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Abstract: In this paper, asymptotic stability of uncalibrated eye-in-hand visual servoing is
proved in an affine invariance perspective. After a brief retrospection on the uncalibrated
eye-in-hand visual servoing, the affine invariance framework is introduced with discussion in
depth. Then the visual servoing algorithm is reconstructed in an affine invariance framework,
or more precisely as an affine contravariance algorithm, with its complete asymptotic stability
proved, proposed as a convergence theorem. The affine invariance perspective enroots the series
algorithm on a more solid and fruitful mathematical background and finally, the paper would
discuss several potential research realms of the topic of visual servoing.
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1. INTRODUCTION

For numerous industrial applications of robotics and au-
tomation today, robot control with visual clues, or more
technically, visual servoing, has demonstrated great power
in large volumes of industries and has been regarded as one
of the most promising research realms in Artificial Intelli-
gence and Robotics (Hutchinson, 1996). Technically, cur-
rent visual servoing methods could be categorized mainly
into two types, Position Based Visual Servoing (PBVS)
and Image Based Visual Servoing (IBVS) respectively
(Kragic, 2001). According to (Kragic, 2001, Deng, 2003,
Hutchinson, 1996), most of the visual servoing systems
reported in previous literature, have to utilize the robot
and especially the camera model, i.e. camera calibration
is needed, if satisfying results and performance required
(Deng, 2003). It’s well known that the typical camera cali-
bration process is in most cases elaborate, time-consuming
yet not robust enough to system and environmental noises.
In another word, a high accuracy camera calibration is ob-
tained usually in constructed or at least semi-constructed
environment.

Therefore, the uncalibrated visual servoing without the
priori knowledge of robot and especially camera model has
been paid fairly extensive attentions in recent years (Jang,
1991, Malis, 2002). (Hosoda, 1998) has presented uncali-
? This work was supported in part by The National Basic Research
Program (973) of China (2002CB312205) and The National Natural
Science Foundation of China (60772063).

brated visual servoing for static targets using fixed cam-
eras. (Tanaka, 1999) has improved the control scheme to
eye-in-hand stereo tracking of moving targets using static
reference points to estimate the target motion, through
the real-time estimation of Jacobian matrix. (Jagerand,
1997) has introduced a Broyden method in non-linear least
square optimization and experiment using a trust region
and (Piepmeier, 2004) as a review, has expanded them
with convergence analysis. Especially, (Piepmeier, 2003)
has proposed in detail, a dynamic visual servoing method
to tracking a moving target, i.e. the velocity estimation
is also done within the estimation of expanded Jacobian
matrix and compared the partitioned Broyden method
with the Recursive Gauss-Newton method in depth with
a 6DOF robot simulation. (Piepmeier, 2004) has investi-
gated an improved control law for moving target yet un-
fortunately, experimentally verified by only a 3DOF robot
experiment and its convergence analysis seems incomplete
which we would discussed later. Theoretically, the best
result reported in previous literature is (Piepmeier, 2003)
which is based on the non-linear optimization of affine in-
variance and adaptive algorithms, which has been utilized
from (Hosoda, 1994, Hosoda, 1998) to (Piepmeier, 2003,
Piepmeier, 2004) without significant change of theoretical
basis. However, the Broyden method could be categorized
as local Newton method of affine cotravariance.

Currently speaking, the research on uncalibrated eye-in-
hand visual servoing faces potentially two major chal-
lenges. The first one is that nearly all the related algo-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2838 10.3182/20080706-5-KR-1001.3246



rithms in visual servoing simulation, including those of
fixed or moving camera, original or improved, seems to
be derived mainly from Broyden method or technically
in terms of numerical analysis, Gauss-Newton or Quasi-
Newton method of affine contravarience, and result in
highly demand of introducing other fruitful mathematical
models to extend the research realms. The second is the
lack of implementation on real world industrial applica-
tions, most of them are simulation using robotics toolbox
of (Corke, 1996).

Admittedly, the second requires more robust and flexible
visual seroving algorithms yet the first one seems more
challenging and the introduction of affine invariance frame-
work is believed one of the very solutions.

