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Abstract: In this paper an hybrid model for scheduling crane movements is presented. Cranes
sharing the same track are considered. Cranes can reach any location along the track performing
loading or unloading operations. As cranes share the same track their movements are constrained
to avoid over crossing; tasks deadlines and priorities are also considered. Scheduler output are
the assignment of the tasks to cranes and tasks starting time. Experimental data show the
benefits deriving from the application of the proposed approach.

1. INTRODUCTION

A bridge crane (Figure 1) is a transportation equipment
that moves horizontally and vertically along a track; it
reaches a loading or requesting point (such as storing
locations, ships or machines) to pick up an item and it
reaches an unloading or destination point where the item
has to be discharged. The destination point can be an-
other movement equipment, a shipment/storing location
or a machine. Cranes are usually found in chemical, steel
and iron industries and in large storage sites (container
terminals, ports, warehouses). In the following, a “job”
is the request from the loading to the destination point
(including loading and unloading operations). A job is
specified through its requesting and destination point and,
eventually, through some real time constraints such as the
deadline for item discharge.

In this paper, we focus on cranes’ scheduling problems.
The goal of crane scheduling is to assign jobs to cranes so
that a given plant performance function is optimized. This
problem is similar to the m-parallel machine scheduling
problem (e.g., Lee and Pinedo [1997], Hall et al. [2000]),
however, crane scheduling has several unique characteris-
tics. For example, if loading/unloading points are machines
performing operations in a production process, cranes
must serve the requests following the production process
order. Similarly in port management, if unloading and
loading operations must be performed at the same loca-
tion, the discharging operation must precede the loading
operation. Thus, there might be precedence relationships
among jobs that must be respected when serving a task
list.

Moreover cranes travel on the same track, and they can
not cross each other; then if a crane precedes another
one this precedence order has to be preserved (e.g., in
Figure 1 C2 precedes C1 when moving from left to right).
This constraint limits crane positions; thus some pairs of
jobs can not be performed simultaneously, this depending
both on loading and unloading point of jobs, and on
crane positions. In the following we will also call such jobs
incompatible jobs.
The precise form of the scheduler depends on the operation
mode of the system: in an off-line scheme, jobs to be served

over the scheduling horizon are known in advance, whereas
in the case of on-line control no such prior information is
available. In heavy transport sights management, such as
port container terminal, off line schemes are often applied
(see Kim and Park [2004]) as in these contests work load
is usually projected in advance; moreover since tasks are
known the non crossing constraint can be modeled simply
defining a set of incompatible jobs and avoiding their
simultaneous execution. In warehouses managing problems
(Lee and Di Cesare [1994], Amato and Basile [2001])
cranes are assigned to a predetermined subset of loading
points, thus their movements do not interfere. Moreover
cranes are allocated to a subset of locations then they
are statically assigned to the requesting/destination point;
this reduces problem complexity and dimension. Recent
studies on cranes movements modeled with Petri Net
allowed to obtain an exhaustive representation of crane
movements and constraint. However the evolution of the
system over time was complex and constrained by the Petri
Net evolution itself. For instance cranes where constrained
to serve tasks contemporarily (see Barbarisi et al. [2007]).

Literature on on line scheduling of crane movements is
less numerous, usually referred to chemical industry where
the job list can not be estimated due to unpredictable
production events (Tang et al. [2000], Harjunkoski and
Grossmann [2001]). Simulation is usually the proposed
instrument to solve modeling issues such as the non
crossing constraints (see Tamaki et al. [2004]); some plant
model (see Tamaki et al. [2004]) allow ’escaping’ positions
along the track where a crane can temporarily wait until
the other passes; in fact this is equivalent to admit over
crossing.

Our goal is to present an hybrid model of crane move-
ments. So far the model has been used for off line schedul-
ing, where the task list is completely known in advance.
Our main future goal will be to apply the same model
for on line scheduling problems. The scheduling problem
addressed in this paper allows tasks subject to prece-
dence relationships and real time constraints (deadlines).
Solving such problems requires a controller determining
(i) a dynamic assignment of cranes to jobs (ii) the time
instant when a crane starts to serve a job. For dynamically
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Fig. 1. Two cranes serving four locations and sharing the
same track.

assigning cranes to jobs we mean that a requesting point
can be served by any crane for any of its request.

