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Abstract: Controller design problem is dealt with for a class of plants with time-varying nonlinear 
uncertainties and unmodeled dynamics. A new method based on signal compensation is proposed to 
design a robust controller. A controller designed by this method consists of a nominal controller and a 
robust compensator. It is shown that robust tracking property and robust tracking transient performance 
can be achieved simultaneously. A salient feature of our results, shown in the present paper, is that the 
controller is linear and time-invariant one and we can tell the users how to tune on-line the parameters of 
the controller with the proposed robust and transient performance. 

 

1. INTRODUCTION 

Recently, global stabilization of nonlinear strict-feedback 
form systems has attracted considerable attention. In this 
paper, our attention is focused on the problem of robust 
controller backstepping design for a class of SISO uncertain 
nonlinear strict-feedback form systems with time-varying 
uncertainties and stable dynamic uncertainties. Many 
researches have been done on this problem, but it is still not 
solved completely.  

Over the last decade, various robust stabilization techniques 
have been developed in the literature. Following the 
development of exact linearization techniques via smooth 
state feedback and diffeomorphic transformation ( Isidori, 
1989 ), researches on certain triangular structure systems 
attracted considerable interest. One of the recent 
breakthroughs in nonlinear control is the introduction of 
backstepping algorithms for feedback linearizable systems. 
The relative-degree constraint, overparameterization, and 
growth condition are removed by allowing the controlled 
plant to be nonlinearly dependent on structure uncertainty, 
such as unknown parameters or unmodeled time-varying 
disturbances. Although the idea of integrator backstepping 
may be implicit in some earlier works, its use as a design 
tool was initiated by Tsinias(1989,1991), Byrnes and 
Isidori(1989), Sontag and Sussmann(1988), and Saberi et 
al.(1990). In Kanellakopoulos, Kokotovic, and Morse(1991), 
the cases with unknown parameters were investigated. In 
Freeman and Kokotovic (1992,1993), Marino and 
Tomei(1993), the cases with disturbance were considered. In 
Taylor, Kokotovic and kanellokopoulos(1989), Jiang and 
Mareels(1997), Jiang and Hill(1999), the cases with 
unmodeled Dynamics were treated. 
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In this paper, we consider robust control problem for a class 
of nonlinear strict-feedback form systems with uncertain 
parameters, bounded uncertainties and unmodeled dynamics. 
The uncertainties are norm-bounded, and the unmodeled 
dynamics is input-to-state stable as described in other papers. 
A new method is proposed based on signal compensation 
(Zhong, 2002) to design a robust controller. It will be shown 
that the states of the closed-loop system are ensured to be 
bounded and the global output tracking to a reference signal 
are achieved. And desired transient tracking property can 
also be assured The tracking error can be driven into an 
desired small neighborhood of the origin at an exponential 
rate. A controller designed by this method consists of a 
nominal controller and a robust compensator. The controller 
is linear and time invariant.  

This paper is organized as follows. In section 2, the plant 
description, the reference model, the assumptions on the 
uncertainties, reference input and unmodeled dynamics are 
presented. In section 3, controller design method and main 
results are stated. Section 4 gives the statement and the proof 
of the main results. An example is shown in section 5. 
Conclusions are stated in section 6. 

2. PROBLEM DESCRIPTION 

Consider a nonlinear plant described by the following 
equations 
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( ) ( ), , ,t x d tηη
η φ η=∑                            (2) 

( ) ( )1py t x t=  

where ix  are the states, py  is the output, d  is a bounded 
external disturbance vector, ( )1, 2, ,i i nφ =  are 
regarded as nonlinear time-varying uncertainties and ηφ  is a 
vector field describing dynamic uncertainties. 

Assumption A 

A1) There are known positive constant vector 

[ ] [ ]1 2i i iii iξ ξ ξ ξ=  and positive valued function 

iς  such that  

( ) ( ) ( ) ( )( )[ ] [ ] 0, , , ,i i i i ix d t x t d t tφ η ξ ς η
∞∞

≤ +  

where ( ) ( )0,0 0 1, 2, ,i i nς = = 。 

A2) The system given by (2) is bounded-inputs ( x  and d ) 
bounded-state (η ) stable. 

