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Abstract: The direct adaptive control of planar robot manipulators through visual servoing
is considered. A solution is developed for image-based visual systems to allow tracking of a
desired trajectory, when both camera calibration and robot dynamics are uncertain. In order
to solve the MIMO parameter adaptive problem without using image velocity information,
the adaptive camera calibration is formulated as a relative degree two MIMO adaptive control
problem. A recently proposed Lyapunov/passivity-based adaptive control for relative degree two
MIMO system based on SDU factorization is applied. The resulting adaptive calibration is then
combined with an adaptive motion controller for the manipulator, which takes into account its
uncertain nonlinear dynamics. The overall stability of the adaptive visual servoing system can
be proved thanks to the explicit Lyapunov-like functions of both adaptation schemes.

Keywords: visual servoing, adaptive control, robot control, Lyapunov-based design, passivity.

1. INTRODUCTION

The problem of controlling robotic systems through visual
feedback has still received considerable attention in the
control literature. For many years, visual servoing tech-
niques have been studied as potential tools for relevant
industrial applications (Hutchinson et al. (1996)).

Several adaptive schemes have been proposed to circum-
vent the performance degradation due to modelling un-
certainty, particularly with respect to the camera calibra-
tion and robot parameters (Papanikolopoulos and Khosla
(1993); Kelly (1996); Nasisi and Carelli (2003)). However,
most of the above cited works have not considered the
nonlinear robot dynamics in the controller design. These
controllers may result in unsatisfactory performance when
high-speed tasks or direct-drive actuator are required. Ex-
ceptions can be found in recent papers like (Kelly (1996);
Kelly et al. (1999); Hsu and Aquino (1999); Zergeroglu
et al. (2001); Nasisi and Carelli (2003); Zachi et al. (2006)).
In these papers the robot motion control requires on the
velocity of the end-effector image.

It is well known that the measurement of the velocity
is impaired by noisy image data (Kano et al. (2001)).
This motivates the development of an alternative adaptive
scheme free of image velocity measurement. In (Zergeroglu
et al. (2000)) a globally asymptotic stable adaptive camera
calibration scheme was proposed, however the author
assume exact knowledge of the mechanical parameters.

In this paper, we propose a solution for the direct adaptive
visual tracking of planar manipulators using a fixed cam-
era, when both camera calibration and robot dynamics are
uncertain. The proposed strategy is developed for image-
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based look-and-move visual servoing systems. In order to
solve the MIMO parameter adaptive problem related to
adaptive camera calibration scheme, without using direct
image velocity information, an uncertain linear plant with
relative degree two has to be considered. A recently pro-
posed model reference adaptive control (MRAC) for rela-
tive degree 2 MIMO systems (Hsu et al. (2007)) using SDU
factorization (Costa et al. (2003)) is considered. This new
solution is Lyapunov-based in the sense that an explicit
Lyapunov function exists for the complete state of the
adaptive system. The importance of having an explicit
Lyapunov for the adaptive camera calibration part is that
it can be easily combined with a well known adaptive
manipulator motion controller, which takes into account
its uncertain nonlinear dynamics, leading to an overall
globally stable adaptive system. Simulation results are also
presented to illustrate the effectiveness of the proposed
scheme.

2. ROBOT SYSTEM MODEL

Consider the problem of tracking a desired image trajec-
tory with a planar manipulator using a fixed and uncal-
ibrated camera. The camera image coordinate frame can
be related to the robot coordinate frame by the following
transformation:

yc = Kpy + yc0
, (1)

Kp =
f

Z

[

−α1 0
0 α2

] [

cos(φ) sin(φ)
−sin(φ) cos(φ)

]

, (2)

where yc ∈ IR2 is the end-effector position in the image
coordinate frame, y ∈ IR2 is the end-effector position in the
robot coordinate frame given by the direct kinematic map
y = k(q), q ∈ IR2 of the manipulator joint angle vector,
yc0

∈ IR2 is a bias vector, Kp is the camera/workspace
transformation (uncertain) matrix, Z is the total depth
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between the camera focal point and the working plane, f
is the camera focal length (in general f << Z), α1, α2

are (positive) scaling factors in yc1 and yc2 directions,
respectively, and φ ∈ (−π/2;π/2) is the angle between
the camera and robot frames. Here, we assume that the
camera and robot frames have the same orientation with
affine Z-axis.

