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Abstract: Perfect tracking of the output of a class of nonlinear systems that has a unique response for a 
given input and is subject to repetitive reference input is considered in this paper. A conditional learning 
scheme guaranteeing sufficient knowledge can be learned iteratively to improve the input to achieve 
perfect tracking is proposed. The sufficient condition for monotonic convergence of the input sequence 
and the choice of the learning gains are given. The tracking performance of the proposed scheme is 
illustrated by a simulated example. 

 

1. INTRODUCTION 

Tracking repetitive signals or completing repetitive tasks is 
an important practice task, in the fields of electronic circuits, 
robotics, servo mechanisms and electric motors (Alleyne and 
Pomykalski, 2000; Hu and Tomizuka, 1993). As iterative 
learning control (ILC) is able to control nonlinear dynamic 
systems with imperfect knowledge for these repetitive tasks 
(Arimoto, Kawamura and Miyazaki, 1984; Xu and Tan, 
2003), it is considered in this paper to solve this tracking 
problem for global Lipschitz continuous nonlinear systems 
with unknown dynamics.  

Generally, ILC based on contraction mapping takes the 
assumption of identical initial conditions (i.i.c.) in each of the 
iterations (Xu and Tan, 2003), namely, the initial state must 
be reposed to the same position at the beginning of every 
iteration. However, since the tracking process is continuous 
in time rather than with separate iterations that have distinct 
starting and ending points, i.i.c. generally is not available. In 
fact, the tracking problem belongs to the most general case, 
in which the end state of the previous iteration becomes the 
initial state of the current iteration, referred as the alignment 
initial condition. Although the relaxation of i.i.c. is widely 
studied (Park and Bien, 2000; Sun and Wang, 2002; Xu and 
Yan, 2005), the alignment initial condition is unfortunately 
not available in the contraction mapping ILC (Xu and Yan, 
2005). Here, this problem is well handled by the proposed 
conditional learning scheme for the contraction mapping ILC. 
Although besides our method, another ILC approach based 
on composite energy function (CEF) (Sun, Ge and Mareels, 
2006; Xu and Tan, 2003; Xu and Yan, 2005) can deal with 
the alignment initial condition, it requires the measurement of 
the system states, which may not always be available in 
practice (Xu and Tan, 2003). In contrast, ILC based on 
contraction mapping requires only the measurements of the 
output, which are more readily available. Further, discrete 
CEF based ILC is still under development (Xu and Tan, 
2003). 

The objective of the paper is to relax the i.i.c. requirement, 
such that the alignment initial condition can be applied to 
ILC derived from contraction mapping. It is achieved by 

introducing conditional learning for a class of nonlinear 
systems that has a unique steady-state response for a given 
input. In the conditional learning scheme, the input is updated 
only if the system response is dominated by the steady-state 
component. If this condition is not satisfied, the same input as 
that in the previous iteration will be used. In this approach, 
“learning” from the output error can still be performed 
despite the initial condition is unknown, and sufficient 
“knowledge” can be learned to improve iteratively the input 
to achieve perfect tracking of the output. The input updating 
scheme proposed here is a PD-type consisting of two learning 
gains (Xu and Tan, 2003). The learning gains are given, such 
that the input sequences are monotonically convergent in the 
sense of L2 norm, thus avoiding the inconvenient λ-norm 
proposed in (Xu and Tan, 2003). The sufficient condition for 
the existence of monotonically convergent input sequence for 
the proposed scheme is also presented. 

The paper is organized in follows. Section 2 states the 
problem formally with other preliminaries. Section 3 studies 
the response of nonlinear systems that have a unique steady-
state for a given input. Section 4 proposes the ILC with 
conditional learning, and is illustrated by an example 
presented in Section 5.  