Our main contributions are:

• to develop a hybrid model of cranes move-
ments; we modeled crane movements and the real-
time constraint with hybrid system. We obtained a
mathematical formulation of cranes state and time
constraints that we exploit to build our complete
model, adding precedence relationship among cranes
and the objective function formulation.
• to develop a scheduler of crane movements; ex-

ploiting the hybrid crane model, we built a scheduler
of crane movements based on the assumption that
a sequence of jobs over a significative time window
is available or can be estimated with good accuracy.
The resulting scheduling problem is also promising
for an on line application.

The following sections describe the problem and the pro-
posed approach.

2. PLANT MODEL - DEFINITIONS

This section introduces the basic variables’ definitions for
jobs and cranes.

We suppose that locations to be served are placed along a
line and they are labeled with increasing numbers; cranes
are also labeled in the direction of increasing locations
numbers. Then the plant we consider is made of an ordered
setM = {m1, . . . ,mm} of m locations, and an ordered set
C = {c1, . . . , cnc

} of nc cranes moving on the same track.
Figure 1 represents label for cranes and places in a four
locations and two cranes site.

We start by describing jobs characteristics and main
variables, then we introduce hybrid crane model.

Each job is specified by:

• the requesting point : any location along the track;
• the destination point : as for the requesting point can

be any location along the track but different from the
requesting point;
• the deadline: the time instant when the job must be

accomplished;
• a precedence relationship with other jobs; jobs can

be related to a production process, then a set of
them could be constrained to be served following the
production process order.

Fig. 2. Crane position vs. time.

All requests are collected in a job list; a location can appear
in more than one request both as destination or requesting
point. Jobs with the same origin and the same destination
point are also allowed.

Several events describe the life of a job (see Figure 2). At
the start time, tc,js , the crane c starts to serve job uc,j .
The crane moves from the destination point of the previous
job to the requesting point of job uc,j ; we denote this time
interval as transfer time (τ c,jtransf ). We suppose that all
cranes move with equal transfer velocity, vL.

Once reached the destination point, the crane c has to
pick up the item: the start placing time, tc,jstch, denotes
the instant when the placing operation starts and the end
placing time, tc,jendch, the termination of this operation.
The loading operation lasts for a time interval, the pick
up time, denoted with τ c,jup , which is supposed to be
independent of the item and job.

When the item is loaded, crane moves along the track for a
time interval (τ c,jtravel) depending on the destination point
and on full charged velocity of crane, vH ; note that velocity
is different if crane is empty (vL) or charged (vH).

At the start discharging time, tc,jstdis, crane reaches the
destination point and the operations to release the item
start. When the item is discharged the job finishes; this
instant is named the end time, tendc,j . The duration of the
discharging operation is denoted with τ c,jdn .

2.1 Model of task list of job

We suppose that a list of job to be assigned to cranes is
available: L = {u1, . . . , uj , . . . , uL}. The job uj is defined
through the following information

• xjr ∈ R the requesting point, where the item is picked
up;
• xjd ∈ R the destination point;
• tjd ∈ R the deadline of job uj .

3. HYBRID MODEL OF CRANE MOVEMENTS

We rely on hybrid system modeling, that is the model’
state changes according to a continuous time and event
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based scale. Crane position along the track being the
time-driven component; reaching a position or getting-
discharging an item being the event-driven component.

3.1 Hybrid system states and variables

According to the notation in Lygeros et al. [1999] we
denote by Qc the set of discrete variables corresponding
to five discrete states, Xc the set of time driven variables
and Uc the job list assigned to crane c.

Qc := {(qc)| qc ∈ {0, 1, 2, 3, 4}} (1)
Xc := {(xc, tc, δc)′| 0 ≤ xc ≤ xc,max tc, δc ∈ R} (2)
Uc := {uc,1, . . . , uc,j , . . . , uc,n} ⊆ L (3)

The variables meaning is described next. xc is the position
of crane c along the track measured in the sense of positive
x axis; its value ranges from 0, the extreme left position
reachable along the track, to xc,max the extreme right. The
time tc, is the continuous time flowing from the beginning
of the scheduling problem; its replication for each crane
is redundant, but it will help in simplifying the notation,
as it will be clear later in this section. δc stores the time
instant when the discrete state changes.

