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Abstract: This paper presents the robust design for chaotic cryptosystems. The cryptosystem combines 
cryptograph with chaotic synchronization. The hyperchaotic signals are synchronized between the 
encrypter and the decrypter based on observer gains. The technique of linear matrix inequality (LMI) is 
applied to determine the observer gains. A theorem has been proposed to guarantee the robust stabilization 
for the chaotic synchronization system with external disturbance. Furthermore, the disturbance attenuation 
level is minimized such that the cryptosystems are optimally robust. Computer simulation demonstrates 
that the effectiveness of the robust design. 

 

1. INTRODUCTION 

Since the internet and mobile phone are worldwide, the 
synchronization of chaotic system and its application to 
secure communication have received considerable attentions 
(Duan et al., 1997, Yang et al., 1997, Liao et al., 1999, Lian 
et al., 2000, Lian et al., 2001). Chaotic systems are situated 
between deterministic systems and stochastic systems. The 
pioneering work of Pecora et al. (1990) and Carroll et al. 
(1991) have led to many studies regarding the 
synchronization of two chaotic systems (Chen et al., 1998, 
Lakshmanan et al., 1996). There are a lot of researches in 
investigating chaos-based secure communications.  

Various methods have been developed to hide the plain texts 
of the message using chaotic signals, for instance, chaotic 
switching (Kilic et al., 2001, Tada et al., 2006), chaotic 
modulation (Chen et al., 2005, Sathyan et al., 2006) and 
chaotic masking (Alvarez et al., 2004, Murali et al., 2003). 
To improve the problems of chaos-based secure 
communication systems, the cryptography are introduced to 
the encrypter. In this paper, the plain text is first encrypted by 
cryptography and then it is masked with a chaotic signal such 
that the level of security is enhanced. 

Fuzzy controller has been widely used in industry for its easy 
realization and good robustness. Takagi and Sugeno (2001) 
proposed a fuzzy model to represent a nonlinear system. 
There are two ways for establishing fuzzy models. One is 
represented by fuzzy IF-THEN rules that describe input-
output relations of a nonlinear system. The other is derived 
from given dynamic equations. In this paper, the T-S fuzzy 
model is obtained by using local approximation in fuzzy 
partition spaces. Herein, the Lorenz’s equation is represented 
as the T-S fuzzy model via choosing linear terms. 

An observer is designed to achieve the chaos synchronization 
between the transmitter and the receiver. In the observer 
scheme, each control rule is designed from the corresponding 

rule of the T-S fuzzy model (El Hajjaji et al., 2006). The 
observer shares the same fuzzy sets with the fuzzy model in 
the premise parts. By the way, the stability criterion is 
derived for the chaos-based cryptosystem under external 
disturbance. In this paper, the robust observer gains are 
designed via LMI techniques. 

The remainder of this paper is organized as follows. Section 
2 discusses the synchronization cryptosystem based on T-S 
fuzzy model. Section 3 provides computer simulation to 
demonstrate the effectiveness of the design. Section 4 gives 
the conclusions. 

2. DESIGN OF CHAOTIC CRYPTOSYSTEMS BASED 
ON T-S FUZZY MODEL 

First, we represent chaotic systems using T-S fuzzy model. 
The main feature of a T-S fuzzy model is to express the local 
dynamics of each fuzzy implication by linear subsystems. 
The T-S fuzzy model is achieved by fuzzy blending of the 
linear subsystem. Fig. 1 shows the structure of chaos-based 
cryptosystem. It consists of the encrypter (the drive chaotic 
system and an encryption function) and decrypter (the 
response chaotic system and a decryption function). The 
proposed design framework includes five parts.  

Part 1: The drive chaotic systems with external disturbances 
are considered.  

Drive model rule i:  

IF y(t) is Mi, THEN 

)()()( tvDtxAtx idid +=&  

)()( tCxty dd = ,           i = 1, 2, …, r                                    (1) 

where Mi are fuzzy sets, r is the number of fuzzy rules, xd 
1×ℜ∈ n is the state vector of the drive chaotic system, and yd (t) 

is a scalar signal, which transmitted through a public channel.  
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Fig.1. Chaos-based cryptosystem. 

Ai
nn×ℜ∈ and C n×ℜ∈ 1 are system matrices and output 

matrices; v pn×ℜ∈ denotes the external disturbance with an 
upper bound; and Di

mn×ℜ∈  is the disturbance injection 
matrix.  

