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Abstract: A method is presented for the computation of an upper bound for the �∞–gain
of discrete–time BIBO–stable linear systems. The bound is proved to be tight for single–input
positive systems. The approach is suitable to deal with the problem of the synthesis of a static
output feedback ensuring that the �∞–gain of the closed loop dynamics is below a desired
threshold: a sufficient criterion is provided which consists of the solution of a system of linear
inequalities. Numerical examples are reported.
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1. INTRODUCTION

The problem consisting of designing a controller so that
the �∞–gain of the closed loop dynamics is below a de-
sired threshold, or minimized, is called the �1–control
problem and was introduced in (Vidyasagar, 1986) . The
�1 control is a natural approach to the synthesis in
the presence of persistent noise disturbance, for this
reason the problem has been the subject of a certain
amount of literature (Dahleh–Pearson, 1987; Bobillo–
Dahleh, 1993; Shamma, 1996; Khammash, 1996; Elia–
Dahleh, 1998; Bamieh–Dahleh, 1998) . The main proposed
approaches take advantage of the convex structure of the
set of all stabilizing controllers and, either the problem is
transformed into an infinite dimensional linear optimiza-
tion, or a linear (or quadratic) programming formulation is
presented. Hence, algorithmic procedures are carried out
for numerical approximation of the solution. Differently
from the case of dynamic controllers, the problem of min-
imizing the �∞–gain by means of static output feedback
has been less investigated. In this case, the main difficulties
rise from the fact that the set of stabilizing control gains
is not convex.
Assuming that a good synthesis methodology may be
found if suitable analysis tools are available, we have
first turned our attention to the problem of evaluating
the �∞–gain of a BIBO–stable linear system. In this re-
spect, the main results (Balakrishnan–Boyd, 1992; Hurak
et al., 2002) are still based on algorithmic procedures that
do not appear to be practical for extension to control
synthesis problems.
The main contribution of this paper consists in providing
an easy method for the computation of an upper bound
for the �∞–gain of a BIBO–stable linear system. Although
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the proposed bound is not always feasible (i.e., it can
be computed only for some particular systems) and often
quite conservative, yet it turns out to be useful in some
interesting cases. In particular, the bound is proved to be
tight for single–input positive systems. Furthermore, the
proposed method can be extended to deal with control
synthesis: a sufficient criterion is provided that allows one
to find a static output feedback u = Ky so that the
�∞–gain of the closed loop dynamics is below a desired
threshold. This can be done by solving a system of linear
inequalities.

The paper is organized as follows: in Section 2 we formu-
late the problem; Section 3 is concerned with the analysis
of the �∞–gain while the control synthesis problem is faced
in Section 4 .

Notation and terminology: A square matrix A ∈
R

n×n is said to be Schur iff all its eigenvalues have
magnitude strictly less than 1 . By ei we denote the i–
th vector of the canonical basis. Let x ∈ R

n: x′ is the
transpose of x , xi := e′ix is the i–th component of the
vector. For M ∈ R

h×k, Mi,j := e′iMej is the (i, j)–th
entry of the matrix. Ik is the identity matrix in R

k×k.
R

+ := {x ∈ R |x ≥ 0} .
By a signal we mean a function v : N → R

h×k , whereas
v(t) denotes its value at time t . The signal v is said to
be positive iff ∀ i = 1, . . . , h , ∀ j = 1, . . . , k and ∀ t ∈ N ,
vi,j(t) ≥ 0 . The null signal v ≡ 0 is denoted by 0 .

2. PRELIMINARIES AND PROBLEM
FORMULATION

Let us introduce the normed space of signals �∞(Rp) .
First, recall that the infinity norm of a matrix M ∈ R

h×k

is given by:

‖M‖∞ = max
i=1,...,h

k∑
j=1

|Mi,j | . (1)

Consider
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�∞(Rp) :=
{
v : N → R

p | sup
t∈N

‖v(t)‖∞ < +∞}
endowed with the norm

‖v ‖∞ := sup
t∈N

‖v(t)‖∞ .