Now, we recall the manipulator dynamic model. The non-
linear dynamic model of the manipulator can be expressed
in cartesian coordinates y by (Sciavicco and Siciliano
(2000))

M̄(q)ÿ + C̄(q, q̇)ẏ + ḡ(q) = Y (q, q̇, ẏ, ÿ)a = F (3)

where M̄ , C̄, ḡ are defined in terms of the joint coordi-
nates and velocities, namely: M̄(q) = J−T (q)M(q)J−1(q),

C̄(q, q̇) = J−T [C(q, q̇) − M(q)J−1J̇(q, q̇)]J−1, ḡ(q) =

J−T g(q) and F = J−T τ , where J(q) = ∂k(q)
∂q

∈ IR2×2

is the manipulator Jacobian. It is well known that the left
hand of (3) can be linearly parameterized by Y (q, q̇, ẏ, ÿ)a
where a ∈ IRm is the constant system parameters and
Y ∈ IR2×m is a regressor matrix.

It is worth mentioning that, in joint space, M(q) represents
the inertia matrix, C(q, q̇)q̇ represents the centripetal and
Coriolis torques, g(q) represents the gravity torques, and
τ is the vector of applied joint torques.

The properties of M̄ and C̄ are similar to those of the
corresponding joint-space matrices (Sciavicco and Siciliano
(2000)). However, one should note that the validity of the
cartesian model is restricted to motions which do not lead
to a singular Jacobian matrix.

3. VISUAL SERVO CONTROL STRATEGY

In this section, we describe the control strategy using
visual information. Since Z is constant in the planar case,
the cartesian control problem can be described from (1):

ẏc = Kp vk , (4)

where vk = ẏ with kinematic control law q̇ = J−1(q)vk.

Defining the desired trajectory ycd ∈ IR2 in the image
frame, the tracking problem is formulated as designing v
in (4) so that the image tracking error ec = yc − ycd tends
asymptotically to zero. To this end, two basic assumptions
are considered:

(A1) The desired image trajectory ycd is defined within the
robot workspace, and the desired image velocity ẏcd

is known and bounded.
(A2) Manipulator motions are away from Jacobian singu-

larities.

If Kp is known, one can obtain the desired trajectory in
the robot coordinate frame by

ym = K−1
p (ycd − yc0)

and apply an adaptive or robust control strategy for (3)
(Slotine and Li (1991)).

However, in this work, we consider the unknown robot
dynamic parameters a and uncalibrated camera case, i.e.
Kp is unknown, thus ym cannot be calculated.

Note from (1) and (3), that the dynamic model in camera
coordinate frame is given by:

M̄c(q)ÿc + C̄c(q, q̇)ẏc + ḡc(q) = Yc(q, q̇, ẏc, ÿc)a = K−T
p F

where M̄c =K−T
p M̄K−1

p , C̄c =K−T
p C̄K−1

p and ḡc =K−T
p ḡ.

In the case of uncertain a and Kp, a standard adaptive
solution (Ioannou and Sun, 1996, p.742) adapts a and
K−1

p separately. Interestingly, this is exactly what has been
usually done in the robotics literature (Hsu and Aquino
(1999); Zergeroglu et al. (2001)), i.e., the robot dynamic
control and the adaptive camera calibration scheme are
designed separately. Note that, the robot is passive from
K−T

p F 7→ ẏc but not necessarily from F 7→ ẏc.

3.1 Cascade Strategy

The main idea here is to introduce a cascade control
structure (Guenther and Hsu (1993)). To this end, consider
there exists a control law F = f(y, ẏ, ym, ẏm, ÿm) which
solves the tracking control problem for robot (3), i.e., F is
such that e(t) = y(t) − ym(t) → 0 for t → ∞, for a given
desired trajectory in robot coordinate frame ym(t).

Now, from Figure 1, suppose we can define the desired
trajectory ym and its derivatives ẏm, ÿm in terms of a
cartesian control signal v.

