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Abstract: A multi-period repetitive control system is a type of servomechanism for a periodic
reference input. Even if a plant does not include time-delay, the transfer function from the
periodic reference input to the output and that from the disturbance to the output of the
multi-period repetitive control system generally have an infinite number of poles. In order to
specify the input-output characteristic and the disturbance attenuation characteristic easily,
Yamada et al. propose the concept of simple multi-period repetitive control systems such that
the controller works as a stabilizing multi-period repetitive controller and the transfer function
from the periodic reference input to the output and that from the disturbance to the output
have a finite number of poles. However, the method by Yamada et al. cannot apply for the plant
with uncertainty. The purpose of this paper is to propose the concept of robust stabilizing
simple multi-period repetitive controllers for the plant with uncertainty and to clarify the
parametrization of all robust stabilizing simple multi-period repetitive controllers.

Keywords: periodic signal, multi-period repetitive controller, finite number of poles,
parametrization

1. INTRODUCTION

In this paper, we investigate a problem to seek all robust
stabilizing simple multi-period repetitive controllers for
a plant with uncertainty. A repetitive control system is
a type of servomechanism for a periodic reference in-
put for the periodic signal without steady state error
(Inoue et al., 1981; Omata et al., 1987; Watanabe and
Yamatari, 1986; Hara et al., 1988; Yamamoto and Hara,
1988; Nakano et al., 1989; Ikeda and Takano, 1990; Ya-
mamoto and Hara, 1992; Yamamoto, 1993; Katoh and Fu-
nahashi, 1996; Weiss, 1997). That is, the repetitive control
system follows the periodic reference input without steady
state error, even if there exists a periodic disturbance
or the plant has uncertainty (Inoue et al., 1981; Omata
et al., 1987; Watanabe and Yamatari, 1986; Hara et
al., 1988; Yamamoto and Hara, 1988; Nakano et al., 1989;
Ikeda and Takano, 1990; Yamamoto and Hara, 1992; Ya-
mamoto, 1993; Katoh and Funahashi, 1996; Weiss, 1997).
The repetitive control system was proposed for ‘high ac-
curacy control for magnet power supply of proton syn-
chrotron in recurrent operation’ (Inoue et al., 1981). Var-
ious papers on the repetitive control have been studied
(Inoue et al., 1981; Omata et al., 1987; Watanabe and
Yamatari, 1986; Hara et al., 1988; Yamamoto and Hara,
1988; Nakano et al., 1989; Ikeda and Takano, 1990; Ya-
mamoto and Hara, 1992; Yamamoto, 1993; Katoh and
Funahashi, 1996; Weiss, 1997).

On the other hand, there exists important control problem
to find all stabilizing controllers named the parameteriza-
tion problem (Youla et al., 1976; Kucera, 1979; Glaria and
Goodwin, 1994; Vidyasagar, 1985). First, the parametriza-
tion of all stabilizing modified repetitive controllers that
follow the periodic reference input with small steady state

error even if there exists a periodic disturbance or the
uncertainty of the plant was studied by (Hara and Ya-
mamoto, 1986). In (Hara and Yamamoto, 1986), since
the stability sufficient condition of repetitive control sys-
tem is decided as H∞ norm problem, the parametriza-
tion for repetitive control system is given by resolving
into the interpolation problem of Nevanlinna-Pick. Ka-
toh and Funahashi gave the parametrization of all sta-
bilizing repetitive controllers for minimum phase systems
by solving exactly Bezout equation (Katoh and Funa-
hashi, 1996). However, Katoh and Funahashi (Katoh and
Funahashi, 1996) assumed the plant is asymptotically
stable. This implies that they gave the parametrization
of all causal repetitive controllers for an asymptotically
stable and minimum phase plant. That is, they do not give
the explicit parametrization for minimum phase systems
(Katoh and Funahashi, 1996). In addition, in (Katoh and
Funahashi, 1996) it is assumed that the relative degree
of low-pass filter in the repetitive compensator is equal
to that of the plant. Extending the results in (Katoh
and Funahashi, 1996), Yamada and Okuyama gave the
parametrization of all stabilizing repetitive controllers for
minimum phase systems (Yamada and Okuyama, 2000).
Yamada et al. gave the parametrization of all stabilizing
repetitive controllers for the certain class of non-minimum
phase systems (Yamada et al., 2002a). They obtained the
parametrization of all repetitive controllers using fusion
of the parallel compensation technique and the solution
of Bezout equation. However, they gave the parametriza-
tion of all repetitive controllers for limited class of non-
minimum phase systems. Yamada et al. gave the com-
plete parametrization of all stabilizing modified repetitive
controllers for non-minimum phase single-input/single-
output systems (Yamada et al., 2002b). They obtained the
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parametrization of all repetitive controllers using fusion
of the parallel compensation technique and the solution
of Bezout equation. However, they gave the parametriza-
tion of all repetitive controllers for limited class of non-
minimum phase systems. Yamada et al. gave the com-
plete parametrization of all stabilizing modified repetitive
controllers for non-minimum phase single-input/single-
output systems (Yamada et al., 2002b). In this way, the
parametrization of all stabilizing modified repetitive con-
trollers has been considered.

