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Abstract: In this study, we consider the problem of optimizing the productivity of fed-batch cultures
of S. cerevisiae, which are characterized by strongly nonlinear kinetic models based on the bottleneck
assumption of Sonnleitner and Käppeli [1986] and ethanol inhibition resulting from the fermentation
of a possible excess of substrate feeding. In contrast with most published studies where the critical
substrate level is assumed constant, we investigate the situation where this critical substrate level depends
on the yeast respiratory capacity, and in turn on the oxygen and etahnol concentration in the culture
medium. The challenge is thus to maintain the process at a high level of productivity by avoiding the
accumulation of ethanol. To this end, an adaptive extremum seeking control scheme, coupled to an
asymptotic observer, is developed based on Lyapunov stability arguments. Copyright c©2008 IFAC

Keywords: Extremum seeking, nonlinear adaptive control, asymptotic observer, fermentation process,
biotechnology.

1. INTRODUCTION

Yeasts are one of the most important host microorganisms in
manufacturing of biopharmaceuticals. Industrial vaccine pro-
duction is usually achieved using fed-batch cultures of geneti-
cally modified yeast strains, which can express different kinds
of recombinant proteins. From an operational point of view, it
is necessary to determine an optimal feeding strategy (i.e. the
time evolution of the input flow rate to the fed-batch culture)
in order to maximize productivity. The main problem that can
be encountered at this stage is due to fermentation of an excess
of substrate (glucose), which can lead to the accumulation of
ethanol in the culture medium, and in turn to the inhibition of
the cell respiratory capacity.
To avoid this undesirable effect, a closed-loop optimizing
strategy is required, which could take various forms (Chen
et al. [1995], Akesson [1999], Renard [2006], Dewasme et al.
[2007]). In particular, the use of extremum seeking strategies
for bioprocess optimization has received an increasing attention
in recent years (Ariyur and Krstic [2003], Guay and Zhang
[2003], Guay et al. [2004], Marcos et al. [2004], Titica et al.
[2004]).
In this study, we develop an adaptive extremum-seeking strat-
egy based on Lyapunov stability arguments (in a similar way
as in (Guay et al. [2004], Titica et al. [2004])). The main
challenge is to consider the dependence of the critical substrate
level on the respiratory capacity, itself influenced by the oxy-
genation level and the ethanol inhibition. A second difficulty
rises from the strong nonlinearity of the kinetic laws, which is
due to the switch between a respirative regime and a respiro-
fermentative regime, depending again on the yeast respiratory
capacity and, in turn, on the substrate concentration in the
culture medium (i.e. the bottleneck assumption of Sonnleitner
and Käppeli [1986]). In addition, the kinetic laws take account

of the inhibitory effect of ethanol on this yeast respiratory
capacity. Compared to previous studies, the underlying mod-
els therefore significantly depart from the classical Monod or
Haldane laws and a new analysis is required. In particular, an
adaptive extremum-seeking strategy including two adaptation
laws is developed and a simplified more robust version of this
strategy is also proposed. Moreover, the use of an asymptotic
observer is considered so as to limit the number of required
on-line measurements (Chen et al. [1995], Bastin and Dochain
[1990]).
This paper is organized as follows. The next section introduces
the macroscopic model of yeast fed-batch cultures used in this
study and defines the optimal operating conditions. Section 3
presents the adaptive extremum seeking algorithm, the design
of an asymptotic observer and a Lyapunov stability analysis. In
Section 4, the performance of the algorithm is tested in simula-
tion and discussed, whereas Section 5 draws some conclusions
and perspectives.