Some intuition can be gained if the parameters of the robot
dynamic model (3) are assumed to be exactly known. A
standard Computed Torque strategy could be used to solve
the tracking problem, i.e. F = M̄(q)[ÿm + Kdė + Kpe] +
C̄ẏ + ḡ yields a stable closed loop error system. Thus,
defining ym through ẏm = v, one has that ẏc = Kpv+Kpė,
where ė satisfies the stable closed loop equation ë+Kdė+
Kpe = 0. Thus, with positive gains Kd and Kp, this implies
e(t), ė(t) → 0 or equivalently, that we only differ from the
kinematic control case (4) by a vanishing signal ė(t).

TRACKING ROBOT

SYSTEM KINEMATICS

FORWARD

CONTROLLER

CAMERA

VISUAL

SERVOING

CASCADE

STRATEGY

ym, ẏm, ÿm v

F q y yc

ycd

q̇

Fig. 1. Block diagram of the visual servoing cascade
structure.

In (Hsu and Aquino (1999); Zachi et al. (2006)), the
cascade strategy is such that instead of (4) one has

ẏc = Kp [v + G(s) e] (5)

where G(s) is a linear operator (possibly non-causal) with
s being the differential operator. Under this formulation,
adaptive visual servo schemes were proposed in previous
works (Hsu and Aquino (1999); Zergeroglu et al. (2001);
Zachi et al. (2006)). Such methods were intended to cope
with the uncertainties of intrinsic and extrinsic parameters
of the camera, namely the scaling factors and the camera
orientation with respect to the robot workspace. They
could also include the uncertainties of the robot dynamic
parameters. However, the robot motion adaptive control
involved a regressor matrix which depends on the velocity
of the end-effector image.

In (Hsu and Aquino (1999); Zachi et al. (2006)), a linear
visual system with relative degree one from v to yc is
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obtained by defining ẏm = v +λe. As a result, the compu-
tation of ÿm requires v̇ and, consequently, the derivative of
yc. It is well known that the measurement of the velocity
is impaired by noisy image data.

This motivates the development of an alternative adaptive
scheme free of image velocity measurement. If we set ẏm =
H−1(s)v, for some first order Hurwitz polynomial H(s),
the resulting visual system has relative degree n∗ = 2,

ÿc = Kp [v + G(s) e], (6)

and therefore can be controlled using the adaptive control
scheme proposed in this paper, with the advantage that
ÿm no longer depends on the derivative of v, and thus, on
the image velocity.

Furthermore, for the stability analysis of the proposed
cascade scheme, the passivity framework derives simple
rules to describe combinations of subsystems expressed in
a Lyapunov formalism. Notably, it is commonly applied
in several control problems of mechanical systems such
as robot manipulator control (Ortega and Spong (1989)),
underwater vehicles and dynamic ship positioning.

For cascaded passive systems the following general result
can be stated.

Theorem 1. Consider the following interconnected sys-
tems:

Σ1 :

{

ẋ1 = f1(x, t) + g1(x, t)y2 ,

y1 = h1(x1) ,

Σ2 :

{

ẋ2 = f2(x, t) + u2 ,

y2 = h2(x2) ,
(7)

where Σ1 is the driven system and Σ2 is the driving system.
Assume that ||g1(x, t)|| ≤ c,∀x, t and for some c > 0.

If system Σ1 is output strictly passive from y2 7→ y1 with
positive definite storage function V1(x1) such that

V̇1 ≤ −λ1 ||y1||
2

+ c1y
T
2 y1; λ1 > 0

and system Σ2 is output strictly passive from u 7→ y2 with
positive definite storage function V2(x2) such that

V̇2 ≤ −λ2 ||y2||
2

+ c2u
T
2 y2; λ1 > 0 ,

then, for u2 = 0, x1, x2 ∈ L∞ and y1, y2 → 0 as t → ∞.
(for a proof see (Hsu et al. (2007))) �

The passivity properties of the proposed adaptive strategy
will be explored in the following section using Theorem 1.

4. ADAPTIVE ROBOT CONTROL

It is well known from (Slotine and Li (1991)) that an
adaptive control law F exists such that y will asymp-
totically follow ym(t). In what follows, we will show that
parameter adaptive control of the robot can be used for
simply cascading with a visual servoing scheme.

