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Abstract: A novel recursive framework for designing terminal sliding mode (TSM) and fast terminal 
sliding mode (FTSM) with finite-time convergence is developed in this paper. The principle of finite-time 
convergence is investigated under these new formulations. The singularity problem around the origin with 
the previous TSM control can be resolved. 

 

1. INTRODUCTION 

It is often desirable to stabilize the motion in finite time. 
Several approaches have been considered for this problem 
including the classical minimal-time and minimal energy 
controllers (Ryan, 1991). The problem of finite time 
stabilization of a dynamic system has been studied by quite a 
few people from different perspectives (Haimo, 1986; Bhat & 
Bernstein, 1998; Hong & Jiang, 2006; Hong, Huang & Xu, 
2001;Yu & Man, 2002;). It appears that it is not so easy to 
achieve such a goal. Besides the purely system theoretic 
interest in the question of finite time convergence, the theory 
also gives rise to the high-precision control performance, 
such as terminal sliding mode (TSM) (Feng, Yu & Man, 
2002;  Yu, Yu & Man; Yu, Yu, Shirinzadeh & Man, 2005) 

Unlike conventional sliding mode design, TSM is based on a 
class of nonlinear differential equations with the finite time 
solution. Recently there has been increased interest in the use 
of TSM. The philosophy of design of TSM control is 
basically a conventional sliding mode controller with a 
nonlipschitz sliding surface, where the dynamics of this 
surface exhibits an attractor and thus tracking error converges 
in finite time. 

The conventional TSM control usually has negative 
fractional power because of the fractional power sliding 
mode and its derivative. Thus, the algorithms are very 
sensitive around the origin and can take unexpectedly large 
values, leading to the singularity problem. It is obvious that 
the TSM structure leads to this great difficulty. In some sense, 
our proposed approach takes the opposite point of view in 
that we seek to achieve the positive fractional power in each 
step of derivative. We propose two new recursive algorithms 
to recover the original TSM and FTSM. In a similar way, we 
also recover the finite-time convergence property. 

This paper is organized as follows. Some basic notions of 
TSM and finite-time convergence are briefly recalled in the 
next section, and the necessity of reforming it to deal with the 
common singularity is stressed. A novel recursive version of 

TSM is formally introduced in Section 3, where our solution 
for finite-time convergence and non-singular property, which 
is the contribution of the present work, is described in details. 
Some conclusions and further work are discussed in Section 
4. 

2. PRELIMINARIES 

In this section, the old versions of TSM are reviewed and 
some of their properties are analyzed, especially the 
singularity problem.  

Definition 1. The original expressions of TSM and FTSM 
(Yu & Man, 2002) are 
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where 0,0, >>> qpβα are integers,  p  and q are 

odd. However for 0<x , the fractional power pq  may 

lead to the item Rx pq ∉ , which means Rx∉&  
contradicting with the system we are considering. 

Definition 2.  The TSM and fast TSM can be described by 
the following first-order nonlinear differential equations (Yu 
et al., 2005) 
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where 10,0,, <<>∈ γβαRx . The equation (1) 
should be the exact expression of TSM in spite that we have 
been suggesting only real solution for (1) is considered 
because this suggestion has been involved in (2). 

Definition 3. The so-called non-singular TSM (Feng et al., 
2002) can be expressed as 

21,0,0)( <<>=+= γββ γ xsignxxs &&  (3) 
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which is equivalent to the TSM (2) as 
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Remark 1. According to the definition of finite-time stability, 
the equilibrium point  of the continuous non-Lipschitz 
differential equation (1) is globally finite-time stable, i.e., for 
any given initial condition , the system state 

converges to  in finite time 
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respectively and stay there forever, i.e.,  for all 
. 

0=x
)( 0xTt >

Definition 4. The recursive structure based on the TSM and 
FTSM concept (Yu & Man, 2002) for higher order systems is 
expressed as 
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Here 0, >ii βα  and  are positive odd integers 

. One can easily see that if  reaches 

zero, will reach zero subsequently according 
to the dynamical structure of the TSM and FTSM (1). 

ii pq ,
)2,...,2,1( −= ni 1−ns

032 ,...,, sss nn −−

Remark 2. In the TSM controller design with TSM (6) or 
FTSM (7), we usually do derivative of , then the 
negative fractional power will appear in the control law 
because of , and then should do derivative of 

, and so on till , which leads the negative fractional 
power always appear in every step. Although the conditions 
are given to avoid the singularity, it only seems reasonable in 
mathematical point of view, because the exact mathematical 
relations are impossible to be satisfied exactly in practice and 

computer simulation, then the singularity with TSM 
controller must be considered. 

1−ns
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2−ns 1s

3. NEW FORMS OF TSM AND FTSM 

So far, there is no recursive form of the old version of TSM 
(3) reported. In this section, we will design a new recursive 
expression of TSM and FTSM. The finite-time convergence 
is retained and the usual singularity problem relating to 
conventional TSM is circumvented. 

