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Abstract: In many biotechnological processes, the optimal productivity corresponds to oper-
ating at critical substrate concentration. The problem, then, consists of maximizing the feeding
rate compatible with the critical constraint, so as to avoid overflow metabolism. This value may
be unknown and may change from experiment to experiment and from strain to strain, and even
in the same experiment due to changing environmental and/or process conditions. In previous
works different strategies to cope with this problem have been applied to microorganisms of
industrial interest, such as E. coli and S. cerevisiae. Thus, probing strategies have been used
in fedbatch bioreactors to operate close to their maximum oxygen transfer rate while avoiding
acetate accumulation in the first case. In the fed-batch fermentation of S. cerevisiae a small
amount of ethanol is allowed to be present in the culture, and the control problem in one of
regulating the ethanol concentration a a given low reference value.
Here an approach based on sliding mode reference conditioning is proposed to drive the
system to a maximum specific growth rate compatible with a given constraint (e.g. ethanol
concentration lower than a given threshold). It is shown how this approach is robust with
respect to uncertainties in the process dynamics and with respect to unknown perturbations
affecting the critical point.

Keywords: Biotechnology; fermentation processes; nonlinear control; sliding-mode control;
reference adaptive control; constraint satisfaction problems; optimal search techniques; robust
performance.

1. INTRODUCTION

Fed-batch processes are extensively used in the expanding
biotechnological industry. The requirements for an efficient
industrial production are encouraging the development of
robust and reliable controllers. For this reason, fed-batch
process control is receiving great attention by the research
community. The control problem is characterized by mod-
eling approximations, parameter uncertainties, nonlinear
and non-minimum phase dynamics, scarce on-line mea-
sures, etc.

In many fermentation processes optimal productivity cor-
responds to operating at critical substrate concentration.
But this value changes from experiment to experiment and
from strain to strain, and even in the same experiment due
to changing environmental and/or process conditions.

In some cases, the critical operating point might corre-
spond to the maximum of some kinetic function. In such a
case, when both uncertainty and non-monotonous kinetics
are involved extremum seeking strategies are used in Titica
et al. [2003]. Yet, if limitations are present – eg. due the
production of additional toxic or inhibitory metabolites –
the optimal point may not correspond to a maximum of the
kinetic rates. Thus, for instance, the optimal production
of biomass with Saccharomyces cerevisiae is attained for
a feeding profile that avoids the production of ethanol,

and is well below the maximum attainable specific growth
rate (see Sonnleitner and Käpeli [1986]). In E. coli acetate
accumulates under fully aerobic conditions by overflow
metabolism (Xu et al. [1999]). The problem, then, consists
of maximizing the feeding rate compatible with the critical
constraint, so as to avoid overflow metabolism. In DeHaan
and Guay [2005], an adaptive extremum-seeking controller
with a reference update law is used to cope with state
constraints.

Besides limitation due to the production of surplus
metabolites, oxygen limitation may affect aerobic biore-
actions. For small scale vessels oxygen can be easily sup-
plied in excess by increasing the aeration rate and the
stirrer velocity, provided sheer stress does not imperil the
structural integrity of the cells. Yet, for large bioreactors
there is a limit in the oxygen concentration that can be
kept. To cope with shortage in the oxygen supply different
strategies have been proposed, basically trying to attain a
specific growth rate so as to operate close to the maximum
oxygen transfer rate (Oliveira et al. [2004], Velut et al.
[2007]). Thus, in Velut et al. [2007] a probing strategy
is applied to E. coli fed-batch fermentation to dose the
substrate feed avoiding acetate accumulation. The control
goal is to maximize the feeding rate compatible with the
mentioned constraint while coping with the saturation of
the maximum oxygen transfer rate.
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In Valentinotti et al. [2003] the maximization of biomass
productivity in the fed-batch fermentation of S. cerevisiae
is analyzed. They address the problem of keeping the
substrate concentration at an a priori unknown critical
value: that above which ethanol is produced (Sonnleitner
and Käpeli [1986]). To this end, a small amount of ethanol
is allowed to be present in the culture, and convert the
control problem in one of regulating the ethanol concen-
tration a a given low reference value. Previous attempts to
regulate the ethanol concentration can be found in Chen
et al. [1995] where an adaptive feedback linearizing control
was used. In Valentinotti et al. [2003], it is assumed that
the bioreactor is operated in such a way that a small
production of ethanol always takes place. A two-degree-of-
freedom adaptive controller is applied on simplified linear
models. In Renard et al. [2006] and Dewasme et al. [2007]
the approach is improved by means of a two-degrees-of-
freedom controller with Youla parametrization. Both off-
line and on-line estimation of parameters are required.