Consider now a discrete–time linear system

Σ(A,B, C) :=

⎧⎨
⎩

x(t + 1) = Ax(t) + B
(
u(t) + e(t)

)
y(t) = Cx(t)
x ∈ R

n, u , e ∈ R
m, y ∈ R

q,
(2)

where u(t) is the control variable, e(t) is an input–
matched disturbance and y(t) is the measured output.
Let g be the impulse response of the system, namely

g(t) =
{

0 if t = 0
CAt−1B if t ≥ 1 ,

and G(z) :=
∑+∞

t=0 g(t)z−t = C(zI − A)−1B be the
corresponding transfer matrix.
System (2) is said to be BIBO–stable iff ∀ u ∈ �∞(Rm) it
holds that g∗u ∈ �∞(Rq) , where (g∗u)(t) :=

∑t−1
τ=0 g(t−

τ)u(τ) . In this case, it is well known that the linear
operator

G : �∞(Rm) → �∞(Rq)
u 	→ g ∗ u

is bounded and its induced operator norm

‖G‖∞ := sup
u∈�∞(Rm)\{0}

‖g ∗ u‖∞
‖u‖∞

is such that

‖G‖∞ = max
i=1,...,q

+∞∑
τ=0

m∑
j=1

|gi,j(τ)| = (3a)

= max
i=1,...,q

m∑
j=1

+∞∑
τ=0

|gi,j(τ)| . (3b)

More details can be found in (Desoer–Vidyasagar, 1975) .
According to equation (1) , the expression in (3b) can be
rewritten as

‖G‖∞ =

∥∥∥∥∥∥∥
⎛
⎜⎝

‖G1,1‖∞ · · · ‖G1,m‖∞
...

. . .
...

‖Gq,1‖∞ · · · ‖Gq,m‖∞

⎞
⎟⎠

∥∥∥∥∥∥∥
∞

, (4)

where ‖Gi,j‖∞ =
∑+∞

τ=0 |gi,j(τ)| is the induced operator

norm of �∞(R) 
 v
Gi,j	−→ gi,j ∗v ∈ �∞(R) . Thus, the study

of ‖G‖∞ for a MIMO system can be reduced to that for
SISO systems.
The operator G is referred to as the input/output operator
associated to system (2) and ‖G‖∞ is called the �∞–
gain of the system. We use script symbols to denote
input/output operators.
Remark 1. The norm ‖G‖∞ should not be confused with
the norm ‖G‖∞ : the former is concerned with the in-
put/output operator defined on �∞(Rm) (hence, in the
time domain); the latter is the H∞–norm of the transfer
matrix G(z) and, actually, is the �2–gain of the system.
This paper deals with ‖G‖∞ only.

System (2) is BIBO–stable if and only if the poles of
G(z) have magnitude strictly less than 1. Therefore, if
system (2) is reachable and observable, then it is BIBO–
stable if and only if A is a Schur matrix.
A particularly interesting class of systems (2) is:

Definition 1. (Farina–Rinaldi, 2000) System (2) is said to
be externally positive iff the impulse response g is positive.

The apparent drawback with the expressions for ‖G‖∞
given in equations (3) is that, in general, they require the
computation of an infinite series. We are hence interested
in the following two problems:

Problem 1 (Analysis of the �∞–gain) For a given
BIBO–stable system (2) , find γ > 0 such that ‖G‖∞ ≤ γ .

Problem 2 (Control synthesis: static output feed-
back) For a given system (2) and γ > 0 , find K ∈ R

m×q

such that, under the static output feedback u(t) = Ky(t) ,
the closed loop system{

x(t + 1) = (A + BKC)x(t) + Be(t)
y(t) = Cx(t) (5)

is BIBO–stable and, denoted by GK its input/output
operator, it holds that ‖GK‖∞ ≤ γ .

