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Abstract: An Artificial Neural Network (ANN) estimator is designed to predict the composition values of 
a reactive batch distillation system inferentially. The estimator for the reactive batch distillation system, 
which is recently a preferred industrial operation for specialty chemicals production, is designed using 
temperature measurements throughout the column. The reflux ratio of the batch distillation column is also 
used as input to the ANN as well as temperature values. The ANN used is an Elman network with two 
hidden layers; having 20 neurons in the first hidden layer, three neurons in the second hidden layer, and 
four neurons in the output layer. The performance of the designed network is tested in open-loop and it is 
found that, it is possible to predict the product compositions by using the designed ANN estimator which 
can be used in the control of the product compositions. 
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1. INTRODUCTION 

In reactive distillation, a high conversion is always expected 
with a satisfactory purity and this requires a high 
performance closed-loop control (Tade and Tian, 2000). 
Unfortunately, on-line measurement of compositions is a 
typical problem in industry as stated by many investigators 
(Mejdell and Skogestad, 1991; Quintero-Marmol and 
Luyben, 1992; Baratti et al., 1995; Kano et al., 2000; Bahar et 
al., 2004). On-line measurements of the product compositions 
can be possible with direct composition analyzers such as gas 
chromatographs and NIR (Near-Infra Red) analyzers. 
However, these are expensive, difficult to maintain, 
necessitate frequent calibrations and introduce undesirable 
time delays in the feedback control loop. An estimator that 
utilizes more than one temperature measurement can be used 
to infer the compositions.  

Literature is full of studies on state estimation in continuous 
distillation columns whereas studies on the control of 
compositions in batch columns are rare. Batch distillation is 
complex, nonlinear and high-order process and it is 
intrinsically dynamic making the control a more challenging 
task. Composition profiles and operating conditions may 
change over a wide range of values during the entire 
operation and the state estimators must be designed to deal 
with the time-varying nature of the batch columns (Mujtaba 
and Macchietto, 1996; Oisiovici and Cruz, 2000). Also, batch 
distillation is an attractive choice in reactive distillation, 
when the reaction is slow and a large resident time is required 
to attain high conversion and when the reaction is so fast that 
a significant reaction may occur before the column reaches 
steady state (Wajge and Reklaitis, 1999). 

The objective of this study is to design a state estimator for 
the esterification reaction of ethanol and acetic acid in a batch 
reactive distillation column by using ANN that estimates the 

product compositions which can be used in the control 
algorithm. 

2. PROCESS DESCRIPTION 

The process studied is an esterification reaction of ethanol 
with acetic acid to produce ethyl acetate and water in a batch 
distillation column. The working temperature of this 
endothermic, second order and reversible reaction is around 
700C and atmospheric pressure is used. In this quaternary 
system, ethanol form azeotrope with water, ethyl acetate 
forms azeotropes with water (8.2 wt% water, boiling point 
70.40C), and with ethanol (30.8 wt% ethanol, boiling point 
71.80C). A ternary azeotrope between ethyl acetate-water-
ethanol is also formed (7.8 wt% water, 9.0 wt% ethanol, 
boiling point 70.30C) (Ullmann, 1996). Besides many 
advantages like increase in overall reactant conversion, 
increase in energy efficiency and easier temperature control 
of reaction; reactive distillation also reacts away azeotropes 
and simplifies separation. 

The operation of a batch column is divided into a number of 
stages as in the order of realization; start-up period, 
distillation at total-reflux, withdrawal of the lightest product, 
removal of a slop-cut, withdrawal of the next heaviest 
product, removal of a second slop-cut and so on. Fig. 1 shows 
the schematic of a multi-component batch distillation column 
system. 

In this study, a previously developed dynamic simulation 
model is used. The column parameters are given in Table 1 
and the details about the model can be found in Bahar (2007). 
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Fig. 1. The schematic of a multi-component batch distillation 
column. 

Table 1.  Column Parameters and Operating Conditions 

No. of stages (including reboiler and 
total condenser) 

10 

Total fresh feed, mol 311.67 
Feed composition (ethyl acetate, 
ethanol, water, acetic acid), mole 
fraction 

0.0, 0.5, 0.0, 0.5 

Column holdup, mol 
condenser+drum 
internal plates 

 
30 
0.779 

Reboiler heat duty, J/h 2.016x106 
Column pressure, bar 1.013 
Cooling water flow rate, lt/min 1.0 

 

3. ANN STATE ESTIMATOR DESIGN 

In this study, Artificial Neural Network (ANN) estimator to 
infer the product compositions from temperature 
measurements is developed which can provide a feedback 
control.  

3.1  Observability Criteria and Selection of Measurement 
Points 

The observability concept plays an important role in the 
design of control systems in state space. Although most 
physical systems are observable, corresponding mathematical 
models may not be observable. For this reason, it is necessary 
to know the conditions under which the system is observable. 
“A system is said to be observable at time t0 if, with the 
system in state X(t0), it is possible to determine this state 
from the observation of the output over a finite time interval” 
(Ogata, 1997). Since the estimated compositions are used in 
the control of the column operation, the temperature 

measurements that are used as inputs to the estimator must be 
suitably selected in order to provide accurate estimation of 
the compositions because the measurement locations have 
significant effects on the performance. 