2. MODELING YEAST FED-BATCH CULTURES

2.1 Nonlinear dynamic model

The yeast strain S. cerevisiae presents a metabolism that can
be macroscopically described by the following three main reac-
tions:

Substrate oxidation : S+ k5 O
r1
→ k1 X+ k7 P (1a)

Substrate fermentation : S
r2
→ k2 X+ k4 E+ k8 P (1b)

Ethanol oxidation : E+ k6 O
r3
→ k3 X+ k9 P (1c)
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where X, S, E, O and P are, respectively, the concentration in
the culture medium of biomass, substrate (typically glucose),
ethanol, dissolved oxygen and carbon dioxide. ki are the yield
coefficients and r1, r2 and r3 are the nonlinear reaction rates
given by:

r1 = min

(

rS,
ro

k5

)

(2)

r2 = max

(

0,rS −
ro

k5

)

(3)

r3 = max

(

0,min

(

rE ,
ro − k5 rS

k6

))

(4)

where the kinetic terms associated with the substrate consump-
tion rS, the oxidative or respiratory capacity ro and the ethanol
oxidative rate rE are given by:

rS = µS

S

S+KS

(5a)

ro = µO

O

O+KO

(5b)

rE = µE

E

E+KE

(5c)

These expressions take the classical form of Monod laws where
µS, µO and µE are the maximal values of specific growth
rates and KS, KO and KE are the saturation constants of the
corresponding element.

This kinetic model, which is often encountered in the literature,
is based on Sonnleitner’s bottleneck assumption (Sonnleitner
and Käppeli [1986]) (Figure 1). During a culture, the yeast cells
are likely to change their metabolism because of their limited
respiratory capacity. When the substrate is in excess (concen-
tration S > Scrit), the yeast cells produce ethanol through fer-
mentation, and the culture is said in respiro-fermentative (RF)
regime. On the other hand, when the substrate becomes limit-
ing (concentration S < Scrit), the available substrate (typically
glucose), and possibly ethanol (as a substitute carbon source),
if present in the culture medium, are oxidized. The culture is
then said in respirative (R) regime.

Component-wise mass balances give the following differential
equations :

dX

dt
= (k1r1 + k2r2 + k3r3)X −DX (6a)

dS

dt
= −(r1 + r2)X +DSin −DS (6b)

dE

dt
= (k4r2 − r3)X −DE (6c)

dO

dt
= −(k5r1 + k6r3)X −DO+ OT R (6d)

dP

dt
= (k7r1 + k8r2 + k9r3)X −DP− CT R (6e)

dV

dt
= Fin (6f)

where Sin is the substrate concentration in the feed, Fin is the
inlet feed rate, V is the culture medium volume and D is the
dilution rate (D = Fin/V ). OT R and CT R represent respectively
the oxygen transfer rate from the gas phase to the liquid phase
and the carbon transfer rate from the liquid phase to the gas
phase. Classical models of OT R and CT R are given by:

Fig. 1. Illustration of Sonnleitner’s bottleneck assumption for
yeast limited respiratory capacity.

OT R = kLa(Osat −O) (7a)

CT R = kLa(P−Psat) (7b)

where kLa is the volumetric transfer coefficient and, Osat and
Psat are respectively the dissolved oxygen and carbon dioxide
concentrations at saturation.

Ethanol has a detrimental effect on the cells growth because it
directly inhibits the cells respiratory capacity (Pham [1999]).
Taking this remark into account, a more detailed expression of
ro is given by:

ro = µO

O

O+KO

KiE

KiE +E
(8)

where KiE is the inhibition constant of ethanol.

It is common in the literature to consider the critical substrate
level Scrit constant. However, this level is actually not constant
and depends on the respiratory capacity which is limited by
a lack of oxygen and inhibited by an excess of ethanol. For
illustration purposes, Figure 2 shows a simulation of the process
where the substrate concentration in the culture medium is reg-
ulated around a constant theoretical value of Sset = 0.0226g/l.
It is apparent that ethanol is produced during the batch and
that the biomass growth rate is lower than expected. A simple
substrate regulation does not allow to avoid the production of
ethanol, which in turn, reduces the respiratory capacity and the
critical substrate level.

Considering we are in the optimal operating conditions (S =
Scrit), the fermentation and ethanol oxidation rates are equal
to zero and the substrate consumption rate rS is equal to ro

k5
.