In (Boyd–Doyle, 1987) , an upper bound for the �∞–gain
of a linear system is given in terms of the singular values of
the Hankel operator (Glover, 1984) . This result has been
the basic tool to carry out numerical algorithms that solve
Problem 1. E.g., in (Balakrishnan–Boyd, 1992; Hurak et
al., 2002) , the series defining ‖G‖∞ is truncated and the
result of (Boyd–Doyle, 1987) is used to provide a bound on
the norm of the tail of the series. Although these methods
allow one to find good estimates of the �∞–gain of a
system, on the other hand do not appear to be practical to
deal with control synthesis problems. In this paper instead,
we propose a method to bound the �∞–gain of a system
that, even if quite conservative in general, it is suitable to
deal also with Problem 2 .

3. A FACTORIZATION APPROACH TO THE
ANALYSIS OF THE �∞–GAIN

In this section we consider Problem 1 . A solution is
proposed which is based on the factorization of the overall
dynamics in terms of subsystems whose computation of
the �∞–gain is simple. The proposed method cannot be
applied to any system and, in general, may be quite
conservative. On the other hand it is shown to be tight
for an interesting class of systems, namely single–input
externally positive systems.
FIR systems and externally positive systems are two cases
where the computation of the �∞–gain is simple.
Definition 2. Consider system (2) and let g be its impulse
response. The system is said to be finite impulse response
(FIR) iff ∃ r ∈ N , such that ∀ t > r , g(t) = 0 .

Therefore, system (2) is FIR if and only if G(z) =
1
zr

∑r
t=1 g(t)zr−t for some r ∈ N . For a FIR system,

the computation of ‖G‖∞ is trivial as the series in
equation (3a) is a finite sum. Hence, ‖G‖∞ = max

i=1,...,q∑r
τ=1

∑m
j=1 |gi,j(τ)| . Let us associate to a FIR system the

matrix
G :=

[
g(1) | · · · | g(r)

] ∈ R
q×mr, (6)

then, according to equation (1) ,
‖G‖∞ = ‖G‖∞ . (7)

As far as externally positive systems are concerned:
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Fig. 1. Block diagram representation of the factorization
of G(z) considered in Theorem 1 .

Proposition 1. ( �∞–gain of externally positive sys-
tems) If system (2) is BIBO–stable and externally posi-
tive, then

‖G‖∞ = ‖G(1)‖∞ .

Proof. Because g is positive, then ∀ i = 1, . . . , q and
∀ j = 1, . . . , m ,

Gi,j(1) =
+∞∑
t=0

gi,j(t) = ‖Gi,j‖∞ .

The thesis follows by equation (4) .

We are ready to introduce the main result of this section.
Consider system (2) , assume without loss of generality
that q ≥ m and let G(z) be the transfer matrix of the
system. It is always possible to factorize G(z) in the form

G(z) = N(z)
(
Im + D(z)

)−1
, (8)

where N(z) and D(z) are the transfer matrices of FIR
systems 1 (see Fig. 1) . Three methods to obtain this
factorization are described in next Remark 2 .
Theorem 1. (Bound for ‖G‖∞ ) Consider system (2) ,
assume without loss of generality that q ≥ m and let
the transfer matrix of the system be factorized as in
equation (8) . If ‖D‖∞ < 1 , then the system is BIBO–
stable and

‖G‖∞ ≤ ‖N‖∞
1 − ‖D‖∞ .

Proof. Denote by Im : �∞(Rm) → �∞(Rm) the identity
operator. By a well known result in functional analysis,
since ‖D‖∞ < 1 , then the operator (Im + D)−1 :
�∞(Rm) → �∞(Rm) is well–defined and ‖(Im+D)−1‖∞ ≤

1
1−‖D‖∞

. Also, N : �∞(Rm) → �∞(Rq) because N(z) is a
FIR system. From the factorization (8) of G(z) , it follows
that G = N ◦(Im +D)−1 : �∞(Rm) → �∞(Rq) and hence,

‖G‖∞ ≤ ‖N‖∞‖(Im + D)−1‖∞ ≤ ‖N‖∞
1 − ‖D‖∞ .