Consider the single-input nonlinear system represented by the 
model 
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Or equivalently 
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where [ ] [ ] nTnT
n Rxxxxxx ∈== − )1(

21 ,,,,,, L&Lx  is 
the state vector, the scalars u  and  the control input and 

system output, respectively, and  are 
nonlinear system functions.  

y
RRgf n →:,

3.1 New Form of TSM 

Here we propose a new recursive form of TSM ( a >1) as 
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Remark 3. According to the same derivative process with 
conventional TSM, after the first derivative of , we can 
have 
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In , because of the exponential index is 1−ns 2121 <−< a , 

after the derivative, it becomes 1110 <−< a in , and 

another item is . As  is expressed as  
2−ns&

2−ns&& 2−ns
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After the twice derivatives of , we can have 2−ns
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Then the exponential index a13− in  becomes 2−ns
1110 <−< a , and another higher derivative item  

appears. With the same procedure, the exponential index 
3−ns&&&

a14 − in  also becomes 3−ns 1110 <−< a  in , and 

so on, until . Because no negative fractional power appears 
in every procedure, so the singularity in TSM control is not 
an issue with the new TSM formulation. 

3−ns&&&
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Proposition 1.  The first derivative of in (10) is a kind of 

nonlinear function with the elements , i.e., 
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Proof.  From (10), the first derivative of  can be 
expressed as  
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Therefore, from (15) we can further have  

∑
−

=

−
− +=

2

0

11
01

n

k
k

a
kkn ssss &&&&& β  (16) 

We will use the principle of induction to prove it as follows: 

For  in (13), i.e., , it is obvious that  1s 2=n

),( 001 ssfs &&&& =  (17) 

For  in (13), i.e., , we have  2s 3=n
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Now we assume that for , kn =
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Then for 1+= kn , we can further produce the following 
equation: 
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With the principle of induction, we can directly get the 
following result:  

For any n,  
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n
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is always satisfied. 

3.2 The Mechanism of Finite-time Convergence of TSM 

We can design terminal sliding mode control law to 
make )( 11 −− −= nn sKsigns& , then the sliding surface 

01 =−ns  can be reached in finite time. After 01 =−ns , 
from (10), we have 
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This means that 
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where we should note that 1)12(0 <−< aa . According to 

the TSM (2), TSM 02 =−ns  will be reached in finite time. 

Furthermore, 02 =−ns  means that 
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With the same procedure as (22) and (23), we can know that 
03 =−ns  will also be reached in finite time. Recursively we 

can get the conclusion that  will be finally 
reached in finite time. Because no negative fractional power 
appears in the whole procedure, therefore this new TSM does 
not incur the singularity problem while maintaining the major 
advantages of the conventional TSM control. 

010 == xs
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3.3 New Form of FTSM 

In the similar way, we can design the new form of FTSM as 
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Remark 4.The first derivative of  in (25) is 1−ns
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As  in (25) is expressed as 2−ns
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Then the first and second derivatives of  are 2−ns
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Then the higher derivative item  appears. With the same 
trivial procedure as Remark 3, we also can find no negative 
fractional power appears in every procedure, so there is no 
the singularity problem in the new FTSM control formulation 
at all. 

3−ns&&&

Similarly we can propose a proposition 2 as follows: 

Proposition 2.  The first derivative of in (25) is a kind of 

nonlinear function with the elements , i.e., 
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Proof. From (25), the first derivative of  can be 
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Therefore, from (30) we can further have  

∑
−

=

−
− +++=

2

0

11
01 )(

n

k
kkk

a
kkkkn ssssss &&&&&& ααβ  (31) 

We will also use the principle of induction to prove it as 
follows: 
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Then for 1+= kn , we can further produce the following 
equation: 

),,,(

)(

),,,(

)(

)1(
000

111

11
1111

)(
000

1

0

11

0

+

−−−
−

−−−−

−

=

−

=

++

+=

+++= ∑

k

kkk
a

kkkk

k

k

j
jjj

a
jjjjk

sssf

ssss

sssf

ssssss

L&&&

&&&&

L&&&

&&&&&&

ααβ

ααβ

 (35) 

With the principle of induction, we can directly get the 
following result:  

For any n,  
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is always satisfied. 
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3.4 The Mechanism of Finite-time Convergence of FTSM 

In the same way, we can design FTSM control law to make 
, then the sliding surface )( 11 −− −= nn sKsigns& 01 =−ns  

can be reached in finite time. After , from (25), we 
have 
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After rearrange the equation (37), we can achieve the original 
FTSM as 
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where we should note that 1)12(0 <−< aa . Therefore, 
according to the finite-time convergence property of FTSM, 
FTSM  will be reached in finite time. Furthermore, 

 means that 
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With the same procedure as (37) and (38), we can know that 
 will also be reached in finite time. Recursively we 

can get the conclusion that

03 =−ns
010 == xs  will be finally 

reached in finite time. Because no negative fractional power 
appears in the whole procedure, therefore this new FTSM 
does not incur the singularity problem while maintaining the 
major advantages of the conventional FTSM control. 

4. CONCLUSIONS 

In this note, we present the novel recursive formulations of 
TSM and FTSM. The finite-time convergence can be retained 
recursively. Furthermore, in the recursive process, the 
stubborn negative fractional powers going with conventional 
TSM and FTSM completely disappear. Therefore the singular 
problem obsessing TSM control can be removed, at the same 
time, nothing about the merits of original TSM is damaged. 
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