomial model. This problem
has been studied thoroughly in the statistical community,
see for instance Birch (1961); Cox (1984); Rao (1958). In
fact, the well-known Pearson-Fisher theorem 5 (sometimes
referred to also as Birch’s theorem, see Cox (1984)) states
that, under suitable regularity assumptions which we shall
also assume throughout ( see Birch (1961); Cox (1984)
for details), the ML estimator exists and is unique for
large samples. It is asymptotically normal and its asymp-
totic variance, which can be easily computed, reaches the
Cramér-Rao lower bound.

3. TWO STAGES ASYMPTOTIC MAXIMUM
LIKELIHOOD ESTIMATION

In this section, similarly to Wang et al. (2006a); Wang
and Yin (2007), we shall be concerned with the problem
of finding, when possible, the ML estimator in a simple
(possibly closed) form.

In order to do so we shall restrict to the asymptotic case
in which N → ∞. In particular our aim is to derive an

estimator θ̂N which is asymptotically equivalent to the

ML estimator, i.e. θ̂N
·
=θ̂ML(p̂1,N , .., p̂k−1,N ). Under this

assumption θ̂N shall inherit the nice properties of ML, e.g.
asymptotic normality and asymptotic efficiency.

We shall first derive general sufficient conditions under
which this is possible; we shall then see how this method-
ology applies to a number of interesting examples.

3 It is sufficient to consider only the first k − 1 since trivially

nk = N −
∑k−1

i=1
ni.

4 The underlined symbol denotes the vector with the last component
removed
5 The Pearson-Fisher theorem states also that, asymptotically, the
goodness-of-fit statistics on the sample proportions is χ2 distributed
with k−s−1 degrees of freedom and independent of

√
N
(
θ̂ML
N

− θ
)
,

see Fisher (1928).

Assumption 1. Let us assume that we can find k − 1
functions gi : R

k−1 → R, i = 1, .., k − 1, k > s, and
vectors si ∈ Rs such that

gi(p1(θ), .., pk−1(θ)) = s⊤i θ (3.1)

so that the matrix S := [s1, s2, .., sk−1]
⊤ has full rank

s and g := [g1, .., gk−1]
⊤ : R

k−1 → R
k−1 is invertible

and continuously differentiable. We shall denote with G(θ)

the jacobian at p(θ), i.e. [G(θ)]ij := ∂gi

∂pj |p=p(θ)
. From the

invertibility of g the matrix G(θ) is non-singular.

Remark 3.1 Note that Assumption 1 is equivalent to
assuming that p(θ) is the restriction of a continuously

differentiable and invertible function t : R
k−1 → R

k−1

to an s-dimensional subspace of R
k−1. In fact t = g−1

3

Remark 3.2 Invertibility of g(p) ensures that also q̂
N

:=

g(p̂
N

) is a sufficient statistic for θ. 3

Example 1. As a first illustration we shall consider the
problem addressed in Wang et al. (2006a); Wang and
Yin (2007). It is assumed that θ is a scalar parameter
and that y(j) are y(j) = θ + w(j) where w(j) are i.i.d.
with known distribution function Fw(w). Consider the
partitions Ai := [ci−1, ci] with c0 = −∞ and ck = +∞. It
is immediate to recognize that

Fw(ci − θ) = Fy(ci; θ) = Pi(θ).

It follows that

F (ci − θ) = Pi(θ) = [1, .., 1
︸ ︷︷ ︸

0, .., 0
︸ ︷︷ ︸

]

i k − i − 1






p1(θ)
...

pk−1(θ)




 .

Therefore, assuming it is possible to compute the inverse
function of F , we have ci − F−1 (Pi(θ)) = θ.

This satisfies Assumption 1 with

gi(p1(θ), .., pk−1(θ)) := ci − F−1 (Pi(θ)) i = 1, .., k − 1

and si = 1. Of course the matrix S := [s1, .., sk−1]
⊤ =

[1, 1, .., 1]⊤ has full rank equal to 1 (i.e. the number of
parameters). Clearly each gi is invertible as a function

of Pi(θ) =
∑i

l=1 pl(θ) and hence also g := [g1, .., gk−1]
is invertible. Differentiability of the functions gi follows
easily from the absolute continuity of w.

Example 2. As a second example we consider a modifica-
tion of Example 1 in which the noise variance is unknown.
This generalizes the problem considered in Ribeiro and
Giannakis (2006b), Section III.C, where the number of
thresholds per node is allowed to be larger than 2, similarly
to what is done in Ribeiro and Giannakis (2006b), Section
IV.B for the case of completely unknown noise probability
distribution function. We assume y(j) = φ+ σw(j) where
w(j) are i.i.d. with known distribution function Fw(w) and
the parameter vector to be estimated is θ := [φ σ]⊤.