Remark 2. (Computation of the factorization (8))
Let us present some methods that, for any strictly proper
transfer matrix G(z) ( q ≥ m ) , allow one to obtain a
factorization as in equation (8) .

• Method 1: factorization (8) can be obtained in the
form of a right coprime rational matrix factorization of
G(z) (see (Kucera, 1991)) . The standard state space
approach to obtain such a factorization is the following:
let Σ(A, B,C) be a reachable and observable linear system
whose transfer matrix is G(z) and K be a matrix such
that all the eigenvalues of A + BK are in 0 . Then⎧⎨

⎩
N(z) = C

(
zI − (A + BK)

)−1
B

D(z) = K
(
zI − (A + BK)

)−1
B

1 If q ≤ m , consider a factorization G(z) =
(
Iq + D(z)

)−1
N(z) .

are such that equation (8) holds 2 .

Next methods 2 and 3 are purely algebraic approaches.

• Method 2: let d(z) be the monic least common multiple
of the denominators of G(z) and r := deg(d) . Let

D̄(z) :=
d(z)
zr

Im ,

then equation (8) holds with{
N(z) = G(z)D̄(z)

D(z) = D̄(z) − Im .

• Method 3: for j = 1, . . . , m , let dj(z) be the monic
least common multiple of the denominators appearing in
the j–th column of G(z) and rj := deg(dj) . Let 3

D̄(z) := diag
{

d1(z)
zr1

, . . . ,
dm(z)
zrm

}
,

then equation (8) holds with{
N(z) = G(z)D̄(z)

D(z) = D̄(z) − Im .

In general, N(z) and D̄(z) resulting from method 3 are
not right coprime rational matrices. In case they are, the
factorizations resulting from methods 1 and 3 coincide.

Next Proposition 2 is just a particularization of Theorem 1
to single–input systems. This particular case allows us to
point out that, for a special class of externally positive
single–input systems, the bound resulting from Theorem 1
is indeed an equality (see Corollary 1 below) .
Proposition 2. (Single–input systems) Consider the
transfer matrix G(z) of a strictly proper linear system
with u ∈ R and y ∈ R

q . Let d(z) = zn − ∑n
k=1 fkzk−1

be the polynomial of the poles of the system and G(I)(z)
be defined by G(I)

k (z) := zk−1/d(z) , k = 1, . . . , n . Con-
sider C ∈ R

q×n such that G(z) = CG(I)(z) . If f :=∑n
k=1 |fk| < 1 , then the system is BIBO–stable and

‖G‖∞ ≤ ‖C‖∞
1 − f

.

Proof. Since
∑n

k=1 |fk| < 1 , then the poles of G(z) have
magnitude strictly less than 1 and the system is BIBO–
stable. As G(z) = CG(I)(z) , then G(z) can be factorized
in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(z) = N(z)
(
1 + D(z)

)−1
, with

N(z) =
1
zn

C

⎛
⎜⎜⎝

1
z
...

zn−1

⎞
⎟⎟⎠ =

1
zn

n∑
t=1

Cetz
t−1

D(z) =
−∑n

t=1 ftz
t−1

zn
.

(9)

Thus, ‖D‖∞ =
∑n

t=1 |ft| < 1 and ‖N‖∞ = ‖C‖∞
(
see

equation (7)
)
. We can hence apply Theorem 1 which yields

2 If q ≤ m , just consider a left coprime rational matrix factorization:
let L be such that all the eigenvalues of A + LC are in 0 and let

N(z) = C
(
zI − (A+LC)

)−1
B and D(z) = C

(
zI − (A+LC)

)−1
L .