In the present work, we take advantage of the interesting
features and the confined dynamics of a system operating
on sliding mode to address the important issue of ethanol
limitation in the fed-batch fermentation of S. cerevisiae.
However, differing from conventional sliding mode con-
trol applications, sliding regimes are exploited here as a
transitional mode of operation, in which the discontinuous
signal is used for conditioning the rate of change of the
reference signal instead of being the main control action.
The proposed technique is inspired by recent proposals
of the co-authors, where they have combined reference
conditioning techniques (originally introduced by Hanus
et al. [1987]) and SM ideas to overcome windup in SISO
processes and control directionality problems in MIMO
systems (Mantz et al. [2004], Garelli et al. [2007]).

A very interesting property of the proposal is that, due to
the robustness properties of the SM to reject disturbances,
the SM conditioning dynamics is not affected by the
main (inner) control loop. Thus, the dynamics of the
compensation (outer) loop may be designed independently
of the main loop design. Because of the nature of the
proposed scheme, the main drawbacks of variable structure
control (i.e. chattering problems and reaching mode) do
not affect the current application.

The outline of the paper is as follows. Section 2 intro-
duces the the SM reference conditioning technique for con-
strained non-linear systems as a general variable structure
control problem. The proposed methodology is applied in
Section 3 to S. cerevisiae fed-batch fermentations, while
the corresponding simulation results are presented in Sec-
tion 4. Finally, some concluding remarks are given.

2. PROBLEM STATEMENT

Let the system

Σ :


ẋ = f(x) + g(x)u
y1 = h1(x)
y2 = h2(x)

(1)

where x ∈ X ⊂ Rn is the state vector, u ∈ R is the
control input (possibly discontinuous), f : Rn → Rn and
g : Rn → Rn two vector fields and h(x) : Rn → R a scalar
field, all of them defined in X, with g(x) 6= 0, ∀x ∈ X.

Fig. 1. SM establishment on s(x) = 0 to satisfy system
constraints.

Variables y1 and y2 are both real valued system outputs,
y1 is the main controlled variable, while y2 is a variable to
be bounded because of unavoidable system constraints.

With the aim of satisfying the constraint
y2 ≤ ȳ2 (2)

the following variable structure control law is defined

u =
{
u+(x) if s(x) > 0
0 if s(x) ≤ 0 u+(x) 6= 0. (3)

where u+(x) is a smooth function of x and

s(x) = y2 − ȳ2 +
l−1∑
i=1

τi y
(i)
2 (4)

being l the relative degree between the output y2 and the
input u, y(i)

2 the ith derivative of y2, and τi constant gains.
Fact 1. Since s : X → R, the set:

S = {x ∈ X : s(x) = 0}, (5)
defines a regular manifold in X of dimension n− 1, which
is usually called sliding or switching surface.

Assume that the initial condition of the system Σ lies
within the set Φ = {x|y2 < ȳ2}, i.e. s(x) < 0. Therefore,
the surface S is reached provided the own trajectories of
the system lead to the exterior of Φ. In order to avoid the
system violating the constraint, the discontinuous action
u must assure that the vector field of the continuous sub-
system f(x) + g(x)u+ points locally towards the manifold
S. This situation is geometrically represented by Figure 1.