2. PRELIMINARIES 

Consider the following SISO dynamic system, 
( )( ) ( ), ( )

( ) ( )
t t u t

y t t
=

=

x f x
Cx

                                                               (1) 

where u(t), x(t) and y(t) are respectively the system input, 
state and output. All variables and functions have appropriate 
dimensions, f and C are unknown global Lipschitz continuous 
functions that satisfy the following assumption. 

Assumption 1: fx is a symmetrical matrix and there exist 
constants α1, α2, β, γ1, γ2 and ε such that 

1 2( )α λ α≤ ≤xf                                                                     (2) 

2u β≤f                                                                               (3) 
Without loss of generality, the case of negative values are 
similarly defined, and 

1 20 uγ γ< ≤ ≤Cf                                                                   (4) 
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ε≤C                                                                                (5) 

where  
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,

,

x x x
ff
x

x x x

x
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x

                                     (6) 

n is the dimension of x, fn,x is the partial derivative of the nth 
element of f to x and fn,u is to u; ξ1,…, ξn, ζ1,…, and ζn belong 
to (0,1), λ(fx) is the eigenvalue of fx, ||.||2 is the 2-norm. Note 
that both λ(fx) and ||fu||2 are functions of time. Since the mean 
value theorem will be used extensively here, the following 
notations are used to avoid the use of ξ1,…, ξn, ζ1,…, and ζn, 

( , ) ( *, ) ( *)
( , ) ( , *) ( *)u

u u
u u u u

− = −
− = −

xf x f x f x x
f x f x f

                                               (7) 

 
The second assumption that is related to the unique existence 
of the input for the desired output (Xu and Tan, 2003) is now 
presented. 

Assumption 2: For a given desired output yd(t) that repeats at 
a period of T, there exists a unique desired input ud(t) such 
that 

( )( ) ( ), ( )
( ) ( )

d d d

d

t t u t
y t t

=

=

x f x
Cx

        (8) 

From Assumption 2, ud(t) exists uniquely. It follows that if 
the input u(t) converges to ud(t), the state and output tracking 
errors will vanish. An input updating law must find ud(t) from 
an arbitrary input. Note that the dynamic process is 
manipulated continuously and the state x(t) is aligned, and 
hence it is also referred to as the alignment iterations, such 
that contraction mapping ILC can be applied to achieve 
perfect tracking. This is presented in more details below (Sun, 
et al., 2006):  
1) each iteration begins at zero and ends in a finite time T, 

i.e., t∈ [0, T]; 
2)  the initial condition of the system at the beginning of 

each iteration is aligned with the final position of the 
previous one, such that xi(0) = xi-1(T), where i is the 
iteration index and xi(t), t∈ [0, T], is the system state at 
the ith iteration, i.e., xd(T) = xd(0); 

3) the desired output yd(t) is given a priori over [0, T] and 
from 2), yd(T)= yd(0). 

In the following analysis, L2 norm for vectors and square 
matrixes defined below is used. 

( )

1/ 2

0

1/ 2

max0

1( ) ( ) ' ( )

1( ) ( ) ' ( )

T

T

T

T

t t t dt
T

t t t dt
T

λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫

x x x

A A A

                                (9) 

The norm is well defined having the following properties: 

2[0, ]
. max .

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

T t T

T T T

T T

T T

t t t t

t t t

t t t t

∈
≤

≤

=

=

A x A x

P x x

P A Q A

                                              (10) 

where P(t) and Q(t) are time-varying orthogonal matrixes. 
Without causing confusion, the time t, where t ∈ [0, T], is 
omitted hereafter. 

3. UNIQUE STEADY-STATE 

The i.i.c. does not hold here, as the initial states are assumed 
to be aligned. The following assumption is made to overcome 
the problem of non-identical initial condition. 

Assumption 3: The system (1) has a unique steady-state 
solution (Chua and Green, 1976), such that all the solutions 
of (1) are bounded and independent of the initial condition, 
and any pair of solutions x and x* of (1) tend to each other 
asymptotically, i.e., 
lim * 0
t→+∞

− =x x                                                                  (11) 

where ||.|| is an arbitrary norm. That is, x(t) can be 
decomposed into the transient response xtr and the steady-
state response xss, as follows, 

tr ss= +x x x                                                                         (12) 
where xtr → 0 as t → ∞.  