First, the virtual error σ ∈ IR2 is defined as:

σ = ė + λe = ẏ − ẏr ; e = y − ym ; ẏr := ẏm − λe . (8)

The control law is given by

F = Y (q, q̇, ẏr, ÿr)â − KDσ + u2 , (9)

where Y (·) is defined in (3), KD is positive definite gain
matrix, u2 is a fictitious external input which drives the
closed loop system, and â, an estimation of parameter
vector a in (3), is updated by the gradient law

˙̂a = −ΓY T (q, q̇, ẏr, ÿr) σ , (10)

where Γ is a positive definite adaptation gain.

Remark 1. It is important to notice that with known kine-
matics and measurable q , q̇ all signals needed to evaluate
Y are available.

Thus, the passivity properties of the closed loop system
can be establish in the following theorem:

Theorem 2. Consider the robot dynamic model (3), con-
trol law (9) and adaptation law (10). Then, the map
u2 7→ σ is output strictly passive with positive definite
storage function

2Vr(σ, ã) = σT M̄(q)σ + ãT Γ−1ã , (11)

with ã = â − a. Furthermore, for u2 = 0, all signals are
bounded and σ, e, ė tend to zero as t → ∞. �

Proof: from (3), (8), (9), the closed-loop robot tracking
error dynamics is given by:

M̄σ̇ + (C̄(q, q̇) + KD) σ = Y ã + u2 . (12)

Now, considering (11), the closed-loop dynamics (12), re-

sorting to the skew-symmetry property of ˙̄M(q)−2C̄(q, q̇),
and considering adaptation law (10), we finally reach

V̇r(σ, ã) = −σT KDσ + σT u2 . (13)

Then, we can conclude that the system is output strictly
passive from u2 7→ σ. For u2 = 0, V̇r ≤ 0, then using
Barbalat’s Lemma, one can show that all signals are
bounded and σ, e, ė tend to zero as t → ∞. �

Now we can apply the cascade control strategy presented
in the previous section. Based on the cascade strategy
proposed in section 3.1, and from (8), considering that
ẏ = σ + ẏr, we can define

ẏr = G−1(s) v + λG−1(s) ẏ , (14)

where G(s) = s + λ, such that the end-effector image
motion yc(t) = Kpy(t) is governed by

ÿc = Kp [v + G(s) σ] , (15)

where σ can be considered as a vanishing disturbance
since, from Theorem 2, it tends asymptotically to zero.

Thus, the cascade strategy is obtained by simply setting

ẏm = ẏr + λe , and ÿm = ÿr + λė , (16)

where ÿm depends on v (and not on v̇) since ÿr = −λẏr +
v + λẏ = v + λσ.

It is worth noting that the proposed cascade structure can
be also performed using a robust robot motion control with
similar passivity properties (Slotine and Li (1991)).

5. ADAPTIVE VISUAL SERVOING

For the control design, we can obtain the following state
space realization for (15):

ẋc = Axc + BKp v + Bσ σ , yc = Cxc , (17)
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where

A =

[

0 I
0 0

]

; B =

[

0
I

]

; Bσ =

[

Kp

λKp

]

; C = [I 0]

Defining ycd as the desired trajectory in the image frame,
the tracking problem is then formulated as designing v so
that the tracking error ec = yc − ycd tends to zero.

Let us define the desired trajectory by means of a model
reference:

ycd = Gm(s) r, Gm(s) =
λ2

c

(s + λc)2
I (18)

where r(t) is piecewise continuous and uniformly bounded
and λc is a free positive parameter.

The MRAC approach could lead us to the matching
control by output feedback. Here, we are able to adopt
a simpler approach by taking into account that the plant
is essentially a double integrator, except for the matrix
gain Kp. Indeed, we can first solve the problem for a
unit (matrix) gain double integrator, by output feedback,
determining a control law, say, u := Kpv. Then the
matching control law u∗ for (15) would simply be v∗ =
K−1

p u∗. Then we define the control parameterization in
terms of u which can be regarded as a regressor vector
which is available from only the output and input signals.