Mathematically, the following inequalities must be satis-
fied locally around S:

ṡ(x) =
{
Lfs+ Lgs u

+ < 0 if s(x) > 0
Lfs > 0 if s(x) < 0 (6)

The second equation in (6) is satisfied when the system
tries by itself to leave the set Φ. The first equation implies
that for a sliding regime to be established on s(x) = 0,

Lgs =
∂s

∂x
g 6= 0, (7)

must hold locally on S. The necessary condition (7)for SM
imposes that the sliding surface must have unitary relative
degree with respect to the discontinuous action, and this
is the reason why y(l−1)

2 is included in (11).
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Assume l < n. In order to obtain the output dynamics
which results from designing the switching function as in
(11), consider the transformation:

z = φ(x) =



h2(x)
Lf h2(x)

...
L

(l−1)
f h2(x)
φl+1

...
φn


, (8)

where φk with l + 1 ≤ k ≤ n are arbitrarily chosen
functions such that φ(x) remains a diffeomorphism. By
applying z = φ(x) the system Σ can be led to its normal
form [Isidori, 1995]



ż1 = Lf h = z2
ż2 = L2

f h = z3
...

żl−1 = Ll−1
f = zl

żl = Llf h+ LgL
l−1
f u

(9)


żl+1 = ql+1(z)

...
żn = qn(z).

(10)

The dynamics of the output y2 can therefore be determined
by means of the sliding surface design. Particularly, calling
ξ = [z1 z2 . . . zρ]T and η = [zρ+1 zρ+2 . . . zn]T , the choice
made in (11) can be rewritten as:

s(ξ) = ȳ2 − z1 − τ1z2 − ...− τl−1zl. (11)

During SM s(ξ) = 0, and thus zl = (1/τl−1)[ȳ2 − z1 −
τ1z2 − ... − τl−2zl−1]. Replacing in (9)-(10) the reduced
SM dynamics results:

ż1 = z2
ż2 = z3

...
żl−1 = (1/τl−1)[ȳ2 − z1 − τ1z2 − ...− τl−2zl−1]

(12)

{ η̇ = q(ξ, η). (13)

With a proper choice of the gains τi, the output error and
its derivatives will tend to zero with the desired dynamics.
For the case considered, ξ0 = [ȳ2 0 . . . 0]T ∈ Rl in steady
state. The hidden dynamics η̇ = q(ξ0, η) = q̄(η) must be
stable in order to implement the proposed strategy, which
means that the transfer function between u and y2 must
be minimum phase.

To this end, it is interesting to notice that (1) may
represent the joint dynamics of a system consisting of two
control loops as depicted in figure 2.

The internal loop in figure 2 represents a system
ẋp = fp(xp, p) + gp(xp)v (14)

Fig. 2. Reference conditioning scheme.

where p ∈ IRp is a time-varying unmeasurable perturba-
tion signal, the outputs are defined as in (1), and v ∈ IRu

the control input.
Fact 2. Assume that there is an output feedback controller

ẋc = g(xp, xc)
v = k(xp, xc, e)
e = r − y1

(15)

such that the output y1 can be driven to a feasible reference
value r, and leaves the internal loop stable.

Now, consider the constraint 2.
Fact 3. There exists a maximum reference value rmax =
ξ(x, p) for the output y1, such that the constraint (2) is
violated whenever a reference greater that rmax is sought.

The control goal is to drive the reference r to the unknown
rmax in such a way that the constraint (2) is satisfied,
robustly with respect to the process dynamics and the
unknown perturbation p. The problem can be seen as that
of maximizing the output reference r while achieving the
set Φ(x, p) = {(x, p) | y2 ≤ ȳ2} to be robustly invariant.

The outer reference conditioning loop depicted in figure 2,
with S defined as in (11) and F being the filter

ṙ = −α (r − r̄) + αu (16)

with u defined in (3), acts as the reference seeking element.

Notice that by defining x = (xp, xc, r) the scheme just
described can be cast within the initial general framework.

3. APPLICATION TO S. CEREVISIAE

3.1 Process model

The model of S. cerevisiae metabolism based on the
bottleneck hypothesis of Sonnleitner and Käpeli [1986] has
been extensively used in recent works (e.g. see Valentinotti
et al. [2003], Renard et al. [2006], Dewasme et al. [2007]).
Its main traits are briefly summarized in the following.
The mass balance macroscopic model is given by (17):
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ẋ = (γ1r1 + γ2r2 + γ3r3)x− xF
v

ṡ = −(r1 + r2)x+ (si − s)
F

v

ė = (γ4r2 − r3)x− eF
v

v̇ = F

(17)

with reaction rates and kinetic terms given by (18)
and (19) respectively.

r1 = min (rg,
ro
γ5

)

r2 = max (0.0, rg −
ro
γ5

)

r3 = max (0,min (re,
ro − γ5rg

γ6
))

(18)

rg = µm,g
s

ks,g + s

re = µm,e
e

ks,e + e

ro = µm,o
o

ks,o + o

(19)

Table 3.1 shows typical values of the models parameters.