As the steady-state response is eventually not affected by the 
initial condition and is determined by the input, ILC is also 
applicable to systems with non-identical initial condition. It is 
shown in Theorem A.2 of Chua and Green (1976) that the 
steady-state of system (1) exists, if an incremental Lyapunov 
function V∆ exists, such that 

0 if *
( , *)

0 if *
V∆

= =⎧
⎨> ≠⎩

x x
x x

x x
                                                   (13) 

and 
0 if *( , *)
0 if *

dV
dt

∆ = =⎧
⎨< ≠⎩

x xx x
x x

                                                (14) 

where both x and x* are the response of (1) for the same 
input under different initial conditions. If x ≠ x*, then from 
(11) and (14), the non-negative V∆ approaches to 0. 
Consequently, x and x* approach to each other for 
sufficiently large time, as given below. 

Theorem 1: If fx is negative definite for all x and u, then 
system (1) has a unique steady-state response. 

Proof: Define 
1( , *) ( *) '( *)
2

V∆ = − −x x x x x x  

and 

( )( , *)
( *) ' ( , ) ( *, )

dV
u u

dt
∆ = − −

x x
x x f x f x                            (15) 

Applying the mean value theorem (Ortega and Rheinboldt, 
1970), gives 

( , ) ( *, ) ( *)u u− = −xf x f x f x x                                              (16) 
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Substituting (16) into (15), and since fx is negative definite, 
(15) also satisfies (13), hence system (1) has a unique steady-
state. This completes the proof.                                            □ 

Remark 1: Under Assumption 3, if an arbitrary input is 
applied repetitively at a fixed period, all the response will 
eventually approach to a repetitive steady-state response at 
the same period. Clearly, if fx is negative definite, α2<0. 

The properties of the steady-state response xss and the 
transient response xtr are given in the following theorem. 

Theorem 2: If system (1) satisfies Assumption 2, and its 
steady-state response is bounded and satisfies, 

2

* * *ss ss T T T
u u G u uβ

α
− ≤ − = −x x                         (17) 

then its transient response converges to zero exponentially,  
1 22 2 2

(0) exp( ) ( ) (0) exp( )tr tr trt t tα α≤ ≤x x x                (18) 

Details of the proof are given in Appendix A. In the next 
section, a novel ILC with conditional learning is proposed, 
such that the contraction mapping ILC can be applied to non-
identical initial condition.  

4. ILC WITH CONDITIONAL LEARNING 

4.1 Contraction Mapping ILC and Conditional Learning 

For convenience, the following notations for the difference 
between the desired and the actual values are introduced first 
(Xu and Tan, 2003), 

, ,

, ,

i d i

i d i i tr i ss

i d i i tr i ss

u u u

y y y y y

∆ −

∆ − = ∆ + ∆

∆ − = ∆ + ∆

x x x x x                                              (19) 

where ud, xd and yd are the desired input, desired state vector 
and desired output, ui, xi and yi are the input, state vector and 
output at the ith iteration. In the contraction mapping ILC, the 
input is updated iteratively after each operation based on the 
output errors in the previous iteration. Since the relative 
degree of the nonlinear system (1) is 1, PD-type ILC, as 
shown below, is popular (Xu and Tan, 2003) and will be used 
here. 

1 1 2i i i iu u q y q y+ = + ∆ + ∆                                                       (20) 
where q1 and q2 are the learning gains.  