Thus, a model matching control law u∗ is given by:

u∗ =−2λc
ˆ̇yc − λ2

cyc + λ2
cr (19)

ż1 =−λ0z1 + u, (20)

ż2 =−λ0z2 + yc (21)

ˆ̇yc = z1 − λ2
0z2 + λ0yc (22)

where λ0 > 0 is a free parameter. In term of variable
z = z1 − λ2

0z2, the last three equations correspond to a
reduced order observer of ẏ. Note however that u is not
measurable since Kp is unknown. The model matching
control law for v is v∗ = K−1

p u∗, which can be written:

v∗ = θ∗T ω −
2λc

Λ(s)
v, (23)

with

ω =
2λcλ

2
0

Λ(s)
yc − (λ2

c + 2λcλ0) yc + λ2
c r , (24)

where θ∗T = K−1
p and Λ(s) = s + λ0.

5.1 Image Error System

Now, we can express the image error system in terms of
the augmented state zc = [xT

c , zT
1 , zT

2 ]T by combining
(17), (20) and (21), and defining u = Kpv:

żc = A1zc + BmKpv + Bcsσ , yc = Cmzc (25)

where Cm = [C 0 0],

A1 =

[

A 0 0
0 −λ0 0
C 0 −λ0

]

; Bm =

[

B
I
0

]

; Bcs =

[

Bσ

0
0

]

.

By adding and subtracting v∗ to v, and using the fact that
v∗ is a model matching control, one has that

żc = Amzc + Bmr + BmKp(v − v∗) + Bcs σ (26)

yc = Cmzc (27)

where the triple {Am, Bm, Cm} corresponds to a non-
minimal realization of the reference model (18), where
the relative degree from r to ycd is two and consequently
CmBm = 0.

Then, we can obtain the error system in terms of the error
state ze := zc − zcd and the tracking error ec = yc − ycd:

że = Amze + BmKp(v − v∗) + Bcsσ , ec = Cmze

Then defining

v = v̂ −
2λc

Λ(s)
v (28)

and considering (23) one has that:

że = Amze + BmKp(v̂ − θ∗T ω) + Bcsσ (29)

ec = Cmze (30)

We can reduce this (multivariable) relative degree two
problem to a relative degree one according to (Ioannou
and Sun (1996)) by defining the signals

v̂f = L−1(s) v̂; ωf = L−1(s)ω (31)

with L(s) = s + λc and rewriting (28) as

że = Amze + BmKpL(s)(v̂f − θ∗T ωf ) + Bcsσ (32)

ec = Cmze (33)

For simplicity we introduce the notation ṽf = v̂f − θ∗T ωf .
Then, performing the change of variable

z̄e = ze − BmKpṽf (34)

we get
˙̄ze = Amz̄e + Bm1Kpṽf + Bcsσ , ec = Cmz̄e (35)

where Bm1 = AmBm + λcBm. To arrive at the system
(35), we have taken into account that CmBm = 0.
According to the SDU factorization approach for designing
MIMO adaptive control (Costa et al. (2003)), we consider
the factorization Kp = SDU , where S is symmetric,
D is diagonal, and U is unit upper triangular. Such a
factorization is nonunique and can be chosen such that
{Am, Bm1S, Cm} is SPR (Costa et al. (2003)), i.e., there
exist positive definite matrices P and Q such that

AT
mP + PAm =−2Q, SBT

m1P = Cm . (36)

Thus, the error equation has been brought to a new form:
˙̄ze = Amz̄e+Bm1SD(v̂f −v̂∗

f ) + Bcsσ, ec = Cmz̄e (37)

where v̂∗

f = Uθ∗T ωf + (I − U)v̂f . The key feature of (37)
is that the diagonal matrix D appears in the place of Kp,
and an assumption can now be made about the signs of
its entries d1, d2.

5.2 Controller Structure

Now we formulate the adaptive controller parameteriza-
tion for v̂f = [v̂f1, v̂f2]

T . According to the SDU factor-
ization approach (Costa et al. (2003); Hsu et al. (2007)),
a model matching control is expressed as

v̂∗

f =

[

θ∗T
1 Ψ1

θ∗T
2 Ψ2

]

(38)

where θ∗1 ∈ IR3, θ∗2 ∈ IR2 and
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ΨT
1 := [ωT

f v̂f2] , Ψ2 := ωf (39)

Accordingly, the (filtered) control parameterization is de-
fined by

v̂f =

[

θT
1 Ψ1

θT
2 Ψ2

]

(40)

and the adaptation law is given by (i=1,2)

θ̇i = −γi sgn(di) eciΨi . (41)

where di are the entries of matrix D.