Employing a degree-of-freedom concept, Yu et al. (1987) 
found that a distillation column is observable if the number of 
measurements is at least (NC - 1). The study of Quintero-
Marmol et al. (1991) and Yıldız et al. (2005), dealing with 
the design of an Extended Luenberger Observer and 
Extended Kalman Filter, respectively, for multi-component 
batch distillation column, concluded that even though the 
linear observer in theory needs only (NC - 1) temperature 
measurements to be observable, to be effective at least (NC) 
thermocouples must be measured. 

Furthermore, Yıldız et al. (2005) showed that, increasing the 
number of temperature measurements above NC does not 
result in better performance. Venkateswarlu and Kumar 
(2006) found in their study that the reboiler and the top tray 
are the most sensitive temperature measurement locations for 
a multi-component batch distillation column. Similarly, 
Yıldız et al. (2005) concluded that, the temperature 
measurement locations should be spread throughout the 
column homogeneously including the reboiler and the top 
tray. Considering these discussions, four temperature 
measurement location points, the reboiler, 2nd tray, 5th tray, 
and the top tray (8th tray), are selected to be used in 
estimation. 

3.2 Artificial Neural Networks (ANN) Estimator 

The batch distillation system under study is highly nonlinear 
and it is observed that the composition profiles in the column 
changes significantly with different reflux ratio values. Thus, 
forming only one neural network and training it with input-
output data obtained for various reflux ratio values is not 
reasonable. Therefore, a separate network is developed for 
each reflux ratio, R, and the value of the R is also given as 
input to the estimator. The output of the ANN estimator 
(distillate compositions) that corresponds to its inputs 
(temperatures and R) is found by interpolating the two 
networks, ANNi-1 and ANNi+1 between which the operating 
reflux ratio falls. As an example, if the value of Ri is between 
Ri-1 and Ri+1, the output of the estimator is calculated from (1) 
and (2) where di represents the distance between R values. 
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Each ANN is designed considering the network’s 
architecture, normalization issue, and network performance 
with respect to verification and generalization tests. 

ANN Architecture 

In feed-forward networks, the output at any instant is 
dependent only on the inputs and the weights at that instant; 
therefore, these networks have no dynamic memory. In a 
recurrent network on the other hand, connections may be 
made between neurons in nonadjacent layers or within the 
same layer or feedback connections from a neuron in one 
layer to a neuron in a previous layer. Thus, signals can flow 
in both forward and backward directions and the output of 
that neuron becomes a function of both inputs from the 
previous layer at time t and its own output that existed at an 
earlier time. Because of this property, recurrent networks 
have a dynamic memory. 

An Elman network, which is a recurrent network, is used in 
this study. In an Elman network, in addition to the input 
units, hidden units, and output units, there are also context 
units. The input and output units have an interaction with the 
outside environment, however the hidden and context units 
have not. The input units only pass the signals without 
changing them. The output units sum the signals fed to them. 
The context units are used only to memorize the previous 
activations of the hidden units. Thus, at a specific time, k, the 
previous activations of the hidden units (at time k-1) and the 
current inputs (at time k) are used as inputs to the network. 

In the network structure, the number of input neurons 
corresponds to the number of input variables in the network. 
The number of output neurons is the same as the number of 
desired output variables, and since four composition values in 
the distillate are desired to be taken as outputs from the 
neural network, it must consist of four neurons in the output 
layer. The choice of the number of hidden layers and the 
neurons in the hidden layer(s) is not as straightforward as 
input and output layers, because it depends on the network 
application. However, they can be chosen by training the 
network with various configurations and selecting the 
configuration with the fewest number of layers and neurons 
which gives quickly and efficiently the minimum root-mean-
squares (RMS) error. As Zilouchian and Jamshidi (2001) 
stated, adding a second hidden layer generally improves the 
network’s prediction capability. However, adding an extra 
hidden layer commonly gives similar prediction capabilities 
with those of two hidden layer networks, but requires longer 
training times because of more complex structures. In this 
study; two hidden layers, with 20 neurons in the first hidden 
layer and 34 neurons in the second hidden layer, are used in 
the network structure. Because, increasing the number of 
hidden layers and the number of neurons in the hidden layers 
beyond these values did not decrease RMS error. The tan-
sigmoid transfer functions are used for the hidden layers and 
purelin transfer function is used for the output layer. 

Range of Variables 

Neural networks cannot make accurate estimations if the 
operating input/output data are outside their training data 

range. The ANN in this study is trained with temperature and 
composition data generated by the help of simulation, 
utilizing unsteady state responses for different reflux ratio 
values. The reflux ratio (L/V) is changed between 0.5 and 1.0 
for the constant reflux ratio period after the steady state is 
reached for total reflux. The lower values of the reflux ratio 
are found to be not suitable for separation in distillation.  

