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Abstract: Model predictive control represents one of the most promising methods, also in fast industrial 
applications like a Diesel engine. But especially Diesel engine control meets problems of uncertainties and 
disturbances, thus model-plant mismatch is omnipresent, which obviously decreases the performance of 
model based control. This paper compares different robust predictive control strategies applied to a Diesel 
engine airpath. 

 

1. INTRODUCTION 

Pollutant emissions of engines are the effect of an imperfect 
combustion, in particular during transients, and can be 
reduced significantly by an aftertreatment system. In the case 
of Diesel engines, such a system has evolved from the simple 
oxidation catalyst to more complex structures, e.g. combining 
an oxidation catalyst, Diesel particulate filter (DPF) and 
selective catalytic reduction (SCR). 

Of course, it would be better to reduce the very production of 
pollutants in the combustion process, and improvement in 
this direction can be achieved both by acting on the quantity 
and delivery of the reactants – for instance by multiple 
injection (Boulouchos, et al., 2000) - as well as on the 
combustion conditions. Also the delivery of the mixture of 
fresh and recirculated combusted air to the combustion 
process has a paramount importance and has received much 
attention (see e.g. (Nieuwstadt, et al., 2000). As the control of 
the single components and condition of the gas mixture is 
hardly possible, intermediate variables are used, typically 
boost pressure and fresh air-mass flow, which traditionally 
have proven sufficiently representative of the composition of 
the combustion gas, at least during steady state operation. To 
improve the results, other references have been tested, as in 
(Stefanopoulou, et al., 2000) where burned gas fraction and 
air fuel ratio (AFR) have been used, in combination with 
different control strategies, or air-fuel ratio and EGR rate 
(Darlington, et al., 2006) or boost pressure and intake charge 
oxygen (Nakayama, et al., 2003). 

While the choice of the intermediate quantities plays a critical 
role, also the control structure has been found out to be a key 
factor. Besides the control approaches included in the papers 
quoted above, (Ortner and del Re, 2007) has shown that 
model predictive control (MPC) based on a multi-linear 
approximation can be used to successfully control the flow 
and boost pressure of Diesel engine thus leading to a 
reduction of emissions, while (Langthaler and del Re, 2007) 

have shown that MPC can be used also to control intake 
charge oxygen, thus allowing to some extent a combustion 
oriented control. Summarizing, MPC, in particular using 
models identified from measurements, seems a very 
promising technique for engine control. Up to now, MPC is 
possible only using linear models or very specific nonlinear 
ones. The approximation errors introduced by a linear or 
multi-linear representation add to the parameter uncertainties. 
All this implies that MPC must be designed taking explicitly 
in account the model uncertainty. 

In this paper different aspects for model-plant mismatches are 
discussed and a closer look at different predictive control 
concepts is performed, comparing the nominal MPC 
augmented with a mixed disturbance model, against robust 
model predictive control (RMPC) schemes at different plant 
simulations. 

2. THE PLANT AND ITS MODELLING 

2.1  The Plant 

In Fig. 1 a representation of the Diesel engine is shown. The 
variable geometry turbocharger (VGT) (with control control 
input uVGT and position xVGT) uses the thermal energy of 
exhaust gases and loads the combustion chamber with higher 
pressure pi than the ambient, one to allow injecting more fuel 
mass Wf without generating extensive smoke. This allows 
generating more torque M - or in different words – through 
this option it is possible to construct a smaller engine 
producing the same torque – so called “downsizing”. The 
second actuator of the airpath, the exhaust gas recirculation 
(EGR) valve (with input uEGR and position xEGR), controls the 
amount of recirculated emissions. Feeding back already 
combusted air Wxi decreases the amount of oxygen O2i and 
increases the thermal capacity of the combustion gases, 
lowering the combustion temperature and NOx formation. 
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Fig. 1. Scheme of a Diesel engine 
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measured MVM model  

Fig. 2. Validation of the Mean Value Model 

2.2  Mean Value Model 

The behaviour of an engine can be represented with different 
kinds of models, in particular in function of the crankshaft 
angle or of time. Mean value models (MVM) are the most 
popular modeling technique for airpath control and 
simulation, and are expressed in function of time. The 
parameters of such nonlinear physically motivated models are 
typically derived by production data, analysis of components 
or specific measurements.  