We denote by xc,jr and xc,jd , respectively, the position of
the requesting and destination point of job uc,j served by
crane c.

The mining of the discrete state, the corresponding value
of the continuous variables and the condition allowing
the transition towards the states will be explained next.
Note that in order to simplify notation we will omit the
dependence of job uc,j from crane c, when this does not
generate ambiguity:

• idle: (qc = 0) crane is waiting to start a job. Crane
position xc(t) corresponds to the initial crane position
xc,0 if the crane has not served any job, or to the
destination point of last job served xc,j−1

d . Crane
leaves this state at the starting time tc,js of the job
to be served. The time interval the crane spent into
this state is denoted with τ c,js .
• transfer: (qc = 1) crane moves from the destination

point of last job served to the requesting point of the
job being served. Crane position xc(t) changes accord-
ing to empty crane velocity vL. State changes when
crane reaches the requesting point (xc(t) = xc,jr ).
Then the state transfer holds for a time interval
τ c,jtransf equal to:

τ transfc,j =
1
vL
|xc,jr − x

c,j−1
d | (4)

• up: (qc = 2) crane stays at the requesting point
(xc(t) = xc,jr ) and loads the item. Crane leaves this
state when a time interval equal to τ c,jup elapses.
• travel: (qc = 3) crane leaves the requesting point

and moves toward the destination point. Given crane
velocity at full charge, vH , and crane’s initial and final
positions, the time interval spent in this state τ travelc,j
is equal to:

τ travelc,j =
1
vH
|xc,jd − x

c,j
r | (5)

When crane reaches the destination (xc(t) = xc,jd ) it
leaves this state.

Fig. 3. Hybrid system for one crane.

• down: (qc = 4) crane fulfills discharging operations;
crane position is equal to the destination point
xc(t) = xc,jd . This state holds for a time interval equal
to τ c,jdn .

The vector µc = [µc,1 . . . µc,5] will be used in what fallow.
It denotes the discrete state occupied by the crane c during
its evolution in time. As the crane can occupy only one
state at time, vector µc is a binary vector.

3.2 Hybrid system dynamic

The time driven system component evolves according to
the following differential equations:ẋcṫc

δ̇c

 =

[
f (xc, qc, uc,j)

1
0

]
. (6a)

In particular
f(xc, qc, uc,j)|qc∈{0,2,4} = 0 (6b)

f(xc, 1, uc,j) = sign
(
xc,jr − xc

)
· vL (6c)

f(xc, 3, uc,j) = sign
(
xc,jd − xc

)
· vH (6d)

where the function sign(a) is defined as follows:

sign(a) =


1 a > 0
0 a = 0
−1 a < 0.

Defined implicitly from Figure 3 the transitions e ∈ E =
{(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)} ⊆ Qc ×Qc, the guard
conditions

Gc(qc, q̃c, uc,j) : Ec × Uc → P(Xc) (6e)
are

Gc(0, 1, uc,j) =
{

(xc, tc, δc)′ ∈ Xc|(tc − δc) ≥ τ js
}

Gc(1, 2, uc,j) =
{

(xc, tc, δc)′ ∈ Xc|xc = xc,jr
}

Gc(2, 3, uc,j) =
{

(xc, tc, δc)′ ∈ Xc|(tc − δc) ≥ τ c,jup
}

Gc(3, 4, uc,j) =
{

(xc, tc, δc)′ ∈ Xc|xc = xc,jd

}
Gc(4, 0, uc,j) =

{
(xc, tc, δc)′ ∈ Xc|(tc − δc) ≥ τ c,jdn

}
.

where the P(Xc) denotes the power set of the set Xc.