It is required to design a controller which produces a control 
input u  to drive the output py  of the plant to track a 

reference signal, denoted by my , which is given by the 
following reference model:  

( ) ( ) ( )1 1m my t y t r tα β= − +                   (3) 

where 1α  and 1β  are given positive constants, r  is a given 
reference input.  

Assumption B 
1r C∈  and there exist known and positive constants rη  

and rη  such that 

  ,r rr rη η
∞ ∞

≤ ≤                         (4) 

3. CONTROLLER DESIGN 

Firstly, consider the subsystem 
( ) ( ) ( )1 2 1 1, , ,x t x t x d tφ η= +  

For the above system, a virtual controller is constructed as  
( ) ( ) ( )2 1 1 1x̂ t u t f w t= +                      (5) 

where ( )1u t  is a nominal control input given by 

 ( ) ( ) ( )1 1 1 1u t x t r tα β= − +                    (6) 

( )1w t  is a robust control input to be designed, and 1f  is a 
positive constant to be determined. To perform backstep, 
apply the variable change 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 1 1 1 1 1ˆy t x t x t x t x t r t f w tα β= − = + − −
(7) 

The robust control input ( )1w t  is given by  

( ) ( ) ( )1 1 1̂w t F s tφ= −                     (8) 

where ( )1F s  is a robust filter of the form 

( )1
1

1F s
s f

=
+

 

and 
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It should be pointed out that, to get the robust control input 

( )1w t , only the states ( )1x t  and ( )r t  are needed. If fact,  
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1

ˆ

1

w t F s t

x t r t
s s

φ

α β

= −

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

              (9) 

Define 
( ) ( ) ( ) ( ) ( )1 1p m my t y t y t x t y t= − = −        (10) 

then one has 

( ) ( )1
1 11w t y t

s
α⎛ ⎞= − +⎜ ⎟

⎝ ⎠
                     (11) 

and 

( ) ( ) ( ) ( )1 1 1 1 1 1
ˆy t y t t f w tα φ= − + +          (12) 

From (1), (7), (8) and (10), one has 

( ) ( ) ( )2 3 2y t x t tφ= +                      (13) 

where 
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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m m

t t y t f t f w t t

t y t r t r t

φ φ α α φ ρ

ρ α α β β

⎡ ⎤= − + + + +⎣ ⎦
= + −

         

(14) 

As the second step, consider the subsystem (13) with ( )2 tφ  

as a disturbance and ( )3x t  as a virtual control input and 

continue the design procedure. At the k th-step, consider the 
subsystem 

( ) ( ) ( )1k k ky t x t tφ+= +  

and regard ( )1kx t+  as a virtual control input with the form 

( ) ( ) ( )1ˆk k k kx t u t f w t+ = +  

where  ( )ku t  is a nominal control input given by 

( ) ( )k k ku t y tα= −  

where kα  is a positive constant. Let 

( ) ( ) ( )
( ) ( ) ( )

1 1 1

1

ˆk k k

k k k k k

y t x t x t

x t y t f w tα
+ + +

+

= −

= + −
 

Then 

( ) ( ) ( ) ( )ˆ
k k k k k ky t y t t f w tα φ= − + +  

where 

( ) ( ) ( )1k̂ k kt t y tφ φ += +  
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The robust control input ( )kw t  is constructed as 

( ) ( ) ( )

( )

ˆ

1
k k k

k
k

w t F s t

F s
s f

φ= −

=
+

 

where kf  is a positive constant to be determined.  
Note that  

( ) ( ) ( ) ( )k̂ k k k kt s y t f w tφ α= + −  

So the robust control input ( )kw t  can also be given by  

( ) ( ) ( )

( )

ˆ

1

k k k
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k

w t F s t

y t
s
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= −

⎛ ⎞= − +⎜ ⎟
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Differentiating ( )1ky t+ , one has 

( ) ( ) ( )1 2 1k k ky t x t tφ+ + += +  

where 

( ) ( ) ( ) ( ) ( ) ( )2
1 1

ˆ
k k k k k k k k kt t y t f t f w tφ φ α α φ+ +

⎡ ⎤= − + + +⎣ ⎦
 Finally, one has 

( ) ( ) ( )n ny t u t tφ= +                      (15) 

where 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1
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= + −

⎡ ⎤= − + + +⎣ ⎦
 

The control input ( )u t  is constructed as 

( ) ( ) ( )n n nu t u t f w t= +  

with the nominal control input ( )nu t  is given by 

( ) ( )n n nu t y tα= −                        (16) 

and the robust control input ( )nw t  by 

( ) ( ) ( )

