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Abstract:  A new technique for high performance and robust speed control of permanent magnet 
synchronous motor (PMSM) using a mixed non-linear H∞ and Sliding Mode Control (SMC) is 
applied. In spite of non-linear modes, motor parameters variation and uncertainty of load torque, 
non-linear robust techniques introduce a precise speed control. Since the load torque is an 
external disturbance and its variation and type is not generally available, H∞ technique is a 
suitable approach to minimize its influence on the output. However, motor parameters variations 
throw away the response from H∞ response and influence its response, therefore SMC technique 
is used to conduct the response towards H∞ response. Combination of these two techniques gives 
a suitable technique to robust speed control of PMSM. Copyright © 2008 IFAC 
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1. INTRODUCTION 
 
Many advantages of permanent magnet synchronous motors 
(PMSM) lead to their wide application in industry. They are 
used in robots and similar industry equipment as well as in 
many control systems. Quick and precise response, 
eliminating disturbance, approaching reference speed and 
low-sensitivity against parameters variation are the criteria 
of desirable performance of these motors. These 
characteristics make possible to use them in robotic and 
instrumentations. Application of vector control technique in 
these motors improves their performance. see (Senjyu, et 
al., 1996; Senjyu, et al., 1997). 
   However, system non-linearity, motor parameters 
variation and load torque variation make difficult to control 
the motor precisely. There are various methods to solve 
these problems. Some methods use adaptive or neural 
network techniques (Tengfei and  Wang, 2006; Yu, et al., 
2006; Zhou and Wang, 2002; Elbuluk,  et al., 2002; Mingji, 
et al., 2004) and others are suitable due to slow change of 
some parameters such as stator resistance. However, some 
parameters of motor such as inductance, flux or load torque 

can quickly change and the above-mentioned methods do 
not provide a suitable response, see (Soo, et al., 2001) ; 
therefore, robust control techniques are used for this motor. 
One of most important techniques is SMC which overcomes 
the parameters variation well (Lee and Shtessel , 1996; 
Golea, et al., 1999). 
     However, the problem is the load torque variation that is 
identified by observer in some methods (Baik, et al., 2000); 
this has own problems such as dependency on the model, 
noise effect etc. In some methods of Sliding Mode Control 
(SMC) it is treated similar to parameters (Zhang and Panda, 
1999), but the value and type of the load as an external 
disturbance is not defined and such action cannot be true. 
Other problem with SMC technique is its chattering which 
may be solve if boundary layer is employed with SMC 
technique. Unfortunately variation of some motor 
parameters leads to a steady-state error with this solution.  
    The H-infinity technique is an efficient method for 
robustness of non-linear against disturbances. In addition to 
guarantee the stability, this technique minimizes the 
disturbance influence at the output. Nonlinear  has been 
described by (Isidori and Astolfi, 1992; Van der Shaft, 
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1992). The technique has no assumption on the disturbance 
except the energy limitation.   In the introduced method, H-
infinity is used for robustness of the response against load 
variation, since load torque variation is an external factor 
which can be any type, H-infinity technique has no 
assumption on the disturbance and is a suitable technique 
for dealing with the proposed problem. In such a case, the 
response is somehow robust against parameters variation. 
However, parameters variation throws away the response 
from H-infinity technique, so SMC technique can be used 
in order to control this variation and conduct the response to 
the H-infinity response. Therefore, considering different 
natures of load and parameters variation, two techniques 
have been employed to solve the problems.  In section II of 
the paper the mathematical and vector model of PMSM is 
introduced. In section III, application of H-infinity in 
PMSM is proposed and it combination with SMC is given 
in section IV. Simulation results and their comparison with 
other methods are discussed in section V. Finally section VI 
concludes the paper. 
 