By utilizing the singleton fuzzifier, product fuzzy inference, 
and weighted average defuzzifier, the defuzzified output of 
the T-S fuzzy model (1) is inferred as follows: 
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with wi (yd (t)) = Mi(yd (t)) for all t.  

Part 2: Given the drive chaotic system (1), we have obtained 
the response system as follow: 

 
Response model rule i:  

IF yd (t) is Mi, THEN 

))()(()()( tytyLtxAtx rdirir −+=&  
)()( tCxty rr = ,               i = 1, 2, …, r                                 (3) 

 

where 1×ℜ∈ n
rx is the state vector of the response chaotic 

system, yd is the output of the response chaotic system, 
Li

1×ℜ∈ n  are the observer gains to be designed later. The 
defuzzification process is given as  
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Part 3: Assumed a signal of plain text p(t), the cipher signal 
is defined by 

 
))(),(()( 1 tKtpEtE nn =                                                         (5) 

 
where K1(t) is a key signal that recovered in the response 
chaotic system. En (.) is a generic encryption function that 
makes use of a key signal K1(t) (Yang et al., 1997). 
According to symmetric algorithms, that is, using the same 
key signal for encryption and decryption functions, we could 
retrieve the plaintext signal from the cipher signal En(t)  

 
))(),(()( 2 tKtEDtp ne=                                                        (6) 

 
where K2(t) is a key signal that recovered in the response 
chaotic system. De (.) is a generic decryption function. Since 
the key signals are recovered from the chaotic systems, they 
are assumed that  
 

))(()( 11 txKtK d=                                                                 (7) 
))(()( 22 txKtK r=                                                                (8) 

 
Part 4: By taking the drive chaotic system (1), the cipher 
signal (5), and the key signal (7), we have obtained the fuzzy 
encrypter by the following rules: 

 
Encrypter model rule i:  

IF dy (t) is Mi, THEN 

))()()(()( tELtvDtxAtx niidid ++=&  
)()()( tEtxCty ndd += ,          i = 1, 2, …, r                         (9) 

 
where )(tyd  is the transmitted signal which embedded in the 
cipher signal En (t). The overall fuzzy encrypter can be 
inferred as 

 

))()()(())(()(
1

tELtvDtxAtyhtx niidi
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i
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&                 (10) 

)()()( tEtxCty ndd +=                                                        (11) 
 

It is necessary to generate the key signal at the response 
chaotic system for retrieving the plaint signal. Therefore, the 
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chaos synchronization between encrypter and decrypter must 
be guaranteed. The decrypter is derived using the technique 
of fuzzy observer design.  

Part 5: Given the response chaotic system (3) and the 
encrypter (9), the fuzzy decrypter can be obtained by the 
following rules 

 
Decrypter model rule i:  

IF dy (t) is Mi, THEN 

))()(()()( tytyLtxAtx rdirir −+=&  
)()( txCty rr = ,              i = 1, 2, …, r                                (12) 

 
The overall fuzzy decrypter is inferred as  

 

)))()(()(())(()(
1

tytyLtxAtyhtx rdiri

r

i
dir −+= ∑

=

&                 (13) 

)()( txCty rr =                                                                     (14) 
 

Hence, the recovered cipher signal is 

 
 )()()( tytytE rdn −= .                                                       (15) 

 
Let the error signal be )()()( txtxte rdx −= . Taking the 
previous considerations into account, (12) has to be designed 
such that )(txr  converges to state )(txd  as ∞→t . These 
two chaotic systems are synchronized between the encrypter 
and decrypter, that is, 0)( →tex  as ∞→t . The decrypter 
(12) could be treated as an observer of encrypter (9). Since 

)()()( txtxte rdx −=  and from (10) and (13), the following 
equation can be obtained: 

 

)()()())(()(
1

tvDteCLAtyhte ixii

r

i
dix +−= ∑

=
&                      (16) 

 
Then, the error of the cipher signal can be described as 

 
)()()()( tCetEtEte xnnEn =−=                                          (17) 

 
Lemma: The chaotic control system will be globally 
asymptotically stable if there exists a common positive 
definite matrix P such that 
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By exploiting Lyapunov stability criterion and LMI theory, 
the following theorem presents a fuzzy observer design for 
disturbance attenuation of the Takagi-Sugeno fuzzy model. 