Yield coefficients
γ1 γ2 γ3 γ4 γ5 γ6

0.49 0.05–0.12 0.5–1.2 0.48 0.396 1.104
Kinetic parameters

µm,g ks,g µm,e ks,e µm,o ks,o
3.5 0.01 0.17 0.1–0.5 0.256 0.1

From F = λxv and using standard notation, the model
(17) can be written as

Σ :


ẋ = (µx − λx)x
ṡ = −µg + λ(si − s)x
ė = (µe − λe)x

(20)

where the volume dynamics have not been included for the
sake of notation simplicity. Indeed, as the fed-batch case
is considered, this dynamics must be taken into account
in the inner-loop controller design. The model given by
equation (20) will be used in the following for constrained
control purposes.

3.2 Problem statement

Differently from the approach used in Valentinotti et al.
[2003], Renard et al. [2006] and Dewasme et al. [2007]
where the goal is to regulate ethanol at a given low set-
point, the goal here is to control the biomass specific
growth rate γ1r1 + γ2r2 + γ3r3 in (17) to its maximum
value such that the ethanol concentration e lies below a
given threshold (i.e y2 = h2(x) = e). Notice that the
desired reference for the biomass specific growth rate is
unknown and possibly time-varying (due, for example, to
variations in the available oxygen). Assuming the desired
reference is obtained by some outer loop to be designed
later, it can be robustly reached by means of the dynamic
controller proposed in Picó-Marco et al. [2005], Battista
et al. [2006], and Battista et al. [2007]. This inner loop
controller takes the general form:

F (x, v) = λε(µ̂, µr)xv
4
= k (λ, x, µ̂, µr) v

λ̇ = g (λ, x, v, µr)
(21)

where µ̂ is an estimation of the biomass specific growth
rate γ1r1 + γ2r2 + γ3r3 and µr its desired reference value.
The first can be obtained using high gain observers from
measurements of biomass, as explained in Battista et al.
[2007]. On-line biomass measurements are required for this
inner-loop controller. They can be obtained using several
commercially available devices (see for instance Navarro
et al. [2004], Kivijarju et al. [2007]).

In order to simplify the proposed algorithm description,
the following controller –also considered in Battista et al.
[2006]–will be implemented in the inner loop

C(s) :
{
λ = λr(1− k

µr − µx
µd

) (22)

3.3 Reference seeking

A sliding-mode reference conditioning outer loop is used
to seek the biomass specific growth rate reference value µr.

The first-order filter F is intended to smooth out the con-
ditioned reference signal, and it should be designed much
faster than the closed loop dynamics in order to avoid
degrading the original (inner) control loop performance
when ethanol constraints are not reached. Its state space
representation is given by

F :
{
ẋf = −αxf + α(µd + w)
µr = xf

(23)

According to the sign of the switching function s(e), the
discontinuous signal w takes the following values

ω =
{
−µ̄r s(e) > 0

0 s(e) ≤ 0, (24)

where µ̄r is an upper threshold on the biomass specific
growth rate. The output of the filter, µr, is then used as
reference by the inner loop controller.

In order to design the switching function s(e), it is illus-
trative to express the whole system composed of the bio-
reactor (20), the controller (22) and the conditioned filter
(23) in the form as system (1) is described. To this end, a
new state vector is defined as χ , [x s e λ]T . The whole
system description results

χ̇ =

 (µx − λx)x
−µg + λ(si − s)x

(µe − λe)x
λrkαµr/µd

+

 0
0
0

−λrkα/µd

w+

+

 0
0
0

−λrkαr̄/µd + λrk/µdµ̇x


e = [0 0 1 0]χ

(25)

Notice the from the ethanol concentration e to the new
input signal ω the relative degree is l = 2. Moreover, there
is strong invariance with respect to the derivative of the
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biomass specific growth rate µ̇x, as this term, seen as a
perturbation, is collinear with the control signal w.