2. MATHEMATICAL MODEL OF  PMSM 
 
The d-q Equations of PMSM, which are in fact the vector 
equations of the motor, are as follows: 
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where rω  is the angular speed of the motor,  id and iq are the 
d and q currents, Vd and Vq are the input d and q voltages in 
vector control domain. R and Ls are the stator winding 
resistance and inductance respectively, P is the number of 
poles, λf is the flux of PM, J is the motor inertia, D is the 
damping factor, Tl is the load torque that is considered as 
disturbance. Since H∞ solution for the above-mentioned 
system of equations does not provide a tracking response 
and the aim is to obtain a robust tracking response, a state 
variable which is the difference between the speed and the 
reference speed is added to the system. This variable is 
called q. Therefore, the following equation is added to (1) 
in order to complete the model of the system:   

                              (2)rddt
dq ωω −=  

where dω  is the reference speed.  

3. DESIGN OF CONTROLLER  ∞H
The reason for using the non-linear H-infinity in place of 
the linear H-infinity is that the motor is non-linear. If the 
linear H-infinity is used, there will be no guarantee for 
stability and it may be unstable when the load torque 
quickly changes.  However, use of the non-linear H-infinity 
can guarantee the stability over any condition. 
   In the design of H-infinity controller, the following model 
for PMSM is defined: 
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expressed as a combination of inputs and outputs. In H∞ 
technique the aim is to minimize the influence of 
disturbance (w) on output (z). A larger C1 compared to D1 
has more disturbing influence in the inputs and less in the 
states. Since the goal is the tracking speed control, variables 
ω and q are more important, therefore their corresponding 
elements in matrix C1 will be non-zero. It is noted that id has 
no influence on the torque directly, and it raises the 
amplitude of the current, so it is controlled toward zero in 
some designs. However, in some precise controls with 
lower importance of losses, id can be also be used to control 
speed or position. In the presented method, effect of load 
change on id can be set by changing the value of its 
corresponding element in C1.  
  The non-linear H∞ controller for system (3) will be as 
follows (Van der Shaft, 1992): 
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In this case: 
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where  γ  is attenuation level of the effect of w on z. Since 
(5) in general does not have a close form solution, an 
approximate solution is considered. Let V(x) be 
approximated as follows: 
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where  is an ith-order polynomial of x. In this way, 
one has:  
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                      (8) 
Other coefficients in PMSM are linear and there is no need 
to split-up them. 
   Considering  in which P is symmetric and 
positive definite and , P is obtained by solving 
the following Riccati equation: 
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Since the model is linear in respect to the inputs and 
disturbance, higher-order norms of V are obtained as 
follows:    

(10) 
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where: 
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4. APPLICATION OF SMC FOR CONDUCTING 

RESPONSE TOWARDS  ∞H
 

In  technique, the effect of motor parameters variations 
has not been included. Although this technique is somehow 
robust against motor parameters variations, the variations 
throws away the response from H-infinity response. 
Therefore, the effect of motor parameters variations can be 
eliminated using SMC. In this case, the SMC solution 
conducts the response of the system towards solution of H-
infinity. 

∞H

In such a case the sliding level is considered as follows:  
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which in fact is the same as the resulting control obtained 
through  technique. Therefore this control rule of SMC 
will be as follows: 

∞H

)sgn(SVV eqqq β−= −
                         (19)                                                                                                                 

Where  and S are determined by (12) and (14), β is a 
positive integer and sgn is the sign function. Also to 
improve the response and reduce the chattering, the SMC 
with boundary layer can be used. 

eqqV −

 )/(sat ϕβ SVV eqqq −= −
                     (20)                                                                                                               

where φ is the boundary layer width and sat is the saturation 
function. It is noted that the use of SMC with boundary 
layer leads to a steady-state error in the speed response. The 
general block diagram of the control system has been 
shown in Fig. 1.  

 
 

Fig 1. General block diagram of the control system 
 

 

5. SIMULATION RESULTS 
 
Simulations have been carried out using MATLAB 
software. Parameters of the simulated motor have been 
given in Table 1. To present the quality of combined 
controller, This technique is compared with  non-linear  
and SMC.  

∞H

 
Table 1. Parameters of simulated motor 

 
Value Symbol Parameter 

5.26 (Ω) R Stator resistance 

0.46 10-3 (H) LsStator inductance 

24.9 10-3 (Wb) 
fλ PM flux 

10-3  (kg.m2) J Motor inertia 

1.32 10-6 (Nms) D Damping factor 

4 P No. of poles 

 
      First the influence of the load upon the output is studied. 