Proposition:  Consider the error dynamics system (16) and 
(17), the disturbance rejection can be realized by minimizing 
γ  subject to 

 
γ≤

≠ 22
0)(

)()(sup
2

tvteEn
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                        (20) 

 
Theorem: The error dynamics system described by (16) and 
(17) is globally asymptotically stable if there exist a common 
positive definite matrix P, observer gains Li such that  
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where Si = PLi.  

Thus, the observer gains and the minimization γ  can be 
determined by solving (21) based on LMI technology. 

 

3. SIMULATION RESULTS 

This paper uses Lorenz’s equations for the chaos-based 
cryptosystem. The nonlinear Lorenz’s mathematical 
equations are defined as follows: 
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                           (22) 

 
where a,  b, and c are constants.  

Let the Lorenz’s equations be represented as T-S fuzzy model 
(9). The premise variable of fuzzy set rules is chosen as 

)(tyd , which satisfies ][)( ddtyd −∈  and d > 0. The two 
membership functions of fuzzy sets are designed as 

( )
2

)(1))((1
dtytyM d

d
+

= and ( )
2

)(1))((2
dtytyM d

d
−

= , 

respectively. Fig. 2 show the membership functions of fuzzy 
sets. The state vector of the encrypter is defined as 

T
dddd txtxtxx ])()()([ 321= . The system matrices are 
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The output matrix is TC ]001[= , the disturbance 

injection matrices are TDD ]001[21 == . Moreover, the 
decrypter can be described as (12), the state vector of the 
decrypter is T

rrrr txtxtxx ])()()([ 321= .  

After several iterations, we obtain the minimized value 
27.0=γ . The positive definite matrix and the observer gains 

for 27.0=γ  are 
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2L . 

The values of these parameters are a = 8, b = 5/3, c = 21 and 
d = 15. The initial states of the encrypter and decrypter are 

[ ]Tdx 543)0( = and [ ]Trx 543)0( −−−= . In order to 
encrypt the plain signal, a mod chipper is chosen as  

 
))7mod())(30()((5.0)( 1 tKtptEn +=                               (23) 

 
where ) 2sin(2)( ttp π= . For the sake of simplicity, the key 
signal K1(t) = )(1 txd  has been chosen, although any generic 
function ))((1 txK d  could be utilized. Then, the decryption 
function can be written as  

 
))7mod()(30(2)( 2 tKEtp n −=                                   (24) 

 
where the key signal )()( 12 txtK r= .  

The validity of proposed cryptosystem is confirmed by 
simulation results. In order to analysis the robustness of the 
fuzzy observer, a disturbance of pulse signal is added to the 
system during 5th sec to 6th sec. Fig. 3 shows the transmitted 
signal )(tyd . Fig. 4 shows the plain signal )(tp  and the 
recovered plain signal )(tp . Fig. 5 shows the chaos states 

)(1 txd  and )(1 txr . Fig. 6 shows the tracking error signals 
)()()( 111 txtxte rdx −=  for 27.0=γ  and 20, respectively. Fig. 

7 shows the chaos states )(2 txd  and )(2 txr . Fig. 8 shows the 
tracking error signals )()()( 222 txtxte rdx −=  for 27.0=γ  

and 20, respectively. Fig. 9 shows the chaos states )(3 txd  
and )(3 txr . Fig. 10 shows the tracking error signals 

)()()( 333 txtxte rdx −=  for 27.0=γ  and 10, respectively. 
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Fig. 2. Membership functions of fuzzy model. 
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Fig. 3. The transmitted signal. 
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Fig. 4. The plain text and recovered signal. 
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Fig. 5. The chaos states )(1 txd  and )(1 txr  for 27.0=γ . 
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Fig. 6. The tracking error signal )(1 tex . 
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Fig. 7. The chaos states )(2 txd  and )(2 txr  for 27.0=γ .. 
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Fig. 8. The tracking error signal )(2 tex . 
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Fig. 9. The chaos states )(3 txd  and )(3 txr  for 27.0=γ . 
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Fig. 10. The tracking error signal )(3 tex . 
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4. CONCLUSIONS 

In this paper, the design of robust control for chaos-based 
cryptosystem has been proposed. The nonlinear chaotic 
dynamics are represented as the T-S fuzzy model. The 
decrypter is designed as a global observer of the encrypter. 
The robust stabilization conditions are derived in the form of 
LMI. Computer simulations demonstrate that the proposed 
cryptosystem owns robustness performance against the 
external disturbance. 
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