( )

ˆ

1
n n n

n
n

w t F s t

F s
s f

φ= −

=
+

 

where ( ) ( )n̂ nt tφ φ= ， nα  and nf  are positive constants . 
Then the following differential equation holds 

( ) ( ) ( )ˆ
n n n nw t f w t tφ= − −  

and ( )nw t  can be implemented as 
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From (15) and (16) it follows that 

( ) ( ) ( ) ( )ˆ
n n n n n ny t y t t f w tα φ= − + +  

Summarizing the design results, one has  
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and the whole controller description 
( ) ( ) ( )
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(17) 
One sees that the designed controller is a linear time-
invariant one. 

4. CLOSED-LOOP CONTROL PROPERTIES 

Let  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 2

1 1 0 0

T
n

T
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τ τ τ τ
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= ⎡ ⎤⎣ ⎦

= − +⎡ ⎤⎣ ⎦  
Assumption C 

The parameters ( )1, 2, ,if i n=  are sufficiently large, 

1if +  is much larger than if ( )1, 2, , 1i n= −  and  

{ }
( )( ){ }

1 1

1 0

max , , , , 1,2, , ,

max , , , , 1,2, ,

i ij

m j

f i j n i j

f d t j n

β α ξ

τ ρ ς η
∞ ∞ ∞

= ≥

=
 

It will be shown that the conclusions stated in the following 
theorem hold. 

Theorem 1.  For any given and bounded initial states ( )0x t  

and ( )0w t  and for any given positive constant ε , one can 
find sufficiently large parameters which satisfy Assumption 
C, such that the states ( )x t , ( )tη  and ( )w t  are bounded 
and the following statements hold. 
(1) If the initial states ( )0x t  and ( )0w t  are nonzero, then 

there is a 0T t≥  such that 

( ) ( ), , , 1, 2, ,k ky t w t t T k nε ε≤ ≤ ≥ =  

(2) If the initial states ( )0x t  and ( )0w t  are zero, then 
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( ) ( ) 0, , , 1, 2, ,k ky t w t t t k nε ε≤ ≤ ≥ =  

Before showing the proof of the main results stated in 
Theorem 1, several preliminary lemmas are stated and 
proven. 

Lemma 1.   Let 
( ) ( )
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Proof.  The proof is omitted since it is straightforward. 

Let 
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Lemma 2. ( )1, 2, ,k k nφ =  satisfy that 

( ) ( ) ( )

( ) ( )( )
1 11 1 11 1

1 0

, , ,

,

x d t y t t

d t t

φ η ξ ξ τ

ς η
∞ ∞

∞

≤ +

+
 

( ) [ ] ( )

[ ] ( ) ( )
( )

( ) ( )( )

[ ]

[ 1]1

[ ] [ ]

0

, , ,

,

2,3, ,

k kyk k

kwk k

k k k

k

x d t y t

f w t

t

d t t

k n

φ η μ

μ

ξ τ

ς η

∞

−− ∞

∞

∞

≤

+

+

+

=

 

Proof.  From the definition of ( )1, 2, ,ky k n=  it 
follows that 

( )
( )

( )

( )
( )

( )

( )
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( )
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(18) 
So one has 

( ) ( ) ( )
( ) [ ] ( ) ( )
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1[1] [1] 11 1 11 1
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[ 1]1
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+

=

       (19) 

From Assumption A and inequalities (19), one sees that the 
conclusions of Lemma 2 hold. 

Let ( )0 0, 2,3, ,k f k nυ = = . 

Lemma 3. ( ) ( )ˆ 1,2, ,k t k nφ =  satisfy the following 
inequalities. 

( ) ( ) ( ) ( )1 2 11 1 1
ˆ ˆˆ yt y t y t tφ μ ς

∞ ∞
≤ + +  

( ) ( ) [ ] ( ) ( )
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where  
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∑
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(21) 

Proof. From the definition of ( ) ( )ˆ 1,2, ,k t k nφ =  and 
from Lemmas 1 and 2, one has that 
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( )
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( )
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( ) ( ) ( ) ( ) ( ) ( )
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Together with Assumption A and Lemmas 1 and 2, the 
conclusions of Lemma 3 hold. 