Hence, assuming the ethanol concentration can be mea-
sured, the sliding surface is designed as:

S = e− E + τ ė (26)
where e ≤ E is the desired constraint, and the derivative of
the ethanol concentration has to be added so as to achieve
the unitary relative degree condition already mentioned in
the previous section.

As the kinetic term µe is not assumed to be known, the
derivative ė must be estimated. This can be done using
different approaches. Exact differentiation can be used
from measurements of e (see Levant [2003]). On the other
hand, µe can be estimated using a high gain observer in
the same way as µ̂. The other terms in (26) are known.

Recall, the goal is not to reach sliding regime. This is only
established if the constraint is to be violated. In such a
case, it can be easily deduced from (25) and (26) that the
sliding dynamics are given by

ė = −1
τ
e+

ȳ2
τ

(27)

Thus, the ethanol concentration is smoothly driven to the
constraint ȳ2 with dynamics imposed by the user defined
coefficient τ . The sliding regime is abandoned as soon as
the system trajectories point inside the allowed region.

Concerning the internal dynamics, if biomass x and sub-
strate s are chosen as the two last coordinates in (8), the
internal dynamics coincide with the dynamics of the inner-
loop, which can be seen to be stable in Battista et al.
[2006].

4. SIMULATIONS

The model (17) with parameters chosen from table 3.1
is used to show the performance of the scheme proposed.
Ethanol is assumed to be measured. In turn, the inner-
loop control uses biomass and volume as the only measured
variables. Both, the inner-loop control with and without
the sliding-mode based reference conditioning are run. In
both cases, limitations in oxygen have been simulated
by considering it varies following a sinusoidal. Thus, no
real situation has been looked after concerning this, but
a simple effective way to show robustness with respect
to unmeasured disturbances. Noise was added to all the
measurements. Figures 3,4,5 and 6 show some of the results
obtained. As it can be seen in figure 4, the conditioning
loop achieves the goal. The sliding regime is reached when
oxygen limitation activates the fermentative path (see
figure 5). As soon as the process conditions allow it, the
sliding regime is left (bottom subplot). Notice how the
reference to be tracked by the inner-loop control varies
accordingly. In the top subplot, where no reference condi-
tioning is used, activation of the fermentative path leads to
a temporal decrease in growth rate, followed by a growth
rate overshoot as ethanol in excess is oxidized. If reference
conditioning is used, no ethanol in excess is produced
(middle subplot). Thus the specific growth rate is the
maximum compatible with the constraint on ethanol. In
figure 6 the ethanol and its derivative trajectories highlight
the constraint satisfaction (e ≤ 0.1) achieved with the
reference conditioning.

Fig. 3. Evolution of the biomass, ethanol, glucose and
oxygen concentrations for the system with the original
controller.

Fig. 4. Evolution of the biomass, ethanol, glucose and oxy-
gen concentrations for the system with SM reference
conditioning.

.

5. CONCLUSION

An approach based on sliding mode reference conditioning
has been proposed to drive the system to a maximum
specific growth rate compatible with a given constraint. It
has been shown how this approach is robust with respect
to uncertainties in the process dynamics and with respect
to unknown perturbations affecting the critical point.
Although it has been showed applied to limit ethanol
production in S. cerevisiae fed-bath fermentations, the
scheme can be applied to seek the maximum reference
(tantamount flow rate) compatible with a given constraint
in the state in any system with the general characteristics
described in section 2.

ACKNOWLEDGEMENTS

Research in this area is partially supported by the Ar-
gentine and Spanish governments (ANPCyT PICT2003

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12617



Fig. 5. Biomass rate with and without SM reference
conditioning, and sliding surface.

Fig. 6. Evolution of ethanol and its derivative with (small
loop) and without SM reference conditioning.

11-14111 and CONICET Grant 691/04), and (CICYT
DPI2005-01180), and the European Union (FEDER).

REFERENCES
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