The non linear  control for , 

 , up to the third mode is designed. For a 

nonlinear system, the maximum attenuation of the 
disturbance that corresponds to the smallest γ , has the same 
value as for its linearization (Van der Shaft, 1992). 
Therefore, the smallest γ is selected such that the Riccati 
Eqn. (9) has a positive definite solution for P. The 
minimum value for γ in this simulation was obtained as 
γ=500.  The value of γ is large because the disturbance 
coefficient is very small. Reference speed is chosen to be 
100 rad/s. Fig. 2a shows the speed response of the system 
with the non linear  when the load T

∞H
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∞H l=0.2 Nm is applied 
at t=0.5 s. As shown, the response is fully tracked and this 
tracking continues after applying the load. Fig. 2b shows the 
SMC technique response. In this case, the boundary layer 
width is taken to be φ=1000, λ=10000 and β=10. Fig. 2c 
presents the mixed response (  and SMC with boundary 
layer) for C

∞H

1 and D1 the same as and 500γ and for , 
∞H

100=ϕ  and 5000−=β  for SMC with boundary layer. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Speed response by applying the load: (a) , (b) 
SMC, (c) Mixed and (d) comparison of errors 

∞H

As seen in the Fig. 2.c, SMC also help  in the control of 
load disturbance and the mixed method response does better 
job for load variation. Fig. 2d shows the integral of the 
square of speed error from the reference speed at the instant 
of applying the load. As seen, the response of the mixed 
method has a sensible difference with other two techniques. 
In this section the influence of the parameter variation is 
shown. At t=0.5 s, the stator resistance is increased 50%. 
Fig. 3 shows the responses of different techniques. In this 
case load T

∞H

l=0.2 Nm is applied to the system at t=0. As seen 
in the figure, stator resistance change leads to a steady-state 
error in the SMC response. The integral of the square of 
error is highly rising. Also it is clear that the response of the 
mixed method is better than that of the  and the error is 
lower.  
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(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 3. Speed response by changing stator resistance t=0.5 s: 
(a) , (b) SMC, (c) Mixed and (d) comparison of errors 

∞H
   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Speed response by varying stator rotor flux at t=0.5 
s: (a) , (b) SMC, (c) Mixed and (d) comparison of errors 

∞H
Now if the flux of the motor is reduced by 50% and the load 
Tl=0.2 Nm is applied to the system, the response shown in 
Fig. 4 is obtained. In this case it is observed in the steady-
state error of SMC technique. Fig. 4b indicates that the 
mixed technique leads to a more suitable response 
compared with other techniques and the integral of the error 
is smaller than that of the other techniques.  
Now all parameters are changed simultaneously, it means 
that the stator resistance is increased and motor flux is 
decreased 50% at t=0.5 s and at the same time the load 
Tl=0.2 Nm is applied to the system. Fig. 5 presents the 
response of the system.  
 

 
(a) 

 

 
(b) 
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(c) 

Fig. 5. Speed response by parameters and load varying at 
t=0.5 s: (a) , (b) Mixed and (c) comparison of errors 

∞H
 
Fig. 5a shows the response of . It shows that the control 
and tracking has been carried out. The SMC technique is 
unstable in this case.  Of course if β increases, the system 
becomes stable. However, increase of β leads to increase of 
chattering. In order to reduce the chattering the width of the 
boundary layer must be increased which leads to the 
increase of the steady-state error. Fig. 5b presents the 
system response using mixed control. Fig. 5c shows that the 
response of the mixed system is better than that of the .  

∞H
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6. CONCLUSIONS 
 

A novel method using non-linear was used to minimize 
the effect of the varying load in the output with SMC 
method to minimize the influence of motor parameters 
variation and system output. Considering the non-linearity 
of the motor and load torque variation as an external 
disturbance,  method is a suitable one for system 
control. Since the design of 

∞
controller leads to the 

solution of inequality HJI, its precise solution is very 
difficult; therefore an approximate solution was used. Also 
in order to reduce the effect of the parameters, the non-
linear controller SMC was employed. Finally, simulations 
showed the high quality of the control method.  
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