In general, perfect tracking can only be achieved if ui+1 = ud 
and xi+1(0) = xd(0). Although the i.i.c. does not necessarily 
hold here, Assumption 3 implies that the effect of the initial 
condition will eventually vanish. Therefore, in order to 
achieve the same result as using the assumption of i.i.c., it is 
only necessary to ebsure ui+1 = ud through learning from 
previous output error ∆yi (Xu and Tan, 2003). However, the 
learning processes are different if the i.i.c. does not hold. For 
the system (1), the i.i.c. assumption implies that ∆yi depends 
only on ∆ui, which in fact guarantees that in the “learning”, 
all the learned information is used to improve ∆ui. In 
contrast, without the i.i.c. assumption, ∆yi is determined by 
both ∆xi and ∆ui, and hence the information in ∆yi for 
learning includes also the transient componenet ∆yi,tr and the 

steady-state component ∆yi,ss. In order to learn sufficient 
information about ∆ui to improve the input, the conditional 
learning scheme is proposed here. The input is updated only 
if the information about ∆ui plays a major part, i.e., ∆yi,ss is 
the major part of ∆yi with ∆yi,tr being a minor one. Let the 
condition for learning be given by, 

, ,i tr i ssT T
m∆ ≤ ∆x x                                                           (21) 

where m is a positive constant less than 1. However, as (21) 
may not be satisfied in each iteration, additional conditions 
have to be devised to ensure that (21) is satisfied.  

Theorem 3: The transient response of system (1) under 
Assumptions 1 and 3 has the following properties, 

, 1, 1( )i tr i tr i i TT T
p K G u u− −∆ ≤ ∆ + + −x x                        (22) 

where G is given by (17) and 
2exp( ) 1p Tα= <                                                                 (23) 

1exp( )K T Tβ α= −                                                             (24) 

Details of the proof of Theorem 3 are given in Appendix B. 
Since from (22), ∆x0, tr = 0, then 

1
, 1

1
( )

i
j

i tr j jT T
j

K G u u p −
−

=

∆ ≤ + −∑x                                (25) 

Theorem 4: The inequality (21) is satisfied if, 
1

1
1
( )

(1 )

i
j

j j i TT
j

mK G u u p y
m ε

−
−

=

+ − ≤ ∆
+∑                     (26) 

Details of the proof are given in Appendix C. It is clear that 
(26) can be easily verified, as the input sequence is known 
and ∆yi can be readily computed. Therefore, the input 
updating law given by (20) is modified as follows, 

1 1 2

1 2
1

if (21) is satisfied
              otherwise

d d

i i i
i

i

u q y q y
u q y q y

u
u+

= +

+ ∆ + ∆⎧
= ⎨

⎩

                   (27) 

From (27), the procedure to update the input consists of 
either: (i) update, i.e., 1 1 2i i i iu u q y q y+ = + ∆ + ∆ , or (ii) idle, 
i.e., 1i iu u+ = . Clearly, if the learning gains q1 and q2 are 
suitably chosen, such that ||∆ui+1||T < ||∆ui||T is satisfied in 
each update, the updated input will monotonically converge 
to the desired input ud. In this case, perfect output tracking 
can be achieved.  

4.2 Monotonically Convergent Control Sequence 

The result discussed previously that if the learning gains q1 
and q2 are chosen, such that ||∆ui+1||T < ||∆ui||T is satisfied, the 
updated input converges monotonically to ud(t) is presented 
in the following theorem. 

 Theorem 5: Under Assumptions 1 to 3, if εG(α2-α1)/2<γ1, 
there exist m and learning gains q1 and q2, such that ||∆ui+1||T 
< ||∆ui||T is strictly guaranteed in each update of the input. 