In vast areas of engineering and applied sciences, Newton
based method is regarded as one of the most widely used
series. Theoretically, affine invariance framework could be
regarded as a large series of Newton based methods con-
nected by a common ground: affine invariance, which could
be divided into four major categories(Deuflhard, 2004):
affine covariance, affine contravariance, affine conjugacy
and affine similarity which would be discussed in detail
later in this paper. The elegant affine invariance framework
consists of large mount of numerical analysis method-
ologies and algorithms derived from. Most importantly,
theoretical analysis of affine invariance would benefit a lot
in guiding the construction of corresponding algorithms.

This paper contributes the first time, in a complete asymp-
totic stability prove of the uncalibrated eye-in-hand visual
seroving algorithm in an affine invariance perspective. The
previous version of that is in (Piepmeier, 2004) and the
stability proof in it is believed not complete(Hao, 2007a).
More importantly, this paper introduces the first time,
a grand affine invariance framework into the algorithm
design and analysis of uncalibrated eye-in-hand visual
servoing which is believed to be one of fruitful sources of
new algorithm with complete theoretical analysis.

This paper is organized as follows. After a brief yet in-
structive investigation of the research realm in Section
1, the classical uncalibrated eye-in-hand visual seroving
algorithm would be constructed in Section 2. Hereafter the
affine invariance framework would be introduced briefly in
Section 3 and then the complete asymptotic stability anal-
ysis of the algorithm is constructed in an affine invariance
perspective in Section 4. Finally, conclusion and discussion
of some future work are summarized in Section 5.

2. THE UNCALIBRATED EYE-IN-HAND VISUAL
SERVOING

The task description of the uncalibrated eye-in-hand vi-
sual servoing could be described as follows (Hao, 2007a):
given a robot R and an eye-in-hand camera C without
calibration, the objective is to move the robot from the
eye-in-hand image feature y(θ) under current joint value
θ, to the desired image feature y∗(θ). No robot kinetics or
dynamics model needed. Nor does the camera model.

The error function is defined as
f(θ, t) = y(θ)− y∗(t) (1)

The squared error function is defined as

F (θ, t) =
1
2
fT (θ, t)f(θ, t) (2)

And the squared error function could be ex-pressed in first
order Taylor form as

F (θ + ∆θ, t + ∆t) =

F (θ, t) +
∂F

∂θ
∆θ +

∂F

∂t
∆t + O(∆θ, ∆t)

(3)

considering that the sampling period is assumed to be a
constant, the minimum of F (θ, t) could be calculated as

∂F (θ + ∆θ, t + ∆t)
∂θ

= 0 (4)

Omit the high order infinite population O(∆θ, ∆t), ap-
proximately we have

∂F

∂θ
+

∂2F

∂θ2
∆θ +

∂2F

∂θ∂t
∆t = 0 (5)

then

∆θ = −
(

∂2F

∂θ2

)−1 (
∂F

∂θ
+

∂2F

∂θ∂t
∆t

)
(6)

Substituting (6) with (2) and (3) would result in

∆θ = −
(
JT J + S

)−1
JT

(
f +

∂f

∂t
∆t

)
(7)

where

J =
∂f

∂θ
, S =

∂JT

∂θ
f,

∂F

∂θ
= JT f,

∂F 2

∂θ∂t
= JT ∂f

∂t
,
∂2F

∂θ2
= JT J + S

(8)

Note the definition J = ∂f/∂θ is known as composite
Jacobian matrix. Moreover, since S is system dependent
and actually difficult to estimate, yet it could be regarded
as an infinite population, because when the robot position
is near the desired, the error function f(θ, t) could be
regarded as zero. Therefore, we could rewrite (7) as

∆θ = −
(
J̃T

k J̃k

)−1

J̃T
k

(
f +

∂f

∂t
∆t

)
(9)

where J̃k stands for the estimation of the composite
Jacobian matrix at the Kth iteration. And (8) is the joint
value update formula.

