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Abstract: Fixed-order controller design for LTI-SISO polytopic systems is investigated using
rank deficiency constraint on the controller Sylvester resultant matrix. It is shown that
the non-convexity of fixed-order controller design problem can be contracted in a rank
deficiency constraint on Sylvester resultant matrix of the controller. Then, an improved convex
approximation of the rank deficiency constraint is used that leads to a convex fixed-order
controller design problem represented via LMIs. The effectiveness of the proposed method is
shown by applying it to an experimental system.

1. INTRODUCTION

Fixed-order controller design has been always a challeng-
ing problem for control engineers and has attracted many
recent researchers. The research is motivated by the real-
time implementation of systems with a very high sampling
rate, where the fast computation of the command is crucial
and also by many other practical applications, such as
embedded control systems for the space and aeronautics
industries, where the simplicity of the code and the hard-
ware are of great importance.

Several analytical solutions are available in the literature
(see e.g. Levine and Athans (1970)). However, the main
difficulty in these results is that they are not computation-
ally efficient. It means that there do not exist fast and re-
liable methods to compute optimal fixed order controllers.
The main problem stems from the fundamental algebraic
property that the stability domain in the space of poly-
nomial’s parameters is non-convex for polynomials with
order higher than two (Ackermann, 1993). This problem
can be formulated as Bilinear Matrix Inequality (BMI)
(Safonov et al., 1994) that has been shown to be generally
NP-hard (Toker and Ozbay, 1995). Several works have
been accomplished to solve the non-convex problem in
special cases. In Hol et al. (2003), a non-linear algorithm is
adopted which converges, under mild conditions, to a point
that satisfies only the first order necessary conditions of
optimality. Another way to solve the non-convex problem
is to gather all the non-convexity in a rank constraint
(Henrion et al., 1999; Gahinet and Apkarian, 1994). How-
ever, instead of solving the non-convex problem, many
designers prefer to solve a suboptimal convex problem such
as Wang and Chow (2000); Henrion et al. (2003); Shiau
and Tseng (2004); Khatibi et al. (2007), where Strictly
Positive Realness (SPRness) is used as a key point to
develop an inner convex approximation of the non-convex
set of the parameters of all stabilizing controllers.
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The problem of fixed-order controller design becomes more
complicated when a fixed-order controller should stabilize
a model with the structured parametric uncertainty. In
Henrion et al. (2003), a fixed-order stabilizing controller
for a polytopic system is parameterized via LMIs that
originate from the positivity in polynomials, based on
fixing a so-called central polynomial. The same approach
is followed by Khatibi et al. (2007), where robust regional
pole-placement is performed by a proper choice of the
central polynomial. However, the mentioned approaches
suffer from the conservatism imposed by fixing the central
polynomial and thus if the proposed optimization problem
becomes infeasible, it is not possible to conclude that
there does not exist a stabilizing controller of the desired
order for the uncertain system. From another point of
view, in these approaches, a convex inner approximation of
the non-convex set of all fixed-order stabilizing controllers
is developed, which have some conservatism. In Karimi
et al. (2007), a convex set of all stabilizing controllers of
a polytopic system is given over an infinite-dimensional
space. A finite-dimensional approximation of this set is
obtained using the orthonormal basis functions and rep-
resented by a set of LMIs thanks to the KYP lemma.
Moreover, an LMI based convex optimization problem for
robust pole placement with sensitivity function shaping in
two- and infinity-norm is proposed. In this approach the
conservatism is reduced by increasing the controller order.

In this paper a new constraint is added to this optimization
problem in order to obtain a low-order controller. This
constraint is a rank deficiency constraint on Sylvester
resultant matrix of the numerator and denominator of
the controller. Since this constraint is not convex, some
convex approximations based on trace minimization are
introduced and compared.