Now, in order to recover v in (28) we have from (31)

v̂ =

[

v̂1

v̂2

]

=

[

θ̇T
1 Ψ1 + θT

1 Ω1

θ̇T
2 Ψ2 + θT

2 Ω2

]

(42)

where θ̇i is given by (41) and

ΩT
1 := [ωT v̂2]

T , Ω2 := ω (43)

The corresponding algorithm is presented in Table 1.

5.3 Stability Analysis

Following (Ioannou and Sun (1996)), we consider the state
representation (35). As a matter of fact, we can obtain
a true Lyapunov function for the error system (i.e. with
complete error state) by considering ωf = L(s)−1ω.

The error vector ω̃f := L−1(s)(ω − ωM ), where ωM

corresponds to the model reference realization defined to
achieve (29), can be expressed as the output of a stable
and proper filter with input e (hence of z) (similarly as in
(Ioannou and Sun, 1996, p.358))

ε̇ = Hε + Kz̄e , ω̃f = Lε + Mz̄e , (44)

with ε of appropriate dimension and H being a strictly
Hurwitz matrix.

The passivity properties of the proposed adaptive visual
servoing system is stated in the following theorem:

Theorem 3. Consider systems (35) and (44), with adaptive
control (28)(42) and update law (41). Then, for P satisfy-
ing (36), the map σ 7→ BT

csP z̄e is output strictly passive
with positive definite storage function given by:

2VL(z̄e, ε, θ̃1, θ̃2) = z̄T
e P z̄e +γ−1

1 θ̃T
1 θ̃1 +γ−1

2 θ̃T
2 θ̃2 +α εT P1ε

(45)
where P1 is a positive definite matrix satisfying HT P1 +
P1H = −Q1 for positive definite matrix Q1. �

Proof: Considering (45), for sufficiently small α (using

Schur’s complement), we have that: V̇L ≤ −z̄T
e Qz̄e +

z̄T
e PBcsσ, which defines an output strictly passive maps

σ 7→ BT
csP z̄e (Hsu et al. (2007)). �

Thus, considering also the passivity properties of the adap-
tive robot control (Theorem 2), we can apply Theorem 1
where the cascaded subsystems are identified by the cor-
responding states as

Σ1 : xT
1 =

[

z̄T
e εT θT

1 θT
2

]

; y1 = BT
csP z̄e ,

Σ2 : xT
2 =

[

eT ėT ãT
]

, y2 = σ,

Thus, from Theorem 1, all signals of the system are L∞

and, σ(t) and z̄e(t) tend to zero asymptotically. This
implies that tracking errors e(t) and ec(t) → 0 as t → ∞.

6. SIMULATION RESULTS

Here we consider the nonlinear robot dynamic model (3).
Uncertainty of the robot parameters is compensated by
the adaptive control approach developed in this paper. We
consider that the planar two-link manipulator is moving
on a horizontal plane with forward kinematics given by:

y1 = l1cos(q1) + l2cos(q1 + q2) (46)

y2 = l1sin(q1) + l2sin(q1 + q2) (47)

where l1, l2 stands for link lengths, then we have that
the components of matrices M,C, g are: M11 = a1 +
2a2cos(q2); M12 = M21 = a3 + a2cos(q2); M22 = a3;
h2 = a2sin(q2); C11 = −h2q̇2; C12 = −h2(q̇1 + q̇2);
C21 = h2q̇1; C22 = 0; g1 = a4sin(q1) + a5sin(q1 + q2);
g2 = a5sin(q1 + q2) , with a1 = I1 + m1l

2
c1 + I2 + m2l

2
c2 +

m2l
2
1; a3 = I2+m2l

2
c2; a2 = m2l1lc2; a4 = g(m1lc1+m2l1);

a5 = gm2lc2.