We also define the reset function Rc(qc, q̃c, xc, tc, δc) : Ec×
Xc → P(Xc) as

Rc
(
qc, q̃c, (xc, tc, δc)′

)
= {(xc, tc, tc)′} . (6f)
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And the initial condition is given by
Initc = {(qc, xc, tc, δc)′ ∈ Qc ×Xc|

qc = 0, xc = xc,0,tc = 0, δc = 0} (6g)

3.3 Hybrid model of two cranes

The hybrid model can be extended to two cranes defining
Q = Q1 ×Q2, X = X1 ×X2 and U = U1 ×U2. The guard
conditions (6e) are extended as follows:

G
(
(q1, q2)′, (q̃1, q̃2)′, (u1,j , u2,j)′

)
=

= G1(q1, q̃1, u1,j)×G2(q2, q̃2, u2,j) (7)
Also the reset function is defined as

R
(
(q1, q2)′, (q̃1, q̃2)′, (x1, t1, δ1, x2, t2, δ2)′

)
=

= R1

(
q1, q̃1, (x1, t1, δ1)′

)
×R2

(
q2, q̃2, (x2, t2, δ2)′

)
(8)

4. CRANES DYNAMICAL MODEL

The objective of this section is to construct a model
describing the model variables evolution as a function of
some asynchronous events.

Based on practical consideration, a discrete-time approach
would lead to a computationally demanding model for long
prediction horizons. An event-based modeling approach
is used in this paper. This makes the work challenging
and interesting. First, the job sequence on each crane
is asynchronous and correlated through the non crossing
constraints with job sequences on different cranes. Sec-
ondly, each crane evolves with different dynamics but their
movements are not independent, it is necessary to describe
the overall plant dynamic, where cranes move with a time
varying speed at uncorrelated events.

For the proposed model, an event is a change of crane
model discrete state. This will allow to have a “high res-
olution” model with a reduced computational complexity
compared to a discrete time modeling.

We denote by t(k) the instant of the k-th event. The state
of the plant model at the event k is a snapshot at time
t(k) of (i) jobs being served by all cranes; (ii) the position
of each crane; (iii) the discrete state of each crane (iv) the
time elapsed in the discrete state. The plant inputs at the
event k are the crane jobs schedule. Given the state and the
input at t(k), the model allows to predict the state at the
event k+1 by modeling cranes’ position, the assignment of
scheduled jobs on cranes, the completion of jobs. Moreover
since the events are asynchronous, a ’partial’ completion
of a job (i.e., a crane is moving from requesting to the
destination point) on a crane has to be modeled. Objective
of the next part is to formally define process states and
inputs and describe their event-based evolution model.

The dynamic of the system described with (6) is rewritten
in the following transition system. Note that x(k), δ(k)
and q(k) we denote vectors of dimension nc, equal to the
number of plant cranes.

x(k + 1) = fx
(
q(k), x(k), t(k), δ(k), u(k)

)
(9a)

t(k + 1) = ft
(
q(k), x(k), t(k), δ(k), u(k)

)
(9b)

δ(k + 1) = fδ
(
q(k), x(k), t(k), δ(k), u(k)

)
(9c)

q(k + 1) = fq
(
q(k), x(k), t(k), δ(k), u(k)

)
(9d)

where uc,j(k) is the job that crane c is serving at the
instant t(k).

The following equation describes the evolution of crane’s
position over time

xc(k + 1) =xc(k)
(
µc,1(k) + µc,2(k) + µc,4(k)

)
+

xc,jr µc,3(k) + xc,jd µc,5(k). (10)
Crane changes position when it reaches the loading point
(µc,3(k) = 1) or the requesting point (µc,5(k) = 1); it stays
by the same position when it loads µc,2(k) = 1, unloads
(µc,4(k) = 1) items, or when it is in idle (µc,1(k) = 1). It
results

qc(k) =
5∑
i=1

(i− 1)µc,i(k).

with
∑5
i=1 µc,i(k) = 1. The following equation describes

the evolution of the variable ∆tc(k) which is the time
interval that crane c spends in a state qc:

∆tc(k) =τs(u(k))µc,1(k)+
1
vL

∣∣xc,jr (uc(k))− xc(k)
∣∣µc,2(k)+

τUPµc,3(k) +
1
vH
|xc,jd (uc(k))− xc(k)|µc,4(k)+

τDNµc,5(k)+ (11)

σc(k) =


1 if [δc(k) + ∆tc(k) =

min
i
{δi(k) + ∆ti(k)}]

0 otherwise

(12)

δc(k + 1) =(δc(k) + ∆tc(k))σc(k) + δc(k)(1− σc(k))
(13)