Rank minimization is a challenging issue in control engi-
neering. Although it has been shown that many control
problems can be reduced to a rank minimization problem
(see Mesbahi and Papavassilopoulos (1997) and the refer-
ences therein), the existing convexified rank minimization
methods are more heuristic than rigorous and hence, not so
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efficient. However, in this paper, the problem is formulated
such that a matrix should be just rank-deficient and there
is no need to minimize the rank of a matrix. To form
a convex problem, the approximation proposed by Fazel
et al. (2003) is used and its efficiency is improved by using
a weighted trace function instead of the regular one.

The paper is organized as follows : The preliminaries and
problem formulation are introduced in Section 2. Main
results of the paper are found in Section 3. Section 4 shows
the efficiency of the proposed methods by applying it to
an experimental system. Concluding remarks are given in
Section 5.

2. PRELIMINARIES

The goal is to convexly parameterize fixed-order stabilizing
controllers for a system with polytopic uncertainty. In
Karimi et al. (2007) the authors give a convex parameter-
ization of all stabilizing controllers for a polytopic system.
The proposed parameterization can be used for fixed-order
controller design. However, it needs to fix a polynomial
to preserve the convexity, which brings conservatism (see
Khatibi et al. (2007) and Henrion et al. (2003) for further
details). In this paper, the same approach is followed and
thus, the result of Karimi et al. (2007) is briefly recalled.

Consider a SISO LTI plant represented by a finite order
rational transfer function G in discrete- or in continuous-
time. Assume that N and M are the coprime factors of G
such that

G = NM−1, N, M ∈ RH∞ (1)

where RH∞ is the set of proper stable rational trans-
fer functions with bounded infinity norm. It is shown in
Karimi et al. (2007) that the set of all stabilizing con-
trollers is given by :

K : {K = XY −1 |MY + NX ∈ S} (2)

where X, Y ∈ RH∞ and S is the convex set of all Strictly
Positive Real (SPR) transfer functions. As mentioned
before, to design a fixed-order controller, the denominator
of MY + NX is fixed and called central polynomial. It is
clear that by choosing a central polynomial, the convex
feasibility set of (2) would be an interior approximation
of the non-convex set of all stabilizing controllers of
the desired order. An unsuitable choice of the central
polynomial may cause a null feasibility set for a polytopic
system. This conservatism is removed in Karimi et al.
(2007) by letting the order of X and Y be increased. By
increasing the order of X and Y , not only some stabilizing
controllers of this new order are included in the feasible set
of the problem, but also more controllers of lower orders
enter in the feasible set. This can be explained as follows.
Suppose there exists an m-th order stabilizing controller
K = X0Y

−1

0 , where MY0 + NX0 /∈ S. This means that
such a controller is not a feasible point of (2) if the order of
X and Y is fixed to m. However, it can be proved that there
always exists a biproper m0-th order multiplier F ∈ RH∞

such that MY +NX ∈ S, where X = X0F and Y = Y0F .
This means that the m-th order controller is inside the
feasible set of (2) with a (m + m0)-th order controller
that has m0 zero-pole cancellation. This way, by increasing
the order of X and Y the feasible set of (2) covers all
stabilizing controllers. The advantage of this method is

that it can be easily applied to polytopic and multimodel
systems because by contrast to Youla parameterization,
the controller parameterization does not depend on the
system parameters.

Consider a polytopic system with q vertices such that the
i-th vertex constitutes the parameters of the model Gi =
NiM

−1

i where Ni and Mi ∈ RH∞ are the coprime factors
of Gi. The aim is to parameterize all stabilizing controllers
for this polytopic system. The controller parameterization
is given by :

K : {K = XY −1 |MiY + NiX ∈ S, i = 1, . . . , q} (3)

where X, Y ∈ RH∞. Furthermore, a complete design
problem for a polytopic system with sensitivity loop-
shaping as proposed in Karimi et al. (2007), can be stated
as follows :

Minimize max
i

γi

Subject to:

MiY + NiX ∈ S for i = 1, . . . , q
‖MiY + NiX − 1‖∞ < γi for i = 1, . . . , q
‖W1MiY ‖ < 1 − γi for i = 1, . . . , q

(4)

where W1 is a weighting filter. A solution to the
above problem guarantees the closed-loop stability with
a weighted infinity-norm less than 1 for the sensitivity
functions of all models in the polytopic system. The disad-
vantage of this method is that it may result in a high-order
controller. As a result, the objective of this paper is to
introduce a new constraint to force the solver to find non-
coprime X and Y to decrease the order of the resulting
controller.