We assume the partitions Ai are the same as in Example
1 and also that Fw is invertible. Then,

Fw

(
ci − φ

σ

)

= Fy(ci; θ) = Pi(θ).

For simplicity of exposition assume k − 1 is even and
consider all the pairs (i, i + 1) with i = 2j − 1, j =
1, .., k−1

2 . Then, for any pair of indices (2j − 1, 2j), it is
straightforward to see that
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g2j−1(p) :=
F−1

w
(P2j−1) c2j − F−1

w
(P2j) c2j−1

F−1
w (P2j−1) − F−1

w (P2j)
= [1 0] θ

g2j(p) :=
c2j−1 − c2j

F−1
w (P2j−1) − F−1

w (P2j)
= [0 1] θ.

(3.2)
Note that, for j = 1, .., k−1

2 , the functions [g2j−1, g2j ]
⊤ :

R
2 → R

2 are invertible as functions of P2j−1 =
∑2j−1

l=1 pl(θ) and P2j =
∑2j

l=1 pl(θ) and hence also g :=

[g1, g2, .., gk−1]
⊤ is invertible. Differentiability follows from

absolute continuity of w.

It is now sufficient to observe that s⊤i = [1 0] for iodd and
s⊤i = [0 1] for ieven so that S⊤ := [ s1 s2 . . . sk−1 ] has
rank 2 = dim(θ).

Essentially Assumption 1 guarantees that the sufficient
statistic p̂

N
can be made into a linear function of θ using

a “sufficiently regular” function g. This will allow us to
show that the transformed statistic q̂

N
= g(p̂

N
), which is

still sufficient for θ, can be thought of as the output of a
linear model:

q̂
N

= Sθ + vN (3.3)

Remark 3.3 Note also that the papers Wang et al.
(2006b), Ribeiro and Giannakis (2006b) discuss the case
of (partially) unknown noise distribution but deal only
with binary (two classes) quantizers. It is apparent from
Assumption 1 that using a binary quantizer (i.e. k = 2) it
is not possible to find an invertible mapping g so that
S has full column rank (S would have one row and,
at least, two columns). In fact, in Wang et al. (2006b)
the authors needed to modify the thresholds and also
act multiplicatively on the input in order to be able to
estimate the noise distribution (see eg. Wang et al. (2006b)
Section 5, Example 4). Similarly, in Ribeiro and Giannakis
(2006b), Section III.B, the binary sensors are divided in
two groups (say A and B); the quantizers in group A have
a different threshold from those of group B. Alternatively,
in Ribeiro and Giannakis (2006b), Section III.C quantizers
with 2 thresholds (i.e. 3 classes) are considered. Our
result generalizes this situation to an arbitrary number
of thresholds, as already stated in Example 2. 3

The asymptotic distribution of vN is given by the following
proposition:

Proposition 3.1. The noise term vN in (3.3) is asymptoti-
cally normal with asymptotic covariance matrix Σv(θ) :=
G(θ)Σp(θ)G⊤(θ) where

Σp(θ) :=
[
diag

(
p
)
− pp⊤

]

|p=p(θ)
,

i.e.
√

NvN →L N (0, Σv(θ))

Proof. The proof can be found in the extended version of
this paper available at www.dei.unipd.it/∼chiuso. 2

We are now ready to state the main result of the paper.
From the linear model (3.3) and Proposition 3.1 it follows
that, asymptotically, the transformed statistic q̂

N
is nor-

mal. The (asymptotic) ML estimator is then the weighted
least squares solution (Markov estimator)

θ̂N =
(
S⊤Σ−1

v
(θ)S

)−1
S⊤Σ−1

v
(θ)q̂

N
.

However, the reader may argue, the asymptotic covariance
matrix of q̂

N
, Σv(θ) = G(θ)Σp(θ)G⊤(θ), depends on the

true (but unknown) parameter θ. It is a standard fact that,

provided a
√

N−consistent estimator θ̂ of θ is available,

one can use Σv(θ̂) in lieu of Σv(θ) without altering the

asymptotic properties of θ̂N
6 .

This we state in the form of a theorem.

Theorem 3.2. Under Assumption 1 and given a consistent

estimator 7 θ̂ of θ, the weighted least squares estimator

θ̂WLS
N :=

(

S⊤Σ−1
v

(θ̂)S
)−1

S⊤Σ−1
v

(θ̂)q̂
N

(3.4)

is, asymptotically, a ML estimator. It satisfies:
√

N
(

θ̂WLS
N − θ

)
L→N (0, Σθ) (3.5)

where the asymptotic covariance matrix Σθ is given by

Σθ :=
(
S⊤Σ−1

v
(θ)S

)−1
(3.6)

In particular this result shows that, under Assumption 1,
the estimator (3.4) is asymptotically efficient.