Often, steady state measurements are performed in a first step 
using optimization techniques to determine the parameters, 
for instance by nonlinear dynamic optimization via multiple 
shooting as in (Ferreau, et al., 2006b), where also the system 
equations are shown. A typical approximation quality is 
shown by the validation measurements of Fig. 2 tested on a 
standard FTP driving cycle. 

2.3  Databased Models 

Standard MPC relies on linear models (Bemporad et al. 2002) 
have proposed the so called explicit approach to allow hither 
sampling frequencies. Because of the offline calculation of 

the explicit MPC, an online linearization of the nonlinear 
model is not possible. So a linear identification in pre-defined 
different operating regions pL  has been used, therefore a 
grid of the plants operation region is made in the input space 
of w and u 

 
TT
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where the inputs EGRu  and VGTu  are expressed in %, while 
N  and fW  in rpm  and /mg st  disturbances: 
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In previous works (Langthaler and del Re, 2007) and (Ortner 
and del Re, 2007), the scheduling has been performed in the 
full engine space. In this paper only a representative area is 
selected (2), but the result could be extended easily to the full 
space. 

Using prediction error identification (Ljung, 1999) we obtain 
a model of the form 
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for every region pL . Fig. 3 shows a validation in region 1L  

of a model identified in 1L . The prediction model for MPC  
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can be simply derived through combination of the vectors u,x 
and y 
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and the system matrices  
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measured databased model
 

Fig. 3. Interpolation - Validation of databased model  

3. UNCERTAINTY SOURCES 

Fig. 4 shows an example of the plant model mismatches.  

Plant-(control) model mismatches can have very different 
causes. In the case of linear MPC, three main causes are 
especially important. 

3.1 Model Uncertainties 

The linear approximation of a nonlinear plant causes mainly 
bias in the model. Further, the limited amount of data, and the 
experiment design for identification itself causes some bias 
and variance error (Ljung, 1999). Those two errors already 
occur in a very limited region around the “nominal” 
identification point - Fig. 4. 

3.2 Scheduling Mismatch 

Due to the very large time scale differences usually some 
quantities like fuel mass and engine speed are included as 
measurable disturbance (Langthaler and del Re, 2007). 
Additionally those disturbances are used for model and 
respectively control selection. All the models are identified 
around equilibrium points, such that all states (pressures and 
temperatures) are in a specific range. These identified models 
are further used for control design. During the control 
process, the scheduler selects the MPC (based on the 
according model) belonging to the actual fuel/ speed point, 
even though the state of the model can evolve over the 
boundaries of this model over the prediction horizon. 

3.3 Unmodelled Disturbances 

The plant model does not map thermal changes of the engine 
nor its wearing process. Also the sub-control of the airpath 

does not consider different superposed ECU (input) strategies 
e.g. if a particulate filter is regenerated, which causes high 
temperature combustion.  
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Fig. 4.  Extrapolation - Validation of the databased model 

4. MODEL PREDICTIVE CONTROL STRATEGIES 

4.1 Nominal MPC with (mixed) disturbance Model (MD-
MPC) 

State of the art in offset-free MPC is the extension of the 
model with an augmented constant output disturbance which 
can reject the disturbance. But it is also possible to use 
formulations where the disturbance enters the plant in input, 
output, state or a combination mixed disturbance models. For 
all of those model types, properties for detectablity are given 
in (Muske and Badgwellb, 2002). An alternative disturbance 
modeling scheme is shown in (Pannocchia and Rawlings, 
2001) where a mixed model is used for input and output 
disturbance where the disturbance state is estimated via a 
standard Kalman filter using such an augmentation of the 
system and the prediction model (4) it is possible to minimize 
cost (7) under constraints  
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where 2(.) S  states the Euclidean-norm with weighting S and 
prediction horizon N. The low number of states and 
limitations allows the use an explicit expression of MPC 
(Bemporad, et al., 2002) so it is possible to determine 
piecewise affine control law ( )( ) ( ), ( 1), ( )u t F x t u t r t∆ = −  
which is calculated by the MPT toolbox (Kvasnica, et al., 
2004). Note that in (Ferreau, et al., 2006a) an online active 
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set strategy for QP is shown, which allows real-time solutions 
also on more complex QP problems.  