Besides, the affine model of error function is defined as

mk(θ, t) = f(θk, tk) + J̃k(θ − θk) +
∂fk

∂t
(t− tk) (10)

which could be regarded as also the first order expansion of
mk(θ, t) at (θk, tk). And the corresponding target function
is

minE(k) =
k−1∑
i=0

λk−i−1‖∆mki‖2

∆mki = mk(θi, ti)−mi(θi, ti)

= [fk − fi −
∂fk

∂t
(tk − ti)]− Jkhki

= [fk − fi]− Jkhki

(11)
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where we denote
hki = (θk − θi)
hk = tk+1 − tk

(12)

Now if corresponding substitutions made in the Recursive
Least Squares algorithm, as stated in (Macchi, 1995), the
Visual Servoing using Recursive Least Squares (VS-RLS)
algorithm could be expressed as (Piepmeier, 2003)(Hao,
2007a)

Initialization:

Given
f : Rn → Rm; θ0, θ1 ∈ Rm×n;
(f̃t)0 ∈ Rm×1;P0 ∈ Rn+1×n+1;λ ∈ (0, 1];

Iteration body:
∆f = fk − fk−1

hθ = θk − θk−1

ht = tk − tk−1

h =
[

θk − θk−1

tk − tk−1

]
Jk = [J̃k (f̃t)k−1]
∆Jk = (∆f − Jk−1h)(λ + hT Pk−1h)−1hT Pk−1

Jk = Jk−1 + ∆Jk

Pk =
1
λ

[
Pk−1 −

Pk−1hhT Pk−1

λ + hT Pk−1h

]
θk+1 = θk − (J̃T

k J̃k)−1(J̃T
k fk + J̃T

k (f̃t)kh)

(13)

3. THE AFFINE INVARIANCE FRAMEWORK

Let’s start with classical and well-known Newton method
F ′(xk)∆xk = −F (xk), xk+1 = xk + ∆xk, k = 0, 1, ...(14)

and classical Lipschitz condition
‖F ′(x)− F ′(x)‖X→Y ≤ γ‖x− x‖X (15)

when nonsigular diagonal scaling matrix DL and DR

selected for left and right scaling, i.e.
(DLF ′(xk)DR)(D−1

R ∆xk) = −DLF (xk) (16)

Now the affine transformation could be defined as
G(y) = AF (By) = 0, x = By (17)

for any A,B ∈ Rn×n. Therefore the transformed Newton
methods could be defined as
G′(yk)∆yk = −G(xk), yk+1 = yk + ∆yk, k = 0, 1, ... (18)

Theoretically, affine invariance framework consists of four
modules: affine covariance, affine contravariance, affine
conjugacy and affine similarity respectively. And more
importantly, as stated in (Deuflhard, 2004), different affine
invariant Lipschitz conditions, lead to different character-
izations of local convergence demains in terms of error
oriented norms, residual norms, or energy norms, which
in turn, give rise to corresponding variants of Newton
algorithms.

Now we can specify the four categories in detail. If B = I
in (17), it could be defined as affine covariance

G(x) = AF (x) = 0 (19)

with corresponding Lipschitz condition
‖G′(x)−G′(x)‖ ≤ γ(A)‖x− x‖ (20)

If image space F fixed, i.e. A = I, the affine contravariance
is defined as

G(y) = F (by) = 0, x = By (21)

with corresponding Lipschitz condition

‖G′(x)−G′(x)‖ ≤ γ(A)‖x− x‖ (22)

For a optimization problem f(x) = min, f : D ⊂ Rn → R
where f is convex in neighborhood D, it equals to

F (x) = gradf(x) = f ′(x)T = 0, x ∈ D (23)

Then affine conjugacy is defined as

g(y) = f(By) = min, x = By (24)

with corresponding Lipschitz condition

‖F ′(x)−1/2(F ′(x)− F ′(x))‖ ≤ ω‖F ′(x)1/2(x− x)‖2 (25)

In an equilibrium point of a dynamical system ẋ = F (x)
with an arbitrary transformation Aẋ = AF (x) = 0, affine
similarity is defined as

G(y) = AF (A−1y) = 0, y = Ax (26)

with corresponding Lipschitz condition

‖(F ′(x)− F ′(x))u‖ ≤ ω‖x− x‖‖u‖ (27)

Note that since the underlying algorithm of uncalibrated
eye-in-hand visual servoing is categorized as affine con-
travariance, then it would be discussed in detail.