3. REDUCED-ORDER CONTROLLER DESIGN

As mentioned in the above section, to cope with the
non-convexity of the set of parameters of all stabilizing
controllers, the order of the controller is relaxed. Thus, a
low-order controller can be obtained only if a set of convex
constraint and convex cost function forces the solver to
find a controller that has a desired number of zero-pole
cancellation.

3.1 Sylvester resultant

It is shown that the number of common roots between two
m-th order polynomials x and y is the same as the number
of rank deficiency of their first Sylvester resultant matrix
(Chen, 1999). Let the k-th Sylvester resultant matrix Sk

be defined as follows :

Sk =


















1 xm
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. . . xm−1

. . .
...

. . . 1
...

. . . xm
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. . . ym−1 x1
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y0

. . .
... x0

. . .
...

. . . y1

. . . x1

y0 x0


















︸ ︷︷ ︸ ︸ ︷︷ ︸

m − (k − 1) m − (k − 1)

(5)

where 1 ≤ k ≤ m. Suppose that x and y are the
polynomials of the numerator and the denominator of
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the controller such that K = XY −1 = x/y. Taking into
account the structure of Sk, it is very obvious that the
rank deficiency of S1 is strongly related to that of Sk,
such that Rank(S1) ≤ 2m − k if and only if Sk is not full
rank (see Rupperecht (1999) and Kaltofen et al. (2005)
(Th. 2.3)). Therefore, to force a controller of order m,
to have k zero-pole cancellation, the rank of matrix S1

should be 2m − k, which in turn means that Sk should
be rank-deficient. Rank constraints are non-convex and an
optimization containing such constraints has been shown
to be NP-hard (Vandenberghe and Boyd, 1996; Recht
et al., 2007). However, instead of rank minimization, we
need only the Sk to be rank-deficient. The rank deficiency
of Sk can be easily represented via a bilinear matrix
equality (BME). Defining s1

k as the first column of Sk and

Ŝk such that Sk = [s1
k Ŝk], the k-th Sylvester resultant

matrix Sk is rank-deficient if and only if there exists a
vector u, such that Ŝku = s1

k. Therefore, the following
feasibility problem parameterizes all fixed-order stabilizing
controllers of order (m − k) :

{
MiY + NiX ∈ S for i = 1, . . . , q

Ŝku = s1
k

(6)

where, x, y and u are the variables. The complete design
problem by appending 6 to 4 will be referred to as BME
problem. Obviously, the equality constraint is not convex,
due to the multiplication of the variables in the left hand
side. Thus, we need to find a convex approximation of
this constraint to be able to solve it with efficient convex
solvers.

3.2 Convex approximation of rank deficiency

There are very few results in convexification of the rank
constraints in the literature. A well-known cost function to
minimize the rank of a square positive semi-definite matrix
is its trace, which is linear w.r.t. the matrix elements and
is equal to the ℓ1-norm of the vector of its eigenvalues. It
is quite obvious that to force a vector to become sparse,
minimizing its ℓ1-norm is the best, compared to the other
ℓp-norms. Fazel et al. (2003) have used this cost function to
minimize the rank of a matrix. Fortunately, we need just to
make a matrix rank-deficient and there is no need to really
minimize its rank. However, the related matrix, Sk is not
a symmetric positive semi-definite matrix. Thus, ST

k Sk is
an appropriate candidate, which is a symmetric positive
semi-definite matrix and its rank is the same as the rank
of Sk (Haddad and Bernstein, 1990). The trace of ST

k Sk,
which is the ℓ1-norm of its eigenvalues, is proportional to
the ℓ2-norm of the controller parameters, i.e.