The reflux ratio profiles, which are in the range of 20% of the 
optimal reflux profile, are also used in the training of the 
network. The optimal reflux ratio profile obtained for this 
system (Bahar, 2007) considering maximization of the 
Capacity Factor, CAP (Luyben 1988) is given in Table 2. The 
desired purities of the product-cuts are 0.52 for ethyl acetate 
product-cut tank, 0.50 for ethanol product-cut tank and 0.65 
for water product-cut tank. The heaviest component in the 
system, acetic acid, is collected in the reboiler with a desired 
purity of 99%. The temperature profile throughout the 
column with the optimal reflux profile is shown in Fig. 2. 

The 13 values of reflux ratio used in training are given in 
Table 3. 

Table 2 Optimum Reflux Ratio Profile 

Time Interval (hour) 

0 – 9.15 

9.15 – 27.75 

27.75 – 29.43 

29.43 – 32.33 

32.33 – 35.12 

35.12 – 36.21 

36.21 – 38.17 

Reflux Ratio, R 

Total reflux 

8.21 

2.08 

3.26 

1.94 

3.98 

21.78 
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Fig. 2. Temperature profile throughout the column with the 
optimum reflux profile. 
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Table 3 Reflux Ratio Values Used in ANN Training 

Reflux Ratio Trend After 
Total Reflux 

Values of Reflux Ratio 
(L/V) 

Constant 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 
0.95, 1.0 

 

Variable with respect to a 
profile 

Roptimal  

± 10% Roptimal 

± 20% Roptimal 

 

In the training of the ANN, back-propagation training 
algorithm is used which is simple, easy to apply and 
successful in application. The training of the ANN is done by 
using the dynamic data which are collected using the values 
of reflux ratios given in Table 3 utilizing the MATLAB 
simulation program. 

Normalization 

If the input and the output variables are not of the same order 
of magnitude, some variables may appear to have more 
significance than they actually do. Therefore, each input and 
output parameter, p, is normalized to the range [-1….1] 
before being used in the neural network and the network 
output is then converted back to its original values.  

4. RESULTS AND DISCUSSION 

For the prediction of the distillate compositions in the 
reactive batch distillation column under study, the 
temperature measurements throughout the column are used. 
The ANN estimator is designed considering the range of 
input variables, network’s architecture, normalization issue, 
and network performance with respect to verification and 
generalization tests. 

Estimator Performance 

Checking the performance of a trained network must be done 
in two steps. In step one; how well the neural network recalls 
the output vector from data sets used to train the network 
(called the verification step) is tested; and in the second one 
how well the network predicts responses from data sets that 
were not used in the training phase (called the recall or 
generalization step) is tested.  

Verification Tests 

In Fig. 3 and Fig. 4, the responses of the distillate 
compositions for a reflux ratio (L/V) of 0.7 and for the 
optimum reflux ratio profile are shown respectively. It can be 
seen that, the network output will differ only slightly from 
the actual output data. 

 

 Fig. 3. Actual and estimated distillate compositions with 
total reflux followed by a reflux ratio of 0.7. 

 

 

Fig. 4. Actual and estimated distillate compositions with 
optimal reflux profile. 

Generalization Tests 

The response of the column distillate compositions for a 
reflux ratio (L/V) of 0.75 is shown in Fig. 5. Furthermore, the 
responses of the column to a 10% increase in the optimal 
reflux ratio profile are given in Fig. 6. 
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Fig. 5. Actual and estimated distillate compositions responses 
for total reflux period followed by reflux ratio of 0.75. 

 

 

Fig. 6. Actual and estimated distillate compositions with 10% 
increase in optimal reflux profile. 

It can be seen from the figures that, the network estimates the 
outputs by interpolation with a good accuracy. 

5. CONCLUSIONS 

In this work, the state estimator for a multi-component batch 
reactive distillation column is studied. The reaction studied is 
an esterification reaction where ethanol and acetic acid reacts 
to produce ethyl acetate and water.  

The estimator designed is an ANN which utilizes an Elman 
network with two hidden layers having 20 neurons in the first 
hidden layer, three neurons in the second hidden layer and 
four neurons in the output layer. It is found that, using the 
designed ANN estimator it is possible to estimate the 
distillate composition values of the column from available 
four temperature measurements. 

 

 

NOMENCLATURE 

L             Liquid molar flow rate (mol/h) 

R  Reflux ratio (L/D) or (L/V) 

V            Vapor molar flow rate (mol/h) 

Abbreviations: 

AcAc  Acetic Acid 

ANN  Artificial Neural Network 

CAP  Capacity Factor 

EtAc  Ethyl Acetate 

EtOH  Ethanol 

H2O  Water 

IAE  Integral Absolute Error 

NC  Number of components 

NIR  Near-Infrared Spectroscopy 

NN  Neural Network 
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