4. ASYMPTOTIC STABILITY OF UNCALIBRATED
EYE-IN-HAND VISUAL SERVOING: AN AFFINE

INVARIANCE PERSPECTIVE

Historically, the first classical convergence theorems for
Newton series methods are Newton-Kantorovich theorem
and Newton-Mysovskikh theorem respectively. Newton-
Kantorovich theorem introduces Kantorovich quantity
h0 = ‖∆x0‖Xβ0γ < 1

2 and a convergence ball round x0

with radius ρ0 ∼ 1/β0γ. Similarly, Newton-Mysovskikh
theorem introduces Mysovskikh quantity, slightly different
from the previous one, h0 = ‖∆x0‖Xβγ < 2 and a con-
vergence ball round x0 with radius ρ ∼ 1/βγ. However,
such a quantity is certainly difficult to compute in real-
istic nonlinear systems, if not hopless (Deuflhard, 2004).
Therefore, it’s the very introduction of affine invariance
framework that helps eliminate the gap between theoreti-
cal convergence analysis and realistic algorithm design and
implementation.

Firstly, the contraction factor, or convergence monitor
would be introduced as

Θk =
‖∆θk+1‖
‖∆θk‖

(28)

whenever Θk ≥ 1 for simplicity, the algorithm monitored
is classified as ‘not convergent’.

Since the Broyden based method could be classified as
Jacobian rank-1 update, then the Jacobian rank-1 update
operator is defined as

Ek(J) = I − JkJ−1 (29)
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Lemma 1. For 0 < Θ < 1, 0 ≤ η0 < Θ and

b ≤ Θ− η0

1 + η0 + 4
3 (1−Θ)−1

(30)

if

η = η0 +
t

(1− b)(1−Θ)

we could have
η + (1 + η)t < Θ (31)

The proof of Lemma 1 could be accessed at (Deuflhard,
2004).

Theorem 1. For F ∈ C1(D), F : D ⊂ Rn → Rm, D convex,
if θ∗ indicates the unique solution of robot joint value with
F ′(θ∗) nonsingular. For a specified ω < ∞, θ ∈ D, the
affine contravariance Lipschitz condition

‖(F ′(θk)− F ′(θ∗))(θ − θk)‖ ≤
ω‖F ′(θ∗)(θk − θ∗)‖‖F ′(θ∗)(θ − θk)‖ (32)

holds. For specified Θ ∈ (0, 1), if η0 = ‖E0‖ < Θ, and the
initial robot joint value condition

b = ω‖F ′(θ∗)(θ0 − θ∗)‖ ≤ Θ− η0

1 + η0 + 4/3(1−Θ)−1
(33)

holds, the robot joint value series {θk} would converge to
θ∗ in terms of error as

‖Fk+1‖ ≤ Θ‖Fk‖ (34)

or in the terms of image feature vector as
‖yk+1 − y∗‖ ≤ Θ‖yk − y∗‖ (35)

Proof. The Jacobian rank-1 update of F is

Fk+1 = Fk +
∫ 1

q=0

F ′(θk + q∆θk)∆θkdq

=
∫ 1

q=0

(F ′(θk + q∆θk)− F ′(θ∗))∆θkdq

+(F ′(θ∗)− Jk)∆θk

(36)

Consider the Lipschitz condition (32), (36) yields

‖Fk+1‖ ≤
∫ 1

q=0

‖(F ′(θk + q∆θk)− F ′(θ∗))∆θk‖dq

+‖(F ′(θ∗)Jk
−1 − I)Fk‖

≤
∫ 1

q=0

ω‖F ′(θ∗)(θk + q∆θk − θ∗)‖

·‖F ′(θ∗)∆θk‖dq + ‖EkFk‖

≤
∫ 1

q=0

ω(‖F ′(θ∗)(1− q)(θk − θ∗)‖

+‖F ′(θ∗)q(θk+1 − θ∗)‖)
‖F ′(θ∗)∆θk‖dq + ηk‖Fk‖

=
1
2
(bk + bk+1)‖F ′(θ∗)∆θk‖+ ηk‖Fk‖

(37)

Defining bk = 1
2 (bk + bk+1), then

‖Fk+1 ≤ bk‖(Ek − I)Fk‖‖+ ηk‖Fk‖
≤ (bk(1 + ηk) + ηk)‖Fk‖

(38)

Now we only have to prove

bk(1 + ηk) + ηk ≤ ‖Θ‖ (39)

The update formula for gk is

gk+1 = gk − F ′(θ∗)J−1
k Fk = F ′(θ∗)(θk − θ∗)

−Fk + EkFk

=
∫ 1

s=0

(F ′(θ∗)− F ′(θ∗ + q(θk − θ∗)))