However the modified repetitive controllers has bad distur-
bance attenuation characteristic (Gotou et al., 1987). In
order to improve the disturbance attenuation characteris-
tic of the modified repetitive controllers, the multi-period
repetitive controllers was proposed by (Gotou et al., 1987).
The parametrization of all stabilizing multi-period repet-
itive controllers for non-minimum phase systems, which
is used to improve the disturbance attenuation charac-
teristics of the modified repetitive controller, was solved
in (Yamada et al., 2004). Since the method in (Yamada
et al., 2004) cannot apply for the plant with uncertainty,
Satoh, Yamada and Mei proposed the parametrization of
all robust stabilizing multi-period repetitive controllers for
the plant with uncertainty (Satoh et al., 2006). However,
using the method in (Satoh et al., 2006), the transfer func-
tion from the periodic reference input to the output and
that from the disturbance to the output have an infinite
number of poles, even if the uncertainty does not exist.
When the transfer function from the periodic reference
input to the output and that from the disturbance to
the output have an infinite number of poles, it is difficult
to specify the input-output characteristic and the distur-
bance attenuation characteristic. From the practical point
of view, it is desirable that the input-output characteristic
and the disturbance attenuation characteristic are easily
specified. In order to specify the input-output character-
istic and the disturbance attenuation characteristic easily,
the transfer function from the periodic reference input to
the output and that from the disturbance to the output
are desirable to have a finite number of poles.

In this paper, we propose the concept of robust stabilizing
simple multi-period repetitive controllers for the plant
with uncertainty and clarify the parametrization of all
robust stabilizing simple multi-period repetitive control
systems such that the controller works as a robust sta-
bilizing multi-period repetitive controller and the transfer
function from the periodic reference input to the output
and that from the disturbance to the output have a finite
number of poles.

Notation
R the set of real numbers.
R+ R ∪ {∞}.
R(s) the set of real rational function with s.
RH∞ the set of stable proper real rational

functions.
H∞ the set of stable causal functions.
D⊥ orthogonal complement of D, i.e.,[

D D⊥ ]
or

[
D

D⊥

]
is unitary.

AT transpose of A.

A† pseudo inverse of A.
ρ({·}) spectral radius of {·}.
‖{·}‖∞ H∞ norm of {·}.[

A B
C D

]
represents the state space description
C(sI − A)−1B + D.

2. PROBLEM FORMULATION

Consider the unity feedback system in{
y = G(s)u + d
u = C(s)(r − y) , (1)

where G(s) ∈ R(s) is the plant, C(s) is the controller,
u ∈ R is the control input, d ∈ R is the disturbance,
y ∈ R is the output and r ∈ R is the periodic reference
input with period T satisfying

r(t + T ) = r(t) (∀t ≥ 0). (2)

The nominal plant of G(s) is denoted by Gm(s) ∈ R(s).
Both G(s) and Gm(s) are assumed to have no zero or pole
on the imaginary axis. In addition, it is assumed that the
number of poles of G(s) in the closed right half plane is
equal to that of Gm(s). The relation between the plant
G(s) and the nominal plant Gm(s) is written as

G(s) = Gm(s)(1 + ∆(s)). (3)

The set of ∆(s) is all rational functions satisfying

|∆(jω)| < |WT (jω)| (∀ω ∈ R+), (4)

where WT (s) is an asymptotically stable rational function.