Consequently, after a trivial mathematical manipulation of (5a),
a relation between the critical substrate concentration level and
the cell respiratory capacity is obtained as:
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Fig. 2. Simulation of a fed-batch process controlled at a con-
stant Scrit value.
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Fig. 3. Scrit as a function of ro.

Scrit =
Ksro

k5µs − ro

(9)

Figure 3 shows a plot of this relation where the point [0,0]
corresponds to a totally inhibited respiratory capacity, prevent-
ing any growth, and the point [romax ,Scritmax ] corresponds to
maximum productivity (i.e. absence of ethanol in the culture
medium and a sufficient level of oxygenation). Obviously, the
presence of ethanol in the culture medium can decrease the
respiratory capacity and in turn the value of the critical substrate
concentration S = Scrit . In order to maintain the system at the
edge between the respirative and respiro-fermentative regimes,
it is necessary to determine on-line the critical substrate con-
centration (Scrit) and to control the substrate concentration in
the culture medium around this value.

3. AN ADAPTIVE EXTREMUM-SEEKING STRATEGY

3.1 Introduction and main principles

The adaptive extremum-seeking strategy that is chosen in this
study is related to the techniques developed in Titica et al.
[2004], Betancur et al. [2004], Guay and Zhang [2003], Guay
et al. [2004] and Marcos et al. [2004], which take their roots
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Fig. 4. Scrit as a function of ro and linear approximation.

in the classical work of (Ariyur and Krstic [2003]). It consists
in a permanent estimation of the system dynamics through the
analysis of a ”control error signal” (which in the present case
is a function of the difference between S and the set point
Scrit) following the injection of a periodical excitation signal d
into the adaptive system. This allows the convergence of the
parameter estimates to their true values and the stabilization
of the error signal around zero (but not exactly zero as the
excitation is permanent).

3.2 Controller design

We first define the main parameters to estimate. Then, we derive
adaptation laws and a control law from the consideration of a
candidate Lyapunov function ensuring system stability.

First, equation (6b) can be rewritten as follows:

dS

dt
= −θX −D(S−Sin) (10)

where θ = r1 + r2 is considered as an unknown kinetic parame-
ter.

As we wish to control the substrate concentration around its
critical point, we need to assess its value at every moment.
Unfortunately, equation (9) contains several unknown (or at
least uncertain) parameters (µs, Ks, k5, Ko, µo and KiE ), which
can be detrimental to the control quality. To avoid this possible
lack of robustness, as the order of ro is clearly smaller than k5µS,
we propose to approximate expression (9) by the following one:

Scrit ≈
KS

k5µS

ro = αro (11)

where α is a positive parameter which has to be adapted during
the batch (as a modeling exercise, a residual mean error of 0.2%
is obtained after a linear regression applied to (9) demonstrating
the quality of a first-order approximation - see Figure 4 ).

Defining:

Zs = kp(S−Scrit)+ ki

∫

(S−Scrit)dt −d (12)
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the control error variable, where d is the periodical ”dither
signal” and, kp and ki are positive tuning parameters,

θ̃ = θ− θ̂ (13)

the estimation error on θ, and

α̃ = α− α̂ (14)

the estimation error on α, we consider the following Lyapunov
candidate function:

V =
1

2
Z2

s +
1

2γ
θ̃2 +

1

2γs

α̃2 (15)

where γ and γs are strictly positive tuning parameters.

A stabilizing controller is obtained if one can prove the strict
negativity of the Lyapunov function derivative. Differentiating
V , we obtain:

V̇ = Zs [kp(−θX −D(S−Sin)−αṙo)+ ki(S

−α̂ro)− ḋ
]

+ θ̃(−
˙̂θ

γ
)+ α̃(−

˙̂α

γs

) (16)

Replacing (12), (13) and (14) in (16) and forcing V̇ to be
negative as in:

V̇ = −kzZ
2
s (17)

where kz is a strictly positive tuning parameter, we obtain:

−kzZs = kp(−θ̂X −D(S−Sin)− α̂ṙo)

+ki(S− α̂ro)− ḋ (18)

provided that:
˙̂θ = −γkpZsX (19a)

˙̂α = −γsZs(kpṙo + kiro) (19b)

Ŝcrit = α̂ro (19c)

Finally, the control law is given by

D =

[

kzZs−a+kdd
kp

− θ̂X
]

S−Sin

(20)

with a dither signal d chosen as:

ḋ = a+ ki(S− α̂ro)− kpα̂ṙo − kdd (21)

where a is a closed-loop excitation signal and kd is a new
strictly positive design parameter.