3 Where diag
{

d1(z)
zr1 , . . . ,

dm(z)
zrm

}
:=

∑m

j=1

dj(z)

z
rj eje′j , ej ∈ Rm.
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‖G‖∞ ≤ ‖N‖∞
1 − ‖D‖∞ =

‖C‖∞
1 − f

.

Corollary 1. Under the assumptions of Proposition 2 , if
∀ k = 1, . . . , n , fk ≥ 0 and, ∀ i = 1, . . . , q and ∀ j =
1, . . . , n , Ci,j ≥ 0 , then

‖G‖∞ =
‖C‖∞
1 − f

.

Proof. The impulse response is positive, in fact: system
Σ(F,B,C) , where

F =

⎛
⎜⎜⎝

0 1 . . . 0
...

. . . . . .
...

0 0 . . . 1
f1 f2 . . . fn

⎞
⎟⎟⎠ and B = en ,

is a realization of G(z) and the entries of the matrices F ,
B and C are non–negative. Therefore, by Proposition 1 ,
‖G‖∞ = ‖G(1)‖∞ and, by equation (9) ,

‖G(1)‖∞ =

∥∥∥∥∥∥∥
1

1 − f
C

⎛
⎜⎝

1
...
1

⎞
⎟⎠

∥∥∥∥∥∥∥
∞

=
‖C‖∞
1 − f

.

Let us illustrate, through numerical examples, how to
apply Theorem 1 .
Example 1. Consider a MIMO system whose transfer ma-
trix is

G(z) =

⎛
⎜⎜⎝

1
z

1
z − 1/2

1
z − 1/4

1
z − 1/5

⎞
⎟⎟⎠ .

According to method 3 in Remark 2 ,

D̄(z) = diag
{

z(z − 1/4)
z2

,
(z − 1/2)(z − 1/5)

z2

}

and G(z) = N(z)
(
I2 + D(z)

)−1 with

D(z) :=
1
z2

[(−1/4 0
0 −7/10

)
z +

(
0 0
0 1/10

)]
and

N(z) :=
1
z2

[(
1 1
1 1

)
z +

(−1/4 −1/5
0 −1/2

)]
.

Thus,

D =
[
d(1) | d(2)

]
=

(−1/4 0 0 0
0 −7/10 0 1/10

)
,

and, according to equation (7) , ‖D‖∞ = ‖D‖∞ = 4
5 < 1 .

Similarly,

N =
[
n(1) |n(2)

]
=

(
1 1 −1/4 −1/5
1 1 0 −1/2

)
,

and ‖N‖∞ = ‖N‖∞ = 5
2 . Hence, by Theorem 1 ,

‖G‖∞ ≤ 5/2
1 − 4/5

=
25
2

.

In this example, method 3 provides a right coprime ra-
tional matrix factorization of G(z) (i.e., it coincides with
method 1) . Method 2, instead, cannot be applied because
d(z) = z(z − 1/2)(z − 1/4)(z − 1/5) = z4 − 19

20z3 + 11
40z2 −

1
40z and it immediately follows that ‖D‖∞ = 19

20 + 11
40 +

1
40 = 5

4 > 1 .

Actually, it is easy to see that the corresponding impulse
response g is positive, hence, according to Proposition 1 ,
‖G‖∞ = ‖G(1)‖∞ = 3 . This gives evidence of the fact that
the proposed bound may be quite conservative. Moreover,
for multi–input systems also the tightness of the bound for
positive systems is lost. ♣
Example 2. Consider a MIMO system whose transfer ma-
trix is

G(z) =

⎛
⎜⎜⎝

1
z + 1/3

z + 1
(z − 1/2)(z + 1/4)

−2
z − 1/2

z

(z − 1/4)(z + 1/4)

⎞
⎟⎟⎠ .