The robust stability condition for the plant G(s) with
uncertainty ∆(s) satisfying (4) is given by

‖T (s)WT (s)‖∞ < 1, (5)

where T (s) is the complementary sensitivity function given
by

T (s) =
Gm(s)C(s)

1 + Gm(s)C(s)
. (6)

According to (Gotou et al., 1987), the multi-period repet-
itive controller C(s) in (1) is written by the form in

C(s) = C0(s) +

N∑
i=1

Ci(s)e−sTi

1 −
N∑

i=1

qi(s)e−sTi

, (7)

where N is arbitrary positive integer, C0(s) ∈ R(s),
Ci(s) �= 0 ∈ R(s)(i = 1, . . . , N), qi(s) ∈ R(s)(i =
1, . . . , N) are low-pass filter satisfying

∑N
i=1 qi(0) = 1 and

Ti ∈ R(i = 1, . . . , N).

Using the modified repetitive controller C(s) in (7), the
transfer function from the periodic reference input r to the
output y and that from the disturbance d to the output y
in (1) are written as
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y

r
=

C(s)G(s)
1 + C(s)G(s)

=

{
C0(s)Gm(s) (1 + ∆(s)) −

N∑
i=1

(C0(s)qi(s)

−Ci(s)) e−sTiGm(s) (1 + ∆(s))
}

[1+

C0(s)Gm(s) (1 + ∆(s)) −
N∑

i=1

[qi(s) {1+

C0(s)Gm(s) (1 + ∆(s))} − Ci(s)Gm(s)

(1 + ∆(s))] e−sTi
]−1

(8)
and

y

d
=

1
1 + C(s)G(s)

=

{
1 −

N∑
i=1

qi(s)e−sTi

}
[1 + C0(s)Gm(s)

(1 + ∆(s)) −
N∑

i=1

[qi(s) {1 + C0(s)Gm(s)

(1 + ∆(s))} − Ci(s)Gm(s)

(1 + ∆(s))] e−sTi
]−1

, (9)
respectively. Generally, the transfer function from the peri-
odic reference input r to the output y in (8) and that from
the disturbance d to the output y in (9) have an infinite
number of poles, even if ∆(s) = 0. When the transfer
function from the periodic reference input r to the output
y and that from the disturbance d to the output y have
an infinite number of poles, it is difficult to specify the
input-output characteristic and the disturbance attenua-
tion characteristic. From the practical point of view, it
is desirable that the input-output characteristic and the
disturbance attenuation characteristic are easily specified.
In order to specify the input-output characteristic and the
disturbance attenuation characteristic easily, the transfer
function from the periodic reference input r to the output
y and that from the disturbance d to the output y are
desirable to have a finite number of poles.

From above practical requirement, we clarify the parametriza-
tion of all robust stabilizing simple multi-period repetitive
controllers defined as follows:
Definition 1. (robust stabilizing simple multi-period repet-
itive controller)
We call the controller C(s) the robust stabilizing simple
multi-period repetitive controller, if following expressions
hold true:

(1) The controller C(s) works as a multi-period repetitive
controller. That is, the controller C(s) is written by
(7), where C0(s) ∈ R(s), Ci(s) �= 0 ∈ R(s)(i =
1, . . . , N) and qi(s) ∈ R(s)(i = 1, . . . , N) satisfies∑N

i=1 qi(0) = 1.
(2) When ∆(s) = 0, the controller C(s) makes the

transfer function from the periodic reference input r
to the output y in (1) and that from the disturbance
d to the output y in (1) have a finite number of poles.

(3) The controller C(s) satisfies the robust stability con-
dition in (5).

3. THE PARAMETRIZATION OF ALL ROBUST
STABILIZING SIMPLE MULTI-PERIOD

REPETITIVE CONTROLLERS

In this section, we give the parametrization of all robust
stabilizing simple multi-period repetitive controllers de-
fined in Definition 1.

In order to obtain the parametrization of all robust stabi-
lizing simple multi-period repetitive controllers, we must
see that the robust stabilizing controllers hold (5). The
problem of obtaining the controller C(s), which is not
necessarily a multi-period repetitive controller, satisfying
(5) is equivalent to the following H∞ problem. In order
to obtain the controller C(s) satisfying (5), we consider
the control system shown in Fig. 1. P (s) is selected such

w z

u y
P(s)

C(s)

Fig. 1. Block diagram of H∞ control problem

that the transfer function from w to z in Fig. 1 is equal
to T (s)WT (s). The state space description of P (s) is, in
general, {

ẋ(t) = Ax(t) +B1w(t) +B2u(t)
z(t) = C1x(t) +D12u(t)
y(t) = C2x(t) +D21w(t)