The proposed control law (20) requires several on-line mea-
surements (X , S, O, E), which can nowadays be achieved using
specific probes. However, these sensors are still quite expensive
and their use is not widespread. In the following we consider the
use of an asymptotic observer to provide estimation of biomass
and ethanol from glucose, dissolved oxygen and carbon dioxide
measurements (Chen et al. [1995]). The main advantage of the
asymptotic observer is that it provides an estimation indepen-
dent of the kinetic laws.

3.3 Asymptotic observer

The mass-balance equations (6) can be written in a compact
form:

ξ = Kφ−Dξ+F−Q (22)

where ξ is the state vector, K the yield coefficient matrix, φ the
reaction rates vector, F the inlet flux vector when the external
components are diluted in the culture medium and Q the outlet
flux vector for gas components.

In the present case, the rank of K is equal to 3 so that 3
measurements are necessary in order to estimate all the states.
We propose here to estimate the biomass and ethanol concen-
trations from measurements of glucose, dissolved oxygen and
carbon dioxide:

ξ1 = [S O P]T

ξ2 = [X E]T (23)

This partition induces the corresponding partition of the yield
matrix K, i.e., K1 and K2.

The definition of the auxiliary variables vector z = A1ξA +A2ξB

with A0 = A1 = −K2K−1
1 and A2 = I, leads to the asymptotic

observer structure:

[

ż1

ż2

]

= −D

[

z1

z2

]

+A0

[

SinD
OT R
−CT R

]

(24a)

[

X̂

Ê

]

=

[

z1

z2

]

−A0

[

S
O
P

]

(24b)

The convergence speed of this observer is linked to the dilution
rate:

dξ̃2

dt
=

d

dt
(ξ̂2 −ξ2) = −D(ξ̂2 −ξ2) (25)

The dilution rate, given by (20), is persistently exciting and
ensures the observer convergence.

In industrial practice, laboratory measurements are achieved
at the beginning of each run so that the error on the initial

state variables, ξ̃2, is usually small and the dilution rate (which
evolves exponentially so as to follow yeast growth) ensures a
fast convergence of the asymptotic observer so that no stability
problem of the closed-loop system (combining the asymptotic
observer and the extremum-seeking controller) occurs.

Rigorously, however, the stability of the whole control system
should be analytically demonstrated through the derivation of
a new Lyapunov candidate function taking into account the
introduction of the observer in the closed-loop.

V =
1

2
Z2

s +
1

2γ
θ̃+

1

2γs

α̃+
1

2
z̃1

2 +
1

2
z̃2

2 (26)

The demonstration of stability is immediate considering that
z̃ = z− ẑ and (24), i.e.

˙̃z = −Dz̃ (27)
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Parameter Value Unit

γs 10 /

γ 10−7 /

kp 15 /

ks 0.004 /

kz 0.0015 X /

kd 0.01 /

ωi
2π i
4000

rad/s

Table 1. Tuning parameter values.

We are thus ensured that the introduction of the observer does
not affect the stability as it preserves the negativity of the
Lyapunov function derivative.

4. SIMULATION RESULTS

In this section, we apply the controller designed in the previous
section to a simulated case-study corresponding to classical
small-scale (20 l bioreactor) culture conditions. The initial and
operational conditions are:

X0 = 0.4g/l, S0 = 0.5g/l, E0 = 3g/l, O0 = Osat = 0.035g/l,
P0 = Psat = 1.286g/l, V0 = 6.8l, Sin = 350g/l

For the kinetic and yield parameter values, the reader is referred
to Sonnleitner and Käppeli [1986].