According to method 2 in Remark 2 ,

D̄(z) =
z4 − 1

6z3 − 11
48z2 + 1

96z + 1
96

z4
I2

and G(z) = N(z)
(
I2 + D(z)

)−1 , where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(z) =
1
z4

(
z3 − 1

2z2 − 1
16z + 1

32 z3 + 13
12z2 − 1

12

−2z3 − 2
3z2 + 1

8z + 1
24 z3 − 1

6z2 − 1
6z

)

D(z) =
1
z4

(
− 1

6I2 z3 − 11
48I2 z2 + 1

96I2 z + 1
96I2

)
.

Thus, ‖N‖∞ = 25
6 and ‖D‖∞ = 5

12 < 1 . Hence, by
Theorem 1 ,

‖G‖∞ ≤ 25/6
1 − 5/12

=
50
7

� 7.14 .

It can be seen that also in this case method 3 coincides with
method 1 and provides the bound ‖G‖∞ ≤ 400

39 � 10.26 .
Thus, differently from the previous example, method 3
leads to a worse result than method 2 .
Taking advantage of equation (4) and of the external
positivity of some of the components of g , the exact
computation of ‖G‖∞ can be carried out. It holds that
‖G‖∞ = 76

15 � 5.067 .
More details, including the explicit computations related
with method 1 , can be found in (Picasso, 2008) . ♣

4. CONTROL SYNTHESIS

The result of Theorem 1 is suitable to deal with Problem 2 .
Theorem 2. (Control synthesis: static output feed-
back) For a discrete–time linear system Σ(A,B,C) as in
equation (2) , consider Problem 2 . Assume that G(z) =
C(zI−A)−1B is factorized in the form G(z) = N(z)

(
Im+

D(z)
)−1 as in equation (8) . Let GK(z) be the transfer

matrix of the closed loop dynamics (5) and, if system (5)
is BIBO–stable, denote by GK its input/output opera-
tor. If K ∈ R

m×q is such that ‖DK‖∞ < 1 , where
DK(z) := D(z)−KN(z) , then system (5) is BIBO–stable
and

‖GK‖∞ ≤ ‖N‖∞
1 − ‖DK‖∞ . (10)

Before proving the theorem, let us derive the solution to
Problem 2 in terms of linear inequalities.
Corollary 2. (Linear inequalities formulation) With
the same notation of Theorem 2 , let γ ≥ ‖N‖∞ . As in
equation (6) , let N =

[
n(1) | · · · |n(r)

] ∈ R
q×mr and

D =
[
d(1) | · · · | d(r)

] ∈ R
m×mr (for suitable r ∈ N )

be the matrices associated to the FIR systems N(z) and
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D(z) appearing in the factorization (8) . If ∃K ∈ R
m×q

such that

∀ i = 1, . . . ,m ,

mr∑
j=1

∣∣∣Di,j −
q∑

l=1

Ki,lNl,j

∣∣∣ ≤ 1 − ‖N‖∞
γ

,

(11)
then, with u(t) = Ky(t) , the closed loop system (5) is
BIBO–stable and

‖GK‖∞ ≤ γ .

Proof. By Theorem 2 , a sufficient condition in order that
K ∈ R

m×q is such that ‖GK‖∞ ≤ γ is that ‖DK‖∞ < 1
and ‖N‖∞

1−‖DK‖∞
≤ γ . This is equivalent to find K ∈ R

m×q

such that

‖DK‖∞ ≤ 1 − ‖N‖∞
γ

.

Because DK(z) = D(z) − KN(z) = 1
zr

∑r
t=1

(
d(t) −

Kn(t)
)
zr−t , by equation (7) it holds that ‖DK‖∞ = ‖D−

KN‖∞ . Condition (11) is tantamount to requiring that
‖D− KN‖∞ ≤ 1 − ‖N‖∞

γ

(
see equation (1)

)
.