trace(ST
k Sk) = (m − k + 1)



1 +

m∑

i=0

x2
i +

m∑

j=1

y2
j





where xi and yi are the parameters of the denominator
and the numerator of the controller, respectively. This
quadratic cost function is a convex function and can be
minimized to force zero-pole cancellation in the controller.
To append this cost function to (4), for a rather high
order controller, we run the optimization problem (4)
and find the optimal γopt and then, fix a γ0 such that
γopt ≤ γ0 < 1, to have a larger feasible set. Then, the
following optimization problem is used :

Minimize





m∑

i=0

x2
i +

m∑

j=1

y2
j





Subject to:

MiY + NiX ∈ S for i = 1, . . . , q
‖MiY + NiX − 1‖∞ < γ0 for i = 1, . . . , q
‖W1MiY ‖ < 1 − γ0 for i = 1, . . . , q

(7)

This problem will be referred to as Direct problem, because
it minimizes the trace of ST

k Sk directly.

Remark : In Direct method (7), k does not have any
role, because the trace of ST

k Sk and ST
1 S1 are the same up

to a fixed multiplier. Therefore, there is no control on the
number of zero-pole cancellation in the controller.

The quadratic cost function can be converted to a linear
cost function using the following lemma (Fazel et al.,
2003) :

Lemma 1. Rank Sk ≤ l if and only if there exists sym-
metric matrices U and V such that

Rank U + Rank V ≤ 2l,

[
U Sk

ST
k V

]

≥ 0 (8)

Thus, by moving U and V towards rank deficiency, i.e. by
decreasing their trace, Sk also will become rank-deficient.
The advantage of minimizing the trace(U) + trace(V )
rather than trace(ST

k Sk) is that the resulting cost-function
is linear w.r.t. the variables, which means that the opti-
mization problem becomes an SDP and can be solved more
reliably via existing solvers such as SeDuMi (Sturm, 1999).
Furthermore, in contrast to Direct method, the desired
number of zero-pole cancellation in the controller, i.e. k,
enters in the problem. The complete optimization problem,
using this result will be referred to as Embedded problem :

Minimize trace(U) + trace(V )

Subject to:

MiY + NiX ∈ S for i = 1, . . . , q
‖MiY + NiX − 1‖∞ < γi for i = 1, . . . , q
‖W1MiY ‖ < 1 − γi for i = 1, . . . , q
[

U ST
k

Sk V

]

≥ 0

(9)

Remark : A positive semi-definite matrix with a small
trace is not necessarily rank-deficient or even near to
it. The condition number, which is equal to the ratio of
its maximum to minimum singular value is an index of
the rank deficiency of a matrix. On the other hand, the
trace of a hermitian positive semi-definite matrix is not
only equal to ℓ1 norm of the vector of its eigenvalues,
but also is equal to ℓ1 norm of its diagonals. Obviously,
in a hermitian positive semi-definite matrix, if a diago-
nal becomes zero, certainly an eigenvalue becomes zero.
However, the inverse is not true, which means a zero
eigenvalue does not mean that a diagonal has become
zero necessarily. Thus, one way to produce zero eigen-
values, i.e. to have a rank-deficient matrix, is to try to
have a sparse vector of diagonals. One way to accomplish
such a task is to modify the cost function of (9) from

trace(U)+trace(V ) =
∑2m−k+1

i=1
U(i, i)+

∑2m−k+1

i=1
V (i, i)

to
∑2m−k+1

i=1
wiU(i, i) +

∑2m−k+1

i=1
wiV (i, i), where w is a

positive scalar. Simulation results show that using this
weighted cost function better rank deficiency can be ob-
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Fig. 1. Roots of polynomials a and b with BME method.

tained. This method will be referred to as Weighted-
Embedded.