The parameter values were chosen to be the ones in (Kelly
(1996)), say: m1 = 23.902 kg; l1 = 0.45 m; m2 = 3.88 kg;
I1 = 1.266 kg m2; I2 = 0.093 kg m2; lc1 = 0.091 m;
lc2 = 0.048 m; l2 = 0.55 m; g = 9.8 m/s2.

The desired trajectory ycd was designed to be the output
of the model Gm(s) = 100/(s + 10)2 in response to the
external reference signals

r1 = c1 sin(wrt) + c2 + c4 sin(1.5wrt) (48)

r2 = c1 sin(wrt + c5) + c3 + c4 sin(1.5wrt + c5) (49)

The parameters used in the simulations were KD =
diag{200, 20}; λc = 10; Γ = 20I; φ = 1 rad; γ1 = γ2 = 10;
wr = 1 rad/s; c5 = 1.6 rad; c1 = c4 = 50; c2 = 300;
c3 = 200; λ = 10; λ0 = 10; f = 0.008 m, Z = −0.632 m;
α1 = α2 = 72727 pixels/m.

The states initial conditions are q(0) = [−π/20, π/2]T ,
ycd(0) = [400.3, 355.7]T , θ1(0) = [10−3, 0, 0]T ; θ2(0) =
[0, −10−3]T ; and â(0) = 0.9[a1, a2, a3, a4, a5]

T (all other
initial states are nulls).

In order to avoid involved calculations to derive the
regressor vector Y of the robot dynamic model in cartesian
space (3), we have designed the robot dynamic adaptive
control in joint space (Slotine and Li (1991)). In joint
space, σ and e in (8) are defined in terms of joint angles q
and desired joint trajectory qm. Then, the cascade strategy
(14) should be redefined as v = d

dt
(J(q)q̇r) − λσ, where

q̇r = q̇m − λe.

Simulation results are presented in Figures 2-4. Tracking
error are shown in Figure 2. The image space trajectories
are depicted in Figure 3. Stable and convergent behavior of
the output error ec(t) is apparent. Thus, this full example
of planar robot visual servoing, including the uncertainty
of the robot dynamics, confirms the theoretical results.

7. CONCLUSIONS

The problem of controlling robots with non neglegible
dynamics through adaptive visual servoing was presented.
The proposed scheme was developed taking into account
the uncertainties of both camera and robot parameters.
The kinematic control solution for the MIMO adaptive
visual servoing case without using image velocity infor-
mation, is formulated as a relative degree two multivari-
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Table 1. Algorithm for Adaptive Visual Servoing without image velocity measurement

Regressor ω =
2λcλ2

0

Λ(s)
yc − (λ2

c + 2λcλ0) yc + λ2
c r

vector ΩT
2 = ωT , ΩT

1 = [ωT v̂2]

Filtered ωf = L−1(s) ω, v̂fi = θT
i

Ψi, L(s) = s + λc

signals Ψ2 = ωf , ΨT
1 = [wT

f
v̂f2]

Output error ec = yc − ycd ; ycd = Gm(s)r

Robot Control law F = Y (q, q̇, ẏr, ÿr) â − KDσ ; KD = KT
D

> 0

σ = ė + λe = ẏ − ẏr ; e = y − ym ; ẏr := ẏm − λe

Cascade Strategy ẏr = G−1(s) v + λG−1(s) ẏ ; G(s) = s + λ

Visual Servoing law vi = v̂i − 2λcΛ−1(s) vi ; v̂i = θ̇T
i

Ψi + θT
i

Ωi ; Λ(s) = s + λ0

Adaptation law ˙̂a = −ΓY T σ ; Γ = ΓT > 0

θ̇i = −γieciΨi ; γi > 0
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Fig. 2. Tracking errors ec1 (-·-), ec2 (–).
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Fig. 3. Camera plane trajectories yc (–), ycd (-·-).
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Fig. 4. Control Signal: τ1 (–), τ2 (-·-).

able adaptive control problem. The combination of the
kinematic controller with the adaptive motion control was
achieved by a cascade structure, resulting on an overall
stable adaptive visual system. Simulation results illustrate
the performance of the proposed strategies.
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