, (10)

where A ∈ Rn×n, B1 ∈ Rn, B2 ∈ Rn, C1 ∈ R1×n, C2 ∈
R1×n, D12 ∈ R, D21 ∈ R. P (s) is called the generalized
plant. P (s) is assumed to satisfy the standard assumption
in (Doyle et al., 1989). Under these assumptions, according
to (Doyle et al., 1989), following lemma holds true.
Lemma 1. If controllers satisfying (5) exist, both

X
(
A − B2D

†
12C1

)
+

(
A − B2D

†
12C1

)T

X

+X
(
B1B

T
1 − B2

(
DT

12D12

)−1
BT

2

)
X

+
(
D⊥

12C
T
1

)T
D⊥

12C
T
1 = 0 (11)

and

Y
(
A − B1D

†
21C2

)T

+
(
A − B1D

†
21C2

)
Y

+Y
(
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

)
Y

+B1D
⊥
21

(
B1D

⊥
21

)T
= 0 (12)

have solutions X ≥ 0 and Y ≥ 0 such that

ρ (XY ) < 1 (13)
and both

A − B2D
†
12C1 +

(
B1B

T
1 − B2

(
DT

12D12

)−1
BT

2

)
X

and
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A − B1D
†
21C2 + Y

(
CT

1 C1 − C2

(
D21D

T
21

)−1
C2

)
have no eigenvalue in the closed right half plane. Using X
and Y , the parametrization of all controllers satisfying (5)
is given by

C(s)

= C11(s) + C12(s)Q(s)(I − C22(s)Q(s))−1C21(s),

(14)

where

[
C11(s) C12(s)
C21(s) C22(s)

]
=


 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22


 (15)

Ac = A + B1B
T
1 X − B2

(
D†

12C1 + E−1
12 BT

2 X
)

− (I − XY )−1
(
B1D

†
21 + Y CT

2 E−1
21

)
(
C2 + D21B

T
1 X

)
,

Bc1 = (I − XY )−1
(
B1D

†
21 + Y CT

2 E−1
21

)
,

Bc2 = (I − XY )−1 (
B2 + Y CT

1 D12

)
E

−1/2
12 ,

Cc1 = −D†
12C1 − E−1

12 BT
2 X,

Cc2 = −E
−1/2
21

(
C2 + D21B

T
1 X

)
,

Dc11 = 0, Dc12 = E
−1/2
12 , Dc21 = E

−1/2
21 ,

Dc22 = 0, E12 = DT
12D12, E21 = D21D

T
21

and the free parameter Q(s) ∈ H∞ is any function
satisfying ‖Q(s)‖∞ < 1 (Doyle et al., 1989).

Using Lemma 1, the parametrization of all robust stabi-
lizing simple multi-period repetitive controllers is given by
following theorem.
Theorem 1. If simple multi-period repetitive controllers
satisfying (5) exist, both (11) and (12) have solutions
X ≥ 0 and Y ≥ 0 satisfying (13) and both

A − B2D
†
12C1 +

(
B1B

T
1 − B2

(
DT

12D12

)−1
BT

2

)
X

and

A − B1D
†
21C2 + Y

(
CT

1 C1 − C2

(
D21D

T
21

)−1
C2

)

have no eigenvalue in the closed right half plane. Using X
and Y , the parametrization of all robust stabilizing simple
repetitive controllers satisfying (5) is given by

C(s)

= C11(s) + C12(s)Q(s) (I − C22(s)Q(s))−1
C21(s),

(16)

where Cij(s)(i = 1, 2; j = 1, 2) are given by (15) and
the free parameter Q(s) ∈ H∞ is any function satisfying
‖Q(s)‖∞ < 1 and written by

Q(s) =

Qn0(s) +
N∑

i=1

Qni(s)e−sTi

Qd0(s) +
N∑

i=1

Qdi(s)e−sTi

, (17)

Qni(s) = Gd(s)Q̄i(s)(i = 1, . . . , N) (18)
and

Qdi(s) =− 1
1 + C11(s)Gm(s)

Gn(s)Q̄i(s)

(i = 1, . . . , N), (19)
where Qn0(s) ∈ RH∞, Qd0(s) ∈ RH∞, Gn(s) ∈ RH∞
and Gd(s) ∈ RH∞ are coprime factors of −C22(s) +
(−C11(s)C22(s)+C12(s)C21(s))Gm(s) on RH∞ satisfying

Gn(s)
Gd(s)
=−C22(s) + (−C11(s)C22(s) + C12(s)C21(s))

Gm(s), (20)
Q̄i(s) �= 0 ∈ RH∞(i = 1, . . . , N) are any functions and

N∑
i=1

{
− Qdi(0) − C22(0)Qni(0)

Qd0(0) − C22(0)Qn0(0)

}
= 1 (21)

holds true.