4.2 Robust Model Formulation 

Due to the identification at different regions pL , one derives 
a polytopic error description for different EGR, VGT and fuel 
settings for a certain region of speed 

 [ ] [ ]{ }1 1 2 2Co , ,... , N NA B A B A BΩ = ⎡ ⎤⎣ ⎦  (8) 

where Co defines the convex hull of the matrices p pA B⎡ ⎤⎣ ⎦ . 

For the applied control formulation applied in the next 
section,  (8) has to be replaced by the following formulation:  

 1t p t p t t t
p

t p t

x A x B u Ew w

y C x
+ = + + ∈⎧⎪Σ ⎨ =⎪⎩

W
 (9) 

where the nominal model is set to p=1. For a representation 
with additive disturbance, a simple estimation of the 
disturbance set W  has to be performed:  

The state update difference at time t can be written as  

 [ ] [ ]2 2 1 1
t t

t
t t

x x
w A B A B

u u
⎡ ⎤ ⎡ ⎤

= −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (10) 

Knowing the polytopes of input u ∈U  and states x ∈X the 
maximal achievable polytope for the disturbance 
w∈W where : t t tw w w≤ ≤W  can be calculated straight 

forward for all combinations ( ) ( ) ( ){ }1 2 1 3 1 4, , , , ,Σ Σ Σ Σ Σ Σ . 

In our case the maximal error input has been determined by 

[ ] [ ]250 30 , 250 30T T
t tw w= − = .  

4.3 Robust Open Loop MPC (OL-RMPC) 

It is possible to approximate the original min-max problem 

 1 1min max Q RU W
U

∆
+ ∆Y  (11) 

which minimizes the cost on the maximal disturbed plant by 
semi definite relaxation (Löfberg, 2003a) which yields to 
optimization problem (12) 
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with constraints, where 1(.) S  states the one-norm with 
weighting S and the prediction model: 

 |t tX x U W

Y X

= + ∆ +

=

A B E

C
 (13) 

This model is just an augmentation of (4) with the 
disturbance input W. The robust optimization problem (12) 
(Ben-Tal and Nemerovskii, 2002) is solved by the YALMIP 
toolbox (Löfberg, 2004) which offers a very comfortable 
environment and fast solver to derive the optimal solution. 

Simulation tests have shown that a shrinking of W (derived 
in section 4.2) is possible. So ,t tw w  have been set to 

[ ]/ 100 100 T+ − . 

4.4 Robust Closed Loop Approximation RMPC (CLA-RMPC) 

Löfberg suggests in (Löfberg, 2003b) an approximation 
approach to closed loop predictive control (called here CLA-
RMPC). Instead of using feedback predictions he suggests a 
parameterization which feeds back the disturbance with 
matrix α  

 U W Vα∆ = +  (14) 
the new plant description is 

 
( )|t tX x V W

Y X
U W V

α

α

= + + +

=
∆ = +

A B E B

C  (15) 

For details the reader is referred to  (Löfberg, 2003b). 

5. SIMULATION RESULTS 

The following simulation has been carried out on the MVM 
whereas all presented control schemes do not use measurable 
inputs of fuel and speed. The other settings can be found in 
table 1 where the MPCs have been tuned such that their 
responses are comparable despite different norms and 
prediction lengths. Three different cases shall point out the 
characteristics of the robust control schemes, where the 
nominal model is identified in 1L : 

Case 1 - step in fuel, constant fresh air-mass and boost 
pressure: this case does not represent a situation, an engineer 
would expect for a standard airpath control – because 
typically setpoints vary with fuel and speed. But this case 
shows the disturbance rejection of each controller type. The 
step in fuel moves the plant through polytopes 1 2 4, ...L L L . 