µc,1(k + 1) =µc,5(k)σc(k) + µc,1(k)(1− σc(k)) (14)
µc,2(k + 1) =µc,1(k)σc(k) + µc,2(k)(1− σc(k)) (15)

...
µc,5(k + 1) =µc,4(k)σc(k) + µc,5(k)(1− σc(k)) (16)
uc(k + 1) =uc(k)(µc,2(k) + µc,3(k) + µc,4(k) + µc,5(k))

(17)
µc,2(k)+µc,2(k) + µc,3(k) + µc,4(k) + µc,5(k) = 1

(18)

The (18) guarantees that for each value of q(k) it results
that for only one i it results µc,i(k) = 1. The binary
variable σc(k) ∈ B is true (σc(k)=1) every time that a
transition of crane c is active. This is active when the next
event is occurs to the crane c (see (12)).

5. SCHEDULER MODEL

We denote the set of all task as T = {J1, J2, . . . , Jn}. In
order we introduce the virtual job J∞. This job has to be
intended as the last job for each crane, so when it has been
assigned to a crane, the crane is always in idle. We impose
that ts(J∞) =∞.

First of all we introduce the following matrix B = [bij ] ∈
Zm×m. The element bij defined as equal to the order of
the job that has requesting point mi and destination mj .
bij := ord({J ∈ T |mr(J) = Mi, md(J) = Mj}), (19)

then it results
∑m
i=1

∑m
j=1 bij = n.
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The scheduler on each event t(k) has to define the input
u(k) ∈ (T ∪ J∞)nc . The scheduler assigns the task to a
crane c only when this is idle (qc = 0), hence it holds

qc(k) ∈ Q/ {0} ⇒ uc,k+1 = uc,k
The scheduler has to select the job u ∈ T and to define
the time interval τ js that the crane waits before starting to
serve the task. The scheduler has also to ensure that task
will be accomplished before the deadline td(u). Moreover
the scheduler has to verify that the two cranes will not
cross each other. The position x̂c(k) of each crane at the
event kth is given by

x̂c(k) :=



xc(k) qc(k) = 0
xc(k) + d1vL · (t(k)− δc(k)) qc(k) = 1
xc(k) qc(k) = 2
xc(k) + d2vH · (t(k)− δc(k)) qc(k) = 3
xc(k) qc(k) = 4

(20)

where d1 = sgn(xr(u(k))−x(k)) and d2 = sgn(xd(u(k))−
x(k)); hence that for any assignment of tasks to cranes, the
scheduler verifies that the following condition is verified

x̂1(k) ≤ x̂2(k) (21)

Then we introduce the following matrix Ac,k(u) = [acij ] ∈
Bm×m of assigned job:(x1,k ≤ x2,k ≤ . . . ≤ xc(k) ≤ . . . ≤
xnc,k)

acij(u) =
{

1 qc = 0 ∧Mi = mr(uc),Mj = md(uc)
0 otherwise

(22)

and the vector ts(u(k)) ∈ Rc+ of the delay of each. In order
it has to guarantee that each crane will not collide with
the others . We define the matrix

L =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0

· · · · · · · · ·
. . . · · · · · ·

0 0 0 · · · 1 −1

 ∈ Z(nc−1)×nc

The scheduler will assign the task to the cranes by solving
the following problem

min
[u1,u2,...]

∞∑
k=1

‖ts(u(k))‖2 (23a)

s.a x(k + 1) = fx(q(k), x(k), t(k), δ(k), u(k)) (23b)
t(k + 1) = ft(q(k), x(k), t(k), δ(k), u(k)) (23c)
δ(k + 1) = fδ(q(k), x(k), t(k), δ(k), u(k)) (23d)
q(k + 1) = fq(q(k), x(k), t(k), δ(k), u(k)) (23e)

Bk+1 = Bk −
nc∑
c=1

Ac,k(u(k)) (23f)

B0 = B (23g)
B∞ = 0 (23h)
Lxk ≤ 0 (23i)
δc(k) ≤ td(u(k)) (23j)

6. COMPUTATIONAL RESULTS

This section deals with the application of the proposed
crane scheduler to an operating plant. The plant produces
four macro-families of products; within each family there
are several different products ranging from ten to more
than fifty. The production process consists of four phases

one of which is not performed to some product. Each phase
can be carried out by one or more machines.