3.3 Example

In the following example, the effectiveness of the rank-
deficient constraint on Sylvester resultant matrix of two
polynomials is examined via different convex approxima-
tions of the rank minimization problem.

Consider two ninth-order polynomials a and b with some
unknown parameters. The goal is to see if it is possible to
force them to have a desired number of common roots by
means of the rank-deficient constraint on their Sylvester
resultant matrix. Let [1 a1 1.6 a2 0.5 a3 a4 a5 a6] and
[1 2 b1 1 b2 0.5 b3 0.3 b4] be the parameter vectors of the
polynomials a and b, respectively, where ai and bi are the
optimization variables. The objective is to make the fourth
Sylvester resultant matrix of a and b rank-deficient, which
means that they should have four common roots. Table
(1) shows the condition number of the Sylvester matrix
for different methods and also the computational effort of
each method. The distances between the common roots of
polynomials a and b with BME method is of order 1e− 12
whereas for Weighted-Embedded method the distances are
8.6e− 4 and 5.0e− 3. For Embedded method there is only
one pair of common roots with distance of 3.8e− 3 and in
Direct method there is only one common root related to
the case where a6 = b4 = 0.

The root map of two polynomials is shown in Fig. 1,
in Fig. 2 and in Fig. 3, respectively for BME, Embed-
ded and Weighted-Embedded methods. It is obvious that
Weighted-Embedded method works better than Embed-
ded method. The chosen weight in this example is w = 0.5.
Moreover, the computational time in this simple problem
is very short, thus the number of Linsearch steps is chosen
in order to compare the computational effort. Table (1)
shows that the convex approximations need much less
computational effort than the non-convex BME method.

4. EXPERIMENTAL RESULTS

Consider the problem of controller design for the Flexible
joint system made by Quanser. The module consists of a
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Fig. 2. Roots of polynomials a and b with Embedded
method.
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Fig. 3. Roots of polynomials a and b with Weighted-
Embedded method.

Table 1. Comparison of the different rank min-
imization methods

Method BME Direct Emb WEmb

Condition number 1.3e6 5.6 38 79

Linsearch steps 471 46 61 99

thin stainless steel link instrumented with a strain gage
to measure the arm deflection. The module is designed
to accentuate the effects of flexible links in robot control
systems. Such flexibility is common in lightweight robots
designed for space applications. To produce a system with
huge uncertainty, the system is modified by adding small
magnets of 24 grams to the end or to the center of the arm.
The resulting system is modeled by the following transfer
functions :
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Table 2. Comparison of the different rank min-
imization methods