Case 2 - constant fuel and fresh air-mass, step in boost 
pressure: this experiment checks if the control is working 
near its nominal region correctly. Hereby the plant remains in 
polytopes 1L  and 2L .This case should show the transient 
behaviour near the nominal point of the plant. 

Case 3 - step in fuel, fresh air-mass, boost pressure: this step 
in fuel and reference values states the standard case where all 
variables change. 
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Table 1.  MPC Settings 

 MD-MPC OL-RMPC CLA-RMPC 
Horizon N 50 20 20 
Horizon Nc 2 2 2 
Weight. R diag(0.1,0.1) diag(0.3,0.3) diag(0.05,0.05) 
Weight. Q diag(10,20) diag(1, 1) diag(1, 1) 
Const. u yes yes yes 
Const. u∆   yes yes yes 

,t tw w   - -100,100 -100,100 
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Fig. 5.   Comparison of RMPC - step in fuel, constant fresh 
air-mass and boost pressure 

Fig. 5 shows the case of input disturbance. Remarkable is the 
moderate reaction of RMPCs compared to the MD-MPC at 
t=5 seconds. The MD-MPC fully closes the EGR producing a 
strong overshoot in Wci. The RMPCs cause no overshoot on 
the one hand, but produce (relatively small) offsets, on the 
other hand. Further the behaviour of CLA-RMPC seems to be 
little more conservative then of OL-RMPC. But every MPC 
control is able to fulfil its control task correctly. Tracking 
without disturbance in Fig. 6 is again performed well by all 
the controls. But this time – if the steady state offset of 
RMPC is neglected – the RMPC tracks about one second 
faster then the MD-MPC. Comparing MD-MPC and RMPCs 
are compute very similar trajectories but the MD-MPC 
generates a totally different EGR input at t=5s. 

In Fig. 7 the RMPCs show their best performance. They 
quickly stabilizing the plant without large overshoots, better 
then the MD-MPC (also with measured disturbance model). 
Hereby both RMPCs actuate very similar. 
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Fig. 6.  Comparison of RMPC - constant fuel and fresh air-
mass, step in boost pressure 

6. CONCLUSIONS 

It has been shown that different formulations of robust and 
robustified MPC can solve the problem of airpath control 
considering constraints in the inputs and rate limits. The 
solution under output constraints (which are relatively close 
to the references) causes infeasibility problems and cannot be 
tackled at least in the OL-RMPC. By its nature, the CLA-
RMPC formulation softens the feasibility problem a little, but 
has much higher complexity and so computational burden 
then the OL-RMPC (table 2).  

In this application the long prediction horizon conflicts with 
the feasibility of the optimization problem. On the other hand 
using less prediction steps and a larger sample time decreases 
the performance of the RMPC significantly. Additionally the 
long prediction horizon makes the transformation to a 
multiparametric problem (MP) of RMPC  (Bemporad, et al., 
2003) with the used methods hardly computable (number of 
critical regions in table 2). At this time, the computational 
time of the MD-MPC formulation, with measured 
disturbances, is significantly lower.   

One side effect of RMPC can be found by the fact that this 
kind of control is not offset free. In classical engine control 
strategies, often offsets to the reference values are allowed. 
This prevents from oscillations around reference values 
which would decrease the comfort of the vehicle. So, the 
RMPC technique represents a more sophisticated strategy to 
the standard engine control strategies which are tuned by 
application engineers.  
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Fig. 7.   Comparison of RMPC - step in fuel, fresh air-mass, 

boost pressure 

7. ACKNOWLEDGEMENTS 

This work was supported by the LCM Linz Center of 
Competence. The authors gratefully thank Daniel Alberer, 
Peter Ortner for very helpful discussions during this work 
and Joachim Ferreau and Moritz Diehl for the optimization of 
the mean value model.  

Table 2.  MPC Control Comparison 

 MD-MPC OL-RMPC CLA-RMPC 
offset free yes no no 
critical 
regions 

356 1803 (N=5) - 

tracking fast very fast very fast 
disturbance 
rejection 

fast fast  fast  

exec. time [s] 2e-4 0.3 1.97 
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