The selection of an appropriate dither signal is based on a per-
sistence of excitation (PE) condition (Guay and Zhang [2003],
Marcos et al. [2004], Adetola and Guay [2006]) which, once
fulfilled, ensures the asymptotic convergence of the parameter
estimates.

The excitation signal is here chosen as a simple sum of sinu-
soidal signals of the form:

a =
5

∑
i=1

Aisin(ωi t) (28)

where Ai are normally distributed random numbers contained
in [−0.0005,0.0005] and ωi are the pulsations.

The initial substrate and ethanol concentrations are chosen at
high values, so as to challenge (in a difficult situation) the
controller convergence speed. Figures 5, 6 and 7 present the
simulation results. The substrate concentration evolution (Fig-
ure 5) shows that the presence of ethanol at the beginning of the
batch causes a decrease of the critical substrate concentration
level. An adaptation of this critical substrate concentration is
then needed so as to avoid an increased production of ethanol
(due to the excess of substrate) and a serious inhibition of cell
growth. At the end of the batch, ethanol is almost completely
consumed so that the system is driven close to the optimum (see
Figure 7). Figure 6 also shows the evolution of the feed rate
Fin. θ converges to its true value, so as α through a judicious
choice of the value of γs (see Table 1) as the convergence is
generally very slow. The productivity is quite satisfactory as
more than 150g/l of biomass are obtained within less than 40
hours, despite the high initial concentrations in substrate and
ethanol.

The main drawback of this control strategy is the delicate
choice of the tuning parameters, depending on the initial and
operating conditions. This problem originates in the presence
of the error control variable Zs as a factor in (19b). If the
substrate concentration quickly converges to its setpoint, i.e. the
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Fig. 5. Substrate (S, Ŝcrit and Scrit), biomass (X) and ethanol (E)
concentrations evolutions.
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Fig. 7. Representation of the algorithm convergence through the
evolution of Scrit as a function of ro.

controller works efficiently and Zs vanishes, the convergence of
α is significantly affected. In turn, if the critical substrate level
is overestimated, the control action can lead to the production of
ethanol, and as a consequence, the inhibition of the respiratory
capacity and a further decrease of the critical substrate level.
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With a bad choice of the tuning parameters, the biomass growth
can therefore be seriously inhibited.

A simple way round this problem is to systematically under-
estimate the critical substrate level. This can be achieved by
considering a lower linear approximation, i.e. a linear function
below the real curve Scrit(ro) in the classical operating area
(very low values of ro are never reached in a controlled pro-
cess). For instance, if we impose the point (µo,0.02) to belong
to this approximation (cfr Figure 8), the adaptation law of α is
now the following one:

S̄crit = ᾱro (29)

Where S̄crit and ᾱ are the lower values of Scrit and α. α is thus
equal to

µo

0.02
.

Figure 9 shows simulation results using this modified strategy.
The performance is now much more robust to the initial and
operating conditions. The dither signal is simplified in a =
Asin(ω t) since θ is now the only parameter to be estimated

(A = 0.0005 and ω = 2π
1000

).

5. CONCLUSION

An adaptive extremum-seeking strategy is designed to control
the substrate concentration in fed-batch cultures of S. cere-
visiae. The challenge associated with this particular application
is due to the dependence of the critical substrate level on the
respiratory capacity ruling strong nonlinear kinetic laws de-
scribing the bottleneck assumption of (Sonnleitner and Käppeli
[1986]). This yeast respiratory capacity is here considered as

influenced by the oxygenation level and the ethanol inhibitory
effect (Pham [1999]). Based on Lyapunov stability arguments,
original adaptation laws are derived to estimate on-line un-
known kinetic parameters. In addition, an asymptotic observer
is designed so as to limit the need for expensive hardware
sensors of the culture component concentrations. Finally, a
simplified strategy is proposed, which provides a more robust
estimation of the critical substrate level.
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