Proof: From Assumptions 1 to 3, and applying Taylor’s 
theorem,  
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1

1

1 2

1 2

1 2

2 1 2

( ( , ) ( , ))
( )

(1 ) ( )

i

d i

d i i i

i i i

i i d d i i

i i u i i

u i i i

u
u u
u u u u

u q y q y
u q y q x u x u
u q y q u

q u q y q

+

+

+

∆
= −
= − + −
= ∆ − ∆ − ∆
= ∆ − ∆ − −

= ∆ − ∆ − ∆ + ∆
= − ∆ − ∆ + ∆

x

x

C f f
C f f x

Cf Cf x

 

Then, 

( )

1

2 1 2

2 1 2

2 1 2 ,

2 1 2

2 1 2

(1 )

1

1 (1 )

1 (1 )

max 1 (1 )

i T

u i i i T

u i iT T T T

u i i ssT T T T

u i iT T T T

u iT T T

u

q u q y q

q u q q

q u q q m

q u m G q q u

q m G q q u

ε

ε

ε

ε

+∆

= − ∆ − ∆ + ∆

≤ − ∆ + + ∆

≤ − ∆ + + + ∆

≤ − ∆ + + + ∆

≤ − + + + ∆

x

x

x

x

x

Cf Cf x

Cf I f x

Cf I f x

Cf I f

Cf I f

       (28)                                                                                 

To ensure that ||∆ui+1||T < ||∆ui||T, it is necessary that  
( )2 1 2max 1 (1 ) 1u T T

q m G q qε− + + + <xCf I f                  (29) 
Therefore, if q1 and q2 are chosen satisfying the inequality 
(29), then there exists at least a pair of q1 and q2, such that 
||∆ui+1||T < ||∆ui||T is satisfied. To complete the proof, it is only 
necessary to show that the optimal choice of q1 and q2 given 
below satisfies (29), 

( )( )
1 2

1 2 2 1 2
,

( , ) arg min max 1 (1 )u T T
q q

q q q m G q qε= − + + + xCf I f

(30)                                                                                      
Since fx is symmetrical and from (2) α1≤λ(fx)≤α2 and (4) 
0<γ1≤Cfu≤ γ2, hence q2 > 0. For a given q2, there exists a 
time-varying orthogonal matrix P(t) such that 

( )( )
1

1 2
1 1 2 2arg min max

2T
q

q q q q
α α+

= + = −xI f                (31) 

and 
( )

( )( )
( )( )

1 2

1 2

1 2

2 1
2

max (1 )

(1 ) max ( ) '( )

(1 ) max

(1 )
2

T

T

T

m G q q

m G t q q t

m G q q diag

q m G

ε

ε

ε λ

α α
ε

+ +

= + +

= + + ⎡ ⎤⎣ ⎦

−
= +

x

x

x

I f

P I f P

I f
                       (32) 

Substituting (31) into (29) gives 
( )2 1 2

2 1
2 1 2 2

1 2

2 1
2 2 2 2

1 2

max 1 (1 )

21 (1 ) 0
2

21 (1 )
2

u T T
q m G q q

q q m G q

q q m G q

ε

α α
γ ε

γ γ
α α

γ ε
γ γ

− + + +

−⎧ − + + < <⎪ +⎪= ⎨ −⎪ − + + ≥
⎪ +⎩

xCf I f

      (33) 

Since (33) must be smaller than 1, it can be readily shown 
that the following conditions are satisfied, and (29) holds, 

2 1
12

G
α α

ε γ
−

<                                                                   (34) 

2
2 1

2

20
(1 )

2

q
m G α αγ ε

< <
−

+ +
                                        (35) 

Therefore, if the system satisfies (34), the learning gains q1 
and q2 exist. The optimal q1 and q2 given by (30) can be 
readily obtained as follows, 

1 2
1 2

2
1 2

2
2

q q

q

α α

γ γ

+
= −

=
+

                                                                (36) 

This completes the proof.                                                       □                 

Remark 2: The proof also provides a method of choosing the 
learning gains q1 and q2. 