·(θk − θ∗)dq + EkFk

(40)

and

‖gk+1‖ ≤
∫ 1

s=0

qω‖F ′(θ∗)(θk − θ∗)‖‖F ′(θ∗)

·(θk − θ∗)‖dq + ηk‖Fk‖
≤ ω

2
‖gk‖2 + ηk(‖gk − Fk‖+ ‖gk‖)

(41)

Similarly,

bk+1 ≤
1
2
b2
k + ηk(

1
2
b2
k + bk) =

(
ηk +

1 + ηk

2

)
bk (42)

After that, the approximation properties of the Jacobian
updates could be discussed by introducing the orthogonal
projection

Qk =
∆Fk+1∆FT

k+1

‖∆Fk+1‖2
(43)

onto the secant direction ∆Fk+1, and the deterioration
matrix could be noted as

Ek+1 = EkQ⊥
k + Ek+1Qk (44)

From the ‘good’ Broyden update proof (Deuflhard, 2004)

ηk+1 = ‖Ek+1‖ ≤ ‖EkQ⊥
k ‖+ ‖Ek+1Qk‖

≤ ‖Ek‖+
‖Ek+1∆Fk+1‖
‖∆Fk+1‖

(45)

The second right hand term could be expressed, utilizing
the secant condition, as

Ek+1∆Fk+1 = ∆Fk+1 − F ′(θ∗)J−1
k+1∆Fk+1

= ∆Fk+1 − F ′(θ∗)∆θk

=
∫ 1

q=0

(F ′(θk + q∆θk)− F ′(θ∗))∆θkdq
(46)

Now the norm of (46) could be noted as

‖Ek+1∆Fk+1‖ ≤ bk‖F ′(θ∗)∆θk‖
= bk‖Ek+1∆Fk+1 −∆Fk+1‖
≤ bk(‖Ek+1∆Fk+1‖+ ‖∆Fk+1‖)

≤ bk

1− bk

‖∆Fk+1‖

(47)

Substitute (45) into (47) yields fairly rough estimation

ηk+1 ≤ η +
bk

1− bk

(48)

Since

ηk ≤ η0 +
∑k−1

i=0 Θit0
1− b0

≤ η (49)
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with

η = η0 +
b0

(1− b0)(1−Θ)
(50)

and

bk ≤ Θkb0 (51)

and combing (51) and Lemma 1, immediately we have

bk+1 ≤ (η + (1 + η)b0)bk ≤ Θbk ≤ Θk+1b0 (52)

and therefore

ηk+1 ≤ ηk +
bk

1− b0
≤ η0 +

∑k−1
i=0 Θit0
1− b0

+
Θk+1b0

1− b0

≤ η0 +
∑k

i=0 Θib0

1− b0
≤ η

(53)

When the ‘bounded deterioration property’

ηk ≤ η (54)

holds, and the error contraction

bk+1 ≤ bk (55)

for any k. Therefore in conclusion, combining (38) and
again Lemma 1 would result in

‖Fk+1‖ ≤ Θ‖Fk‖ (56)

i.e.

‖yk+1 − y∗‖ ≤ Θ‖yk − y∗‖ (57)

5. CONCLUSION

Generally speaking, the major contribution of this pa-
per is to prove the asymptotic stability of the classical
uncalibrated eye-in-hand visual seroving algorithm in an
affine invariance perspective. The major work refers to the
cutting-edge work specified in (Deuflhard, 2004) and is
applied to solve completely the asymptotic stability prove
in an affine contravariance framework. Yet maybe more im-
portantly, the introduction of affine invariance framework
might do far more than that. In such a grand framework
with solid theoretical analysis ground, different affine in-
variance modules are believed to contribute a great deal
to the fruitful development of the classical uncalibrated
eye-in-hand visual seroving algorithm, not only derived
from Broyden method as so far we’ve done. What’s more
interesting of the affine invariance framework is that its
theoretical analysis could guide indeed the construction
and implementation of realistic algorithm, which is also
regarded as a promising research realm in the future. For
example, affine covariance, or more famously known as
‘good’ Broyden method, could be considered to construct
a new uncalibrated eye-in-hand visual seroving algorithm.
So does the affine conjugacy and affine similarity ones.

Finally, introducing the affine invariance framework might
extend the current underlying architecture of the classical
uncalibrated eye-in-hand visual seroving algorithm dra-
matically with fairly complete and thorough theoretical
analysis at hand.
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