4. APPLICATIONS

In this section we shall revisit some special cases encoun-
tered in the literature using Theorem 3.2.

First of all we consider the problem of estimating a con-
stant from noisy and quantized measurements as discussed
in Wang and Yin (2007); Ribeiro and Giannakis (2006a).
This problem has already been described in Example 1.

We have seen that we can take the functions gi to be of
the form

gi(p1(θ), .., pk−1(θ)) := ci − F−1 (Pi(θ)) i = 1, .., k − 1

and si = 1, so that S := [s1, .., sk−1]
⊤ = [1, .., 1]⊤ = 1

⊤.

The noise variance is Σv(θ) = G(θ)Σp(θ)G⊤(θ) where

G(θ) = −







f−1

w
(P1) 0 . . . 0

f−1

w
(P2) f−1

w
(P2) . . . 0

...
...

. . .
...

f−1

w
(Pk−1) f−1

w
(Pk−1) . . . f−1

w
(Pk−1)







evaluated at Pi =
∑i

l=1 pl(θ) and

Σp(θ) =











p1 − p2
1 −p1p2 . . . −p1pk−1

−p1p2 p2 − p2
2 . . .

...

...
...

. . .
...

−p1pk−1 −p2pk−1 . . . pk−1 − p2
k−1











evaluated at p := p(θ). The asymptotic variance is:

Σθ := AsVar {
√

N
(

θ̂WLS
N − θ

)

} =
(
1
⊤Σ−1

v
(θ)1

)−1
.

(4.1)

We shall now show that the expression (4.1) is indeed the
Cramér-Rao bound found in Wang and Yin (2007); Ribeiro
and Giannakis (2006a).

6 Note that here continuity of G(θ) is needed to ensure convergence.
This is the reason why we assumed g to be continuously differen-
tiable.
7 A consistent estimator is, for instance, given by θ̂ :=
(S⊤S)−1S⊤

q̂N .
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First of all let us define hi(θ) := fw(Pi)|Pi=
∑

i

l=1
pl(θ)

; note

that

G(θ) = diag{h−1
1 (θ), .., h−1

k−1(θ)}







1 0 . . . 0
1 1 . . . 0
...

...
. . .

...
1 1 . . . 1







:= H−1(θ)J

(4.2)

where the last equation defines H and J . For convenience
of notation we shall also define h(θ) := [h1(θ), .., hk−1(θ)]

⊤.

Note now that

1
⊤Σ−1

v
(θ)1 = 1

⊤G−⊤(θ)Σ−1
p

(θ)G−1(θ)1

= 1
⊤H(θ)J−⊤Σ−1

p
(θ)J−1H(θ)1

= h⊤(θ)J−⊤Σ−1
p

(θ)J−1h(θ)

(4.3)

It is now simple to check that

J−⊤ =









1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 1 −1
0 0 . . . 0 1









.

Let us now define h̃(θ) := J−1h(θ) so that equation (4.3)
becomes:

1
⊤Σ−1

v
(θ)1 = h̃

⊤
(θ)Σ−1

p
(θ)h̃(θ) (4.4)

It is immediate to recognize that the components of the
vector h̃(θ) are exactly h̃i defined in Wang and Yin (2007),
Section 6. Therefore, using Lemma 7 in Wang and Yin
(2007), and (4.1),

AsVar {
√

N
(

θ̂WLS
N − θ

)

} = h̃
⊤

(θ)Σ−1
p

(θ)h̃(θ)

=

(
k∑

i=1

h̃2
i (θ)

pi(θ)

)−1 (4.5)

where the last term on the right hand side is the Cramér-
Rao lower bound (see Wang and Yin (2007), Lemma 9 and
also Ribeiro and Giannakis (2006a), formula (43)).

Remark 4.4 We would like to stress that this latter
result follows here from Theorem 3.2, which guarantees

that θ̂WLS
N is asymptotically a ML estimator and hence

asymptotically efficient; the proof is based on simple
and standard facts in asymptotic statistics rather that
(tedious) direct manipulations as in 8 Wang and Yin
(2007). 3

We now move to Example 2, which was studied in Ribeiro
and Giannakis (2006b) in the particular case k = 3.
In that paper, besides a few special cases in which the
ML estimator could be found in closed form, the authors
resort to gradient descent methods to find the solution
to the likelihood equations. One of the special cases in
which a closed form exist (see Section III.C in Ribeiro
and Giannakis (2006b)) is precisely when k = 3, i.e.
2 thresholds. Under these circumstances the sufficient
statistic has dimension 2 and is invertible as a function of
the parameters; therefore, using the invariance principle

8 The estimator θ̂WLS
N

was called QCCE - Quasi-Convex Combina-
tion Estimator - in Wang and Yin (2007)

(see e.g. Zacks (1971)), the ML estimator follows from
equations (3.2) for j = 1. Using the technique of this paper
the asymptotic ML estimator can be found in closed form,
for an arbitrary number of thresholds (i.e. quantization
levels). For reasons of space we shall not report explicitly
the expressions for the jacobian G(θ) and refer the reader
to Section 5 for some experimental results concerning this
Example.