Remark 3: The existence condition (34) indicates that the 
effect of the state uncertainty must be smaller than that of the 
input to some degree. From (17), (34) is equivalent to 

1 1

2

2 1
α γ
α εβ

− <                                                                      (37) 

and from (2) to (4), let 

,max1

2 ,min

,max

1 ,min

T

T

u T

u T

α
µ

α

εβν
γ

= =

= =

x

x

f

f

Cf

Cf

                                                           (38) 

where µ and ν are regarded as evaluations of the uncertainty 
of  fx and Cfu, then (34) can be rewritten as, 

( 1) 2ν µ − <                                                                         (39) 
and the existence region of monotonically convergent input 
sequence is shown by Fig. 1. In general, if the system can be 
modelled accurately, such that the system uncertainty is small 
and can be located in the existence region, then a 
monotonically convergent input sequence can be found. 

 

Fig. 1. Existence region of monotonically convergent input  

5. SIMULATED EXAMPLE 

Let us consider an unknown nonlinear dynamic system, 
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2
1 1 1

2
2 2 2 2

1 2

1 2

0.1(cos 5 )

0.1(sin 5 )
3

(0) (0) 0
0.2 0.1

x x x u
ux x x

t
x x
y x x

= − + +

= − + +
+

= =
= −

                                         (40) 

Let the desired output be 
3(2 1) [0,1]dy t t= − ∈                                                     (41) 

 

Since the system is unknown, the following parameters are 
selected: α1 = -0.65, α2 = -0.35, β1 = 1, β2 = 1.06, γ1 = 0.15, γ2 
= 0.2, ε = 0.25, and G = 3.0286, p = 0.7047 and K = 2.0305.  
Clearly, (34) is satisfied, and hence there exists a set of q1, q2 
and m that ensures perfect tracking of the output. Since the 
system is unknown, m is set to 0.3208, then q1 and q2 to 
2.8571 and 5.7143 from (36). It is shown in Fig. 2 that the 
input sequence converges monotonically to the desired one 
and perfect output tracking can eventually be achieved. 

 

Fig. 2. ||∆ui||T and ||∆yi||T with q1 = 2.8571 and q2 = 5.7143. 

6. CONCLUSION 

Although ILC is effective to track repetitive trajectories for 
nonlinear systems, it requires i.i.c. for perfect tracking. 
However, for many practical systems i.i.c. is not achievable, 
as these systems are operating under the alignment initial 
condition without distinct starting and ending points. In this 
paper, ILC derived from contraction mapping with 
conditional learning is proposed for a class of nonlinear 
systems that has a unique steady-state response for an input. 
In this method, the updated input converges monotonically to 
the desired input, thus achieving perfect tracking of the 
desired output. The proposed ILC also avoids the practical 
difficulties of ILC derived based on the Lyapunov function. 
The sufficient condition for the monotonic convergence of 
the updated input is presented, and the corresponding settings 
of the input updating law are also derived. The performance 
of the proposed conditional learning ILC is illustrated by an 
example. 
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Appendix A. PROOF OF THEOREM 2 

First, the boundary of steady-state response is proven. From 
(17),  

*
*

ss ss ss

w u u u
= ∆ = −

= ∆ = −

z x x x                                                           (A1) 

And from (6) and (7), 
( , ) ( * , *)ss ss uu u w= − = +xz f x f x f z f                                  (A2) 

Then we have 
( )'

' ' '1
2 u

d
w

dt
= = +x

z z
z z z f z z f            (A3) 

Since z'z is a sinusoidal function, its derivative is also a 
sinusoidal function without constant term; consequently, the 
integral in (9) of the left hand side term in (A3) over a period 
T is zero, and then 

' '

0 0

1 1T T

udt wdt
T T

− =∫ ∫xz f z z f            (A4) 

Since following square inequality always holds for any 
positive constant a, 

2
' ' '1

2u u u
ww a
a

⎛ ⎞
≤ +⎜ ⎟

⎝ ⎠
z f z z f f                   (A5) 
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we have 
2

' ' '

0 0

1 1
2 2

T T

u u
a wdt dt

T T a
− − ≤∫ ∫xz f z z z f f          (A6) 

then 

( ) ( )