Method BME Direct Emb WEmb

Condition number 1.9e5 1.7e3 1.8e3 3.3e3

Computation time (s) 1294 3.31 3.76 4.26

G1 =
−0.012z4 + 0.0166z3 + 0.0002z2 + 0.0003z + 0.0104

z5 − 1.537z4 + 0.5z3 − 0.503z2 + 1.026z − 0.4856

G2 =
−0.0115z4 + 0.0225z3 − 0.007z2 − 0.0096z + 0.0117

z5 − 2.21z4 + 2.042z3 − 1.952z2 + 1.762z − 0.6407

G3 =
−0.0145z4 + 0.025z3 − 0.0076z2 − 0.0096z + 0.0109

z5 − 2.286z4 + 2.258z3 − 2.176z2 + 1.817z − 0.6129

G4 =
−0.0146z4 + 0.0203z3 − 0.0034z2 − 0.0089z + 0.017

z5 − 2.614z4 + 3.32z3 − 3.094z2 + 1.926z − 0.5381

which are respectively related to the system without an
extra mass, a mass of 24 grams added to the end of the
arm, two masses of 24 grams added to the end of the arm
and two masses of 24 grams added to the center of the arm.
The system is used in position control mode and thus, all
systems contain an integrator. The goal is to design a 5th
order controller, such that the output sensitivity function
does not exceed 6 dB. The desired closed-loop dominant
poles are chosen at 0.824 ± 0.076j, which corresponds to
the natural frequency of the slowest system with a larger
damping factor. The central polynomial is chosen to have
the desired closed-loop characteristic poles and the rest of
its roots are arbitrarily located on the origin. In order to
control the maximum value of the sensitivity function, a
constant weighting filter W1 = 0.0625 is considered. The
optimization program (4) is run for a 5th order controller.
The optimal value of γ is 0.8042 and the resulting sensi-
tivity transfer function has an undesirable peak of 12 dB.
In the next step, the controller order is increased to 10
to cover more 5th order controllers. The optimal γ for a
10th order controller is γopt = 0.7778 and hence, γ0 is
chosen to be γ0 = 0.87 in order to have a larger feasibility
set. Now, the goal is to find a 10th order controller that
can be simplified to a 5th order one. Thus, the order of the
controller is selected to be 10 with k = 5, which means that
the resulting controller is forced to have 5 zero-pole cancel-
lation. Table (2) compares the result of different methods.
It is obvious that the BME method works better than its
convex approximations, while the solver time is also in-
creased significantly. The optimizations have been done in
MATLAB, using YALMIP (Löfberg, 2004) with SeDuMi
(Sturm, 1999) for convex ones and PENBMI (Kocvara and
Stingl, 2006) for the bilinear one. Fig. 4 shows the zero-pole
map of the resulting 10th order controller of Weighted-
Embedded method. Five zero-pole cancellations on the left
semi-circle are clearly observed and the resulting 5th order
controller is :

K =
−2.236z

5 + 19.12z
4
− 42.39z

3 + 44.67z
2
− 24.74z + 5.955

z5
− 1.355z4 + 0.9816z3

− 0.2951z2
− 0.02473z + 0.04834

The magnitude Bode diagram of the output sensitivity
transfer functions of the four models with this controller
are shown in Fig. 5, both for the resulting 10th order
controller and for the simplified 5th order one. It is obvious
that the peak value is less than 5 dB. Furthermore, it
should be mentioned that the closed-loop systems with
the simplified controller are absolutely stable. The Nyquist
diagrams of MiY + NiX are shown in Fig. 6. Evidently,
the simplified 5th order controller is not a feasible point of
the SPRness constraint of (4). This figure illustrates the
capability of the proposed method by showing that there
exists a 5th order controller which is not in the feasible
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Fig. 4. Pole-zero map of the resulting 10th order controller
of Weighted-Embedded method.
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Fig. 5. Magnitude Bode diagram of the output sensitivity
transfer functions of the four models with the 10th
order controller (solid) and with the simplified con-
troller of order 5 (dashed). The 10th order controller
is the result of Weighted-Embedded method.

set of (4) because of the conservatism imposed by fixing a
central polynomial, whereas it is in the feasible set of the
same problem, when the order is increased to 10.

5. CONCLUSION

A fixed-order controller design method based on an
infinite-dimensional convex parameterization of all sta-
bilizing controllers is given. Rank deficiency constraint
on the k-th Sylvester resultant matrix of the numerator
and the denominator of the controller is the key point
to obtain the fixed-order controller. Using several convex
approximations of the rank constraint, in addition to a
recently proposed convex method of controller design for
polytopic systems, a low-order controller can be obtained.
The whole problem is formulated as an LMI optimization
problem with a linear cost function.
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Fig. 6. Nyquist diagrams of MiY +NiX for all four models,
with the 10th order controller (dotted) and also with
the 5th order simplified one (dashed). The controller
is the result of Weighted-Embedded method.

The difference between the proposed method and the regu-
lar a posteriori controller order reductions is as follows. In
the first step of a regular a posteriori order reduction, an
optimal controller of high-order is obtained. Then, using
an order reduction technique, the high-order controller is
reduced to a low-order one. This new controller not only
is not optimal but also, might not be even stabilizing.
However, in the approach proposed in this paper, the
optimization problem is forced to result in a controller
with zero-pole cancellation. This method is applied to
an experimental system, showing the effectiveness of the
proposed approach.
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