(Proof) First, necessity is shown. That is, if the multi-
period repetitive controller written by (7) stabilizes the
control system in (1) robustly and makes the transfer
function from the periodic reference input r to the output
y in (8) and that from the disturbance d to the output
y in (9) have a finite number of poles when ∆(s) =
0, then C(s) and Q(s) are written by (16) and (17),
respectively. From Lemma 1, the parametrization of all
robust stabilizing controllers C(s) for G(s) is written by
(16), where ‖Q(s)‖∞ < 1. In order to prove the necessity,
we will show that if C(s) written by (7) stabilizes the
control system in (1) robustly and makes the transfer
function from the periodic reference input r to the output
y in (8) and that from the disturbance d to the output
y in (9) have a finite number of poles when ∆(s) = 0,
then the free parameter Q(s) in (16) is written by (17).
Substituting C(s) in (7) into (16), we have (17), where

Qn0(s) = (C11n(s)C0d(s) − C11d(s)C0n(s)) Cd(s)

qd(s)C12d(s)C22d(s)C21d(s), (22)

Qni(s) = {(C0n(s)Cd(s)C11d(s) − C0d(s)Cd(s)

C11n(s)) qin(s) − C0d(s)Cin(s)qd(s)

C11d(s)}C12d(s)C22d(s)C21d(s)

(i = 1, . . . , N), (23)

Qd0(s) = (−C0n(s)C11d(s)C12d(s)C22n(s)C21d(s)

+C0d(s)C11n(s)C12d(s)C22n(s)C21d(s)

−C0d(s)C11d(s)C12n(s)C22d(s)C21n(s))

Cd(s)qd(s) (24)
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and

Qdi(s)

= (C0n(s)Cd(s)C11d(s)C12d(s)C22n(s)

C21d(s) − C0d(s)Cd(s)C11n(s)C12d(s)

C22n(s)C21d(s) + C0d(s)Cd(s)C11d(s)

C12n(s)C22d(s)C21n(s)) qin(s) − C0d(s)

Cin(s)qd(s)C11d(s)C12d(s)C22n(s)C21d(s).

(i = 1, . . . , N) (25)
Here, C0n(s) ∈ RH∞ and C0d(s) ∈ RH∞ are coprime
factors of C0(s) on RH∞ satisfying

C0(s) = C0n(s)C−1
0d (s), (26)

qin(s) ∈ RH∞(i = 1, . . . , N), qd(s) ∈ RH∞, Cin(s) ∈
RH∞(i = 1, . . . , N), Cd(s) ∈ RH∞, Cijn(s) ∈ RH∞(i =
1, 2; j = 1, 2) and Cijd(s) ∈ RH∞(i = 1, 2; j = 1, 2) are
coprime factors satisfying

qi(s) =
qin(s)
qd(s)

(i = 1, . . . , N), (27)

Ci(s) =
Cin(s)
Cd(s)

(i = 1, . . . , N) (28)

and

Cij(s) =
Cijn(s)
Cijd(s)

(i = 1, 2; j = 1, 2). (29)

From (22)∼(25), all of Qn0(s), Qni(s)(i = 1, . . . , N),
Qd0(s) and Qdi(s)(i = 1, . . . , N) are included in RH∞.
Thus, we have shown that if C(s) written by (7) stabilize
the control system in (1) robustly, Q(s) in (16) is written
by (17). Since

∑N
i=1 qi(0) = 1(i = 1, . . . , N), (21) holds

true.

The rest to prove necessity is to show that when ∆(s) = 0,
if C(s) in (7) make the transfer function from the periodic
reference input r to the output y and the disturbance d to
the output y have a finite number of poles, then Qni(s)
and Qdi(s) are written by (18) and (19), respectively.
From (17), when ∆(s) = 0, the transfer function from the
periodic reference input r to the output y and that from
the disturbance d to the output y are written by

y

r
=

Gryn(s)
Gryd(s)

(30)

and

y

d
=

Gdyn(s)
Gdyd(s)

, (31)

respectively, where

Gryn(s)

= [{C11(s)Qd0(s) + (−C11(s)C22(s) + C12(s)