' 2 2
0

2 2 2
0

1

1 2 2

T

u T
T

dt
TG

a a a aw dt
T

β
α α

= ≤ ≤
− + − +

∫

∫

z z f
       (A7) 

It is clear that the right-hand-side term is minimized, i.e., 
reaching the infimum of G, when 

2a α= −                             (A8) 
and then 

2 2

u TG β
α α

≤ ≤
−

f
                          (A9) 

Equation (18) is proved as follows: 
( , ) ( , )tr ss tru u= − = xx f x f x f x                                           (A10) 

and 
( )'

' '2 2tr tr
tr tr tr tr

d

dt
= = x

x x
x x x f x                (A11) 

Since 
' ' '

min max( ) ( )tr tr tr tr tr trλ λ≤ ≤x x xf x x x f x f x x        (A12) 
then 

( )'
' '

min max2 ( ) 2 ( )tr tr
tr tr tr tr

d

dt
λ λ≤ ≤x x

x x
f x x f x x       (A13) 

Therefore 

( ) ( ) ( ) ( )2 22
1 222 2

0 exp 2 0 exp 2tr tr trα α≤ ≤x x x             (A14) 
and then 

( ) ( ) ( ) ( )1 222 2
0 exp 0 exptr tr trα α≤ ≤x x x            (A15) 

Equation (18) can now be obtained from (A15), and hence 
the proof is completed.                                                         □ 

Appendix B. PROOF OF THEOREM 3 

For the ith iteration, consider ui and u*I with u*i = ui-1, then  
, ,

, ,

* * *i tr i i ss

i tr i i ss

∆ = ∆ −∆

∆ = ∆ − ∆

x x x
x x x

                                                    (A16) 

Hence 

, , , ,* * *i tr i tr i i i ss i ssTT T T
∆ ≤ ∆ + ∆ − ∆ + ∆ − ∆x x x x x x (A17) 

From (18), 

, 2 1, 1,* exp( )i tr i tr i trT T T
T pα − −∆ ≤ ∆ = ∆x x x                 (A18) 

Now consider, 

10
* ( * ) ( )

t

i i i i u i iu u dτ−∆ − ∆ = ∆ − ∆ + −∫ xx x f x x f               (A19) 

Applying the Gronwall-Bellman lemma (Apartsyn, 2003), 
gives, 

( )
( )

10

1 10 0

1 10

1 1

1 1

1

* ( * ) ( )

*

*

exp

exp

t

i i i i u i iT
T

t t

i i i iT T

t

i i i iT T

i i T

i i T

i i T

u u d

d u u d

d t u u

t u u t

T T u u

K u u

τ

α τ β τ

α τ β

β α

β α

−

−

−

−

−

−

∆ − ∆ = ∆ − ∆ + −

≤ − ∆ − ∆ + −

≤ − ∆ − ∆ + −

≤ − −

≤ − −

= −

∫

∫ ∫
∫

xx x f x x f

x x

x x      (A20) 

From the result on the boundedness of the steady-state 
response in (17), it is obtained that 

, 1, 1( )i tr i tr i i TT T
p K G u u− −∆ ≤ ∆ + + −x x                     (A21) 

This completes the proof.                                                       □ 

Appendix C. PROOF OF THEOREM 4 

From (25) and (5), it follows from (26) that 

, (1 )i tr i TT
T

m y
m

∆ ≤ ∆
+

x
C

                                          (A22) 

This is equivalent to 

( ) ( ), ,

,

i i tr i i trT T TT T
i tr T

T T

m y g m y y∆ − ∆ ∆ − ∆
∆ ≤ ≤

x x
x

C C
       

(A23) 
Since 

, ,
,

i i tr i ssT T T
i ss T

T T

y y y∆ − ∆ ∆
≤ ≤ ∆x

C C
                           (A24) 

The result is obtained by substituting (A24) into (A23). This 
completes the proof.                                                              □ 
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