Lemma 4.  For any given positive constant φε , if 
Assumption C is satisfied, then  
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[ ] ( )1

2
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t
y t

f φ
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∞
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       (24) 

Proof. From the definition of ( )ˆ ykj fμ  and ( )ˆwkj fμ ， 

one sees that for any given positive constant kε , if 

jf ( )1, 2, ,j n=  are sufficiently large and satisfy 
Assumption C, then 
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ς
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(25) 

We only show the proof of (23). The proof of (22) and (24) 
can be performed in a similar way. For 2,3, , 1k n= − , 
from (20) and (25), one has 
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If choose kε  such that 1k k φε ε+ ≤ , then (23) holds. 

Now we are ready to prove Theorem 1. For 1, 2, ,k n= , 
let  

1 1
1 2kP ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Consider the following positive function 

1

n

k
k

V v
=

= ∑  

where 

( ) ( ) ( )
( )

k
k k k k

k

y t
v y t w t P

w t
⎡ ⎤

= ⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

 

The derivative of V  along the trajectories of the closed-loop 
system is given by 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

1

2 2

1

2 2

1

2

2 2

1

2

0
1

ˆ2

ˆ2 2

ˆ
2

ˆ

n

k
k

n

k k k k k k k k k
k

n

k k k k k k k k k
k

n k

k k k k k k k
k k

n k

k k

V v

y t y t w t f w t w t t

v y t f w t w t t

t
v y t f w t

f

t
V

f

α α φ

α α α φ

φ
α α α

φ
α

=

=

=

=

=

=

⎡ ⎤= − + + +⎣ ⎦

⎡ ⎤= − + + − +⎣ ⎦

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥≤ − + + − −⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤
⎢ ⎥≤ − +
⎢ ⎥
⎣ ⎦

∑

∑

∑

∑

∑

where { }0 min , 1, 2, ,k k nα α= = . So one has 

( ) ( ) ( )
( )

0 0

2

0
10

ˆ1 n kt t

k k

t
V t e V t

f
α

φ

α
− − ∞

=

⎡ ⎤
⎢ ⎥≤ +
⎢ ⎥
⎣ ⎦

∑  (26) 

From Lemma 4, it follows that for any given positive 
constant φε , if Assumption C is satisfied, one has 

( )
[ ] ( )

[ ] ( ) ( )

[ ] ( ) ( )

2

2
2

2
1

1 2 22
[ 1]1

2

2 22
[ 1]

ˆ
2 1

3 1

3 1
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n

kk
k

nn

t
y t

f

y t w t

y t w t

φ

φ

φ

φ
ε

ε

ε

∞

∞=

−

−+ ∞∞=

− ∞∞

⎡ ⎤
⎡ ⎤⎢ ⎥ ≤ +⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

⎡ ⎤+ + +⎢ ⎥⎣ ⎦

⎡ ⎤+ + +⎢ ⎥⎣ ⎦

∑

∑  
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( ) ( ) ( ){ }
( ) ( )

2 22

2
2
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3 1

3 1
3

n y t w t n

n
V t n

φ

φ
φ

ε

ε
ε

λ

∞ ∞

∞

⎡ ⎤≤ + + +
⎣ ⎦

+
≤ +

    (27)                       

where ( ) ( )0 min 3 5 / 2kPλ λ= = − . From (26) and (27) it 

follows that 

( ) ( ) ( ) ( )
2 2

0
0 0 0

3 1 3n n
V t V t V tφ φε ε

λ α α∞ ∞

+
≤ + +  

If  

( )
0 0

3 1nφ
λ αε <

+
                                 (28) 

then 

( ) ( )
2

0
0

31 n
V t V t φε

π α∞

⎡ ⎤
≤ +⎢ ⎥

⎢ ⎥⎣ ⎦
             (29) 

where 
( )2

0 0

3 1
1

nφε
π

λ α
+

= − . From (26), (27) and (29) one 

has  

( ) ( )
( )

( )

( ) ( )

0 0
2 2

0
1 0

2 2

0
0 0 0 0

3 31

t tn

k k
k

ey t w t V t

nn
V t n

α

φ φ

λ

ε ε
λ α λ π α

− −

=

⎡ ⎤+ ≤⎣ ⎦

⎧ ⎫⎡ ⎤+⎪ ⎪+ + +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑

 It can be shown (see Lemma A in Appendix A) that if φε  is 

sufficiently small so that 

( ) ( ) ( )
2
0 0

0 0 03 1 1n V t n nφ
λ α εε

λ λ ε
<

+ + + +⎡ ⎤⎣ ⎦
  (30) 

then 

( ) ( )
( )

( )
0 0

2 2
0

1 0

t tn

k k
k

ey t w t V t
α

ε
λ

− −

=

⎡ ⎤+ ≤ +⎣ ⎦∑  

The inequality above implies the conclusions of Theorem 1. 