As a last example we also consider a minor modification of
the one presented in Ribeiro and Giannakis (2006b), Sec-
tion VI.B, which involves estimation of a vector parameter.

Example 3. Assume one has to measure a vector flow
v := (v1, v2)

⊤. Each sensor measures the flow normal to
its surface, identified by the normal vector u := (u1, u2)

⊤.
We assume that there are J sensors (with normal vectors
uj , j = 1, .., J) and each sensor performs Nj independent

measurements 9

yij = v⊤uj + wij j = 1, .., J, i = 1, .., Nj

We also assume that the measurement noises are i.i.d.,
Gaussian with zero mean and unknown variance σ2.

The vector of parameters to be estimated is, therefore,
θ := (v1, v2, σ). Assume also, w.l.o.g., that all sensors
quantize their measurements with k levels. For each sensor
j = 1, .., J let us define with p̂

j,Nj
the vectors of relative

frequencies and, as in Example 2, assume k − 1 is even.
It is straightforward to see that {p̂

j,Nj
}, j = 1, .., J is a

sufficient statistic for θ. Also, using the same function g as
in Example 2 and defining

q̂
j,Nj

:= g(p̂
j,Nj

) = Sjθ + vj,Nj
j = 1, .., J

also {q̂
j,Nj

}j=1,..,J is a sufficient statistic. Let us define

q̂
N

:= [
√

N1q̂
⊤

1,N1

, ...,
√

NJ q̂
⊤

J,NJ
] and similarly v̂N .

The matrices Sj depend on the normal vectors uj . It is
also a simple check to verify that in the linear model

q̂
N

Sθ + v̂N

the matrix S := [
√

N1S
⊤
1 , ..,

√
NJS⊤

J ]⊤ is of full column
rank provided one takes measurements along at least two
independent directions uj’s. Using the same arguments
as in Proposition 3.1 it is easy to see that, asymptot-
ically in N := (N1, .., NJ) 10 , the error term vN :=

[
√

N1v
⊤
1,N1

, ..,
√

NJv⊤
J,NJ

]⊤ is normally distributed. Since
the sensors are independent, the asymptotic covariance
matrix Σv(θ) is block diagonal where each diagonal block
has the same form as that found in Example 2. Hence the
asymptotic ML estimator can be found as in Theorem 3.2
provided q̂

N
is replaced with q̂

N
.

5. SIMULATIONS

We consider Example 2 above with φ = 0.3 and σ =√
2. We consider two scenarios in which quantization is

performed using respectively k = 5 and k = 7 regions (4
and 6 thresholds). In particular we have chosen, somewhat

9 Analogously one could consider a similar setup in which there is a

network of
∑J

j=1
Nj ; there are J groups of sensors, the j − th group

is composed of Nj elements and all sensors in the group measure the
flow along the direction uj .
10 I.e. as min(N) → ∞.
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Fig. 1. Estimation of φ: sample variance (5000 Monte Carlo
runs) vs. Cramér-Rao lower bound.

arbitrarily [c1 c2 c3 c4] = [−1 − 0.25 0.25 1] for k = 5 and
[c1 c2 c3 c4 c5 c6] = [−1.5 − 1 − 0.5 0.5 1 1.5] for k = 7.

We regard σ as a nuisance parameter and hence we
show only the results for the estimators of φ. We report
(i) the sample variance (solid) from 5000 Monte Carlo
experiments, (ii) the Cramér-Rao lower bound for the
specified number of thresholds (dotted, red) and (iii) the
Cramér-Rao lower bound for the non-quantized data (i.e.
σ2/N).

Note that the Cramér-Rao bound with 6 thresholds is
essentially indistinguishable from the Cramér-Rao bound
for non-quantized data (see figure 1 ) and very little
loss is observed is 4 thresholds are used. This is in line
with the considerations reported in Ribeiro and Giannakis
(2006a,b). It should also be stressed that, for small sample
size (N < 200, see figure 1) the sample variance of the
estimator with 6 thresholds is larger that the estimator
with 4 thresholds. This is an effect which of course the
asymptotic theory does not predict.

6. CONCLUSIONS

We have considered estimation of parameters from quan-
tized measurements. We have seen that under a regularity
assumption on the probabilistic model, the ML estimator
can be found, asymptotically, from a linear least squares
problem on a transformed statistics, i.e. in closed form.

Our setup provides a common framework which includes,
but is not limited to, several important problems con-
sidered recently in the literature Ribeiro and Giannakis
(2006a,b); Wang et al. (2006a); Wang and Yin (2007).
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