C21(s)) Qn0(s)} +
N∑

i=1

{C11(s)Qdi(s)

+ (−C11(s)C22(s) + C12(s)C21(s)) Qni(s)}
e−sTi

]
Gm(s), (32)

Gryd(s)

= [(Qd0(s) − C22(s)Qn0(s)) + {C11(s)Qd0(s)

+ (−C11(s)C22(s) + C12(s)C21(s)) Qn0(s)}

Gm(s)] +
N∑

i=1

[Qdi(s) − C22(s)Qni(s) + {C11(s)

Qdi(s) + (−C11(s)C22(s) + C12(s)C21(s))

Qni(s)}Gm(s)] e−sTi , (33)

Gdyn(s)

= Qd0(s) − C22(s)Qn0(s) +
N∑

i=1

(Qdi(s)

+C22(s)Qni(s)) e−sTi (34)
and

Gdyd(s)

= [(Qd0(s) − C22(s)Qn0(s)) + {C11(s)Qd0(s)

+ (−C11(s)C22(s) + C12(s)C21(s)) Qn0(s)}

Gm(s)] +
N∑

i=1

[Qdi(s) − C22(s)Qni(s) + {C11(s)

Qdi(s) + (−C11(s)C22(s) + C12(s)C21(s))

Qni(s)}Gm(s)] e−sTi . (35)
From the assumption that the transfer function from the
periodic reference input r to the output y in (30) and that
from the disturbance d to the output y in (31) have a finite
number of poles, (33) and (35),

Qdi(s) − C22(s)Qni(s) + {C11(s)Qdi(s)

+ (−C11(s)C22(s) + C12(s)C21(s)) Qni(s)}Gm(s)

= 0 (i = 1, . . . , N) (36)
is satisfied. Using (20), this equation is rewritten by

Qdi(s) = − 1
1 + C11(s)Gm(s)

Gn(s)
Gd(s)

Qni(s)

(i = 1, . . . , N). (37)
Since Qni(s) ∈ RH∞(i = 1, . . . , N) and Qdi(s) ∈
RH∞(i = 1, . . . , N), Qni(s) and Qdi(s) are written by (18)
and (19), respectively, where Q̄i(s) ∈ RH∞(i = 1, . . . , N).
From the assumption that Ci(s) �= 0(i = 1, . . . , N) and
from (23) and (25), Q̄i(s) �= 0(i = 1, . . . , N) hold true. We
have thus proved necessity.

Next, sufficiency is shown. That is, if C(s) and Q(s) ∈
H∞ are settled by (16) and (17), respectively, then the
controller C(s) is written by the form in (7),

∑N
i=1 qi(0) =

1 holds true and the transfer function from the periodic
reference input r to the output y and that from the
disturbance d to the output y have a finite number of poles.
Substituting (17) into (16), we have (7), where, C0(s),
Ci(s)(i = 1, . . . , N) and qi(s)(i = 1, . . . , N) are denoted
by

C0(s) =
C11(s)Qd0(s) + (C12(s)C21(s)

Qd0(s) − C22(s)Qn0(s)
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−C11(s)C22(s))Qn0(s)
, (38)

Ci(s) =
C11(s)Qdi(s) + (−C11(s)C22(s)

Qd0(s) − C22(s)Qn0(s)
+C12(s)C21(s)) Qni(s)

+C0(s)qi(s) (i = 1, . . . , N) (39)

and

qi(s) =− Qdi(s) − C22(s)Qni(s)
Qd0(s) − C22(s)Qn0(s)

(i = 1, . . . , N).

(40)
We find that if C(s) and Q(s) are settled by (16) and
(17), respectively, then the controller C(s) is written by
the form in (7). From Q̄i(s) �= 0(i = 1, . . . , N) and (39),
Ci(s) �= 0(i = 1, . . . , N) holds true. Substituting (21) into
(40), we have

∑N
i=1 qi(0) = 1. In addition, from (18) and

(19) and easy manipulation, we can confirm that when
∆(s) = 0, the transfer function from the periodic reference
input r to the output y and that from the disturbance d
to the output y have a finite number of poles.

We have thus proved Theorem 1.

4. CONCLUSION

In this paper, we proposed the parametrization of all
robust stabilizing simple multi-period repetitive control
systems such that the controller works as a robust sta-
bilizing multi-period repetitive controller and the transfer
function from the periodic reference input to the output
and that from the disturbance to the output have a finite
number of poles.
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