At the end of each production phase two cranes move
the items to the machine in the next phase. Then the
required crane movements correspond to the transports
from a production phase to the next one. Table 1 reports
the list of crane movements.

The two cranes share the same track, than non cross-
ing constraint should also be respected. The production
process has severe timing constraint; if the product is
not processed within the deadlines it deteriorates; then
production deadlines should stringently be respected.

All remaining data about the plant cannot be disclosed.
For this reason, the data presented in the next will be
scaled. The crane parameters are all unit.

Non-crossing constraint is respected by checking at each
intermediate machine the relative position of cranes. If
non-crossing constraint would be violated, crane waits
until all intermediate positions between requesting and
destination are available.

Problem (23a) has been implemented using AMPL math-
ematical language and solved using MINLP solver, run on
a 2.4 GHz Intel Xenon machine. The solver implements a
branch-and-bound algorithm to solve quadratic and non-
linear programming problems.

Results for a representative production plan are reported;
Table 2 reports the batch size for each typology in the
sample production plan and the corresponding process-
ing times. The set of all requests forming the task list
is obtained from the production plan; for instance, one
unit of product P1 corresponds to tasks M1-M3 and M3-
M5. The precedence relationship among the production
phases is modeled defining ordered subsets of tasks with
precedence constraints. Hence in the above example, tasks
M1-M3, M3-M5 and M5-M8 belong to the same subset.
The deadlines are assigned according to production con-
straints. Table 3 reports the task list corresponding to the
production plan in Table 2. Table 4 reports the scheduler

Table 1. Crane movements

Typology Task

P1 M1 −M3

M3 −M5

M5 −M8

P2 M2 −M5

M5 −M8

P3 M1 −M4

M4 −M6

M6 −M7

P4 M2 −M4

M4 −M6

M6 −M8

Table 2. Production Plan

Production time (min)
Batch

Typology Size Ph.1 Ph.2 Ph.3 Ph. 4

P1 2 60 70 38 56

P2 2 60 − 58 63

P3 1 65 23 60 64

P4 1 60 70 54 60
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Fig. 4. Crane movements for task list in Table 3

results. Figure 4 depicts the crane movements of the two
schedules in Table 3. Machines are shown on the vertical
axis and the time on the horizontal axis. Clearly the non
crossing constraint is respected.

Table 3. Task list

Task Load-Unload Deadline

Task1 M1 −M3 70
Task2 M2 −M5 70
Task3 M1 −M4 140
Task4 M4 −M6 170
Task5 M2 −M4 212
Task6 M3 −M5 210
Task7 M6 −M7 262
Task8 M5 −M8 260
Task9 M1 −M3 350
Task10 M4 −M6 330
Task11 M5 −M8 390
Task12 M6 −M8 390
Task13 M3 −M5 425
Task14 M5 −M8 470
Task15 M2 −M5 530
Task16 M5 −M8 590

Table 4. Scheduler results

Crane C1 Crane C2

t(k) Task (From-To) Task (From-To)

61 Task1 (M1-M3) –
62 – Task2 (M2-M5)
132 Task3 (M1-M4) –
159 – Task4 (M4-M6)
198 – Task6 (M3-M5)
199 Task5 (M2-M4) –
247 – Task8 (M5-M8)
249 Task7 (M6-M7) –
315 – Task10 (M4-M6)
318 Task9 (M1-M3) –
372 Task11 (M5-M8) –
373 – Task12 (M6-M8)
417 Task13 (M3-M5) –
460 – Task14 (M5-M8)
510 Task15 (M2-M5) –
573 – Task16 (M5-M8)

Completion time 578min

7. CONCLUSIONS AND FUTURE WORK

The problem of controlling crane movements in a multi
cranes system has been studied. For this class of problems,
a model of crane movements has been developed using an
hybrid model and their scheduling to serve a set of requests
has been solved. The proposed problem formulation allows
the inclusion of constraints, arising from time-base con-
straints, as well as cranes over crossing avoiding. Results
from some examples show that the proposed scheduler
control could be used in working plant. Further steps will
aim to study the application of the proposed model for an
online receding horizon control scheme.
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