5. NUMERICAL EXAMPLE 

Consider the following plant as a numerical example (Jiang 
and Hill, 1999). 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )p

x t u t t
kt t x t
m

y t x t

φ

η η

= +

= − +

=

 

where u  is the torque input, η  is the unmeasured 
unmodeled dynamics, x  is the state, py  is the output. The 
reference model is  

( ) ( ) ( ) ( ), 1, 0m my t y t r t r t tα β= − + = ≥  

where 10, 10α β= = . It is required that 0.03ε = .  
For the simulation, we take 

9.8g = , 2/10m k g −= = ,  

( ) ( )sin 3d t t= , ( ) ( )3sin 2L t g t= +  

( ) ( ) ( ) ( ) ( )1sint L t mg t d t
L t m

φ η
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 

The initial values are given by ( ) ( )0 0, 0 0x η= = . The 
robust controller designed by the method shown in the last 
section is as follows: 

( ) ( ) ( ) ( )1 1u t x t r t f w tα β= − + +  
where  

( ) ( ) ( )1 1 11 , 0 0w t y t w
s
α⎛ ⎞= − + =⎜ ⎟

⎝ ⎠
 

Choose φε  so that 

( )

( ) ( ) ( )

0 0

2
0 0

0 0 0
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3 1
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3 1 1

n

n V t n n

φ

φ

λ αε

λ α εε
λ λ ε

< ≈
+

< ≈
+ + + +⎡ ⎤⎣ ⎦

 

and choose 1f  to satisfy 

( ) ( ) ( )

2

1

2

1

158.2622

10  646.0341m

gmf
k

gm gf y t d t
k

φ

φ φ φ

ε

η
ε ε ε∞

⎛ ⎞
≥ ≈⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
≥ + + ≈⎜ ⎟⎜ ⎟

⎝ ⎠
So we set 1 700f = . Simulation results are shown in Figs 1 
through 3. We can see that the state x , unmeasured 
unmodeled dynamics η  are globally bounded. The tracking 
error is driven into the desired small neighborhood of the 
origin with desired transient performance.  

 
Fig. 1. Plot of tracking error 
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Fig. 2. Plot of robust control input 

 
Fig. 2. Plot of unmodeled dynamics 

6. CONCLUSIONS 

For strict-feedback systems with time-varying nonlinear 
uncertainties and unmodeled dynamics, a new method is 
proposed of designing robust controller. A nominal 
controller is designed to get exact output tracking for the 
nominal plant; a robust compensator is added to achieve 
robust properties. Under Assumptions A, B and C, robust 
tracking property and robust tracking transient performance 
are achieved. The robust controller is a linear and time-
invariant one, so it can be realized easily. 
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Appendix A.  

Lemma A  If φε  is sufficiently small so that (28) holds and 
that 

( ) ( ) ( )
2
0 0

0 0 03 1 1n V t n nφ
λ α εε

λ λ ε
<

+ + + +⎡ ⎤⎣ ⎦
     (A.1) 

then  

( ) ( )
2 2

0
0 0 0 0

3 31 nn
V t nφ φε ε

ε
λ α λ π α

⎧ ⎫⎡ ⎤+⎪ ⎪+ + <⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

        (A.2) 

Proof. If (28) holds, then ( )2 2
0 0 03 1 0nφλ α ε λ− + > . In 

this case, from (A.1) it follows that 

( ) ( ) ( )
( )

2
0 0

2 2
0 0 0

3 1
3 1

n V t n
n

φ

φ

ε λ
ε

λ α ε λ
+ +⎡ ⎤⎣ ⎦ <
− +

 

which implies that 

( ) ( ) ( )2 2
0 0 0 0

2 2
0 0

3 1 3 1n V t n n nφ φε α ε λ π α
ε

λ πα

⎡ ⎤+ + + +⎣ ⎦ <  

So (A.2) holds. 
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