Proof of Theorem 2. It is sufficient to show that
GK(z) = N(z)

(
Im +DK(z)

)−1 , the thesis then follows by
Theorem 1 . The transfer matrix GK(z) can be written as
GK(z) =

(
Iq − G(z)K

)−1
G(z) . Thus 4 ,

GK(z) =
(
Iq − G(z)K

)−1
G(z) =

(a)
= G(z)

(
Im − KG(z)

)−1 =

= N(z)
(
Im + D(z)

)−1
(
Im − KN(z)

(
Im + D(z)

)−1
)−1

=

= N(z)
(
Im + D(z) − KN(z)

)−1 =

= N(z)
(
Im + DK(z)

)−1
.

Theorem 2 and Corollary 2 provide a sufficient criterion
for the solution of Problem 2 . However, because the upper
bound (10) may be in general quite conservative, in many
cases inequalities (11) are not feasible even if a solution
to the control synthesis problem exists. Nonetheless, the
proposed technique turns out to be particularly useful in
the case of state feedback for single–input systems:
Proposition 3. (State feedback for single-input sys-
tems) Consider the transfer matrix G(z) of a strictly
proper linear system with u ∈ R and y ∈ R

n . Let d(z) =
zn − ∑n

k=1 akzk−1 be the polynomial of the poles of the
system and G(I)(z) be defined by G(I)

k (z) := zk−1/d(z) ,
k = 1, . . . , n . Consider C ∈ R

n×n such that G(z) =
CG(I)(z) . Then, ∀ γ ≥ ‖C‖∞ , a control gain K ∈ R

1×n

can be determined by solving a system like (11) such that
the closed loop dynamics with u = Kx is BIBO–stable
and ‖GK‖∞ ≤ γ .
Moreover, if ∀ i, j = 1, . . . , n , Ci,j ≥ 0 , then a solution
exists to system (11) so that the equality ‖GK‖∞ = γ is
satisfied.

Proof. First notice that, because the system is of order
n and y ∈ R

n, then C ∈ R
n×n is invertible. It holds

4 Where equality (a) holds because if L ∈ Cm×q , M ∈ Cq×m

and λ ∈ C \ {0} are such that both λIm + LM ∈ Cm×m and
λIq +ML ∈ Cq×q are invertible, then (λIq +ML)−1M = M(λIm +
LM)−1 .

that G(z) = N(z)
(
1 + D(z)

)−1 , where N(z) and D(z)
are defined as in equation (9) (with at in place of ft ) . In
particular, ‖N‖∞ = ‖C‖∞ . According to the notation of
Corollary 2 , N = C and D =

( −a1 −a2 · · · −an

)
. For

γ ≥ ‖C‖∞ , there exists a solution to system (11) if and
only if ∃K ∈ R

1×n such that ‖D − KN‖∞ ≤ 1 − ‖C‖∞
γ .

Since D−KN = (DC−1−K)C , then ‖D−KN‖∞ ≤ ‖DC−1−
K‖∞‖C‖∞ . Therefore, K can be chosen so as to make
‖DC−1 − K‖∞ , and hence ‖D− KN‖∞ , arbitrarily small.
Notice that the row vector D − KN collects the coeffi-
cients of the polynomial of the poles of GK(z) . The last
statement is hence a direct consequence of Corollary 1 :
let γ ≥ ‖C‖∞ , it is sufficient to pick K ∈ R

1×n so
that D − KN = (−f1 − f2 . . . − fn ) , with fk ≥ 0
∀ k = 1, . . . , n and

∑n
k=1 fk = 1− ‖C‖∞

γ . This is achieved
with K =

(
D + ( f1 f2 . . . fn )

)
C−1 .

Let us provide an example where the control synthesis
technique based on Corollary 2 allows one to solve Prob-
lem 2 for a MIMO system.
Example 3. Let us consider system (2) , where⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A =

⎛
⎜⎝

0 0 1 0
0 0 0 1

1/4 0 3/4 0
0 1/4 0 3/4

⎞
⎟⎠ , B =

⎛
⎜⎝

0 0
0 0
1 0
0 1

⎞
⎟⎠

C =
(

0 −1 2 0
1/2 0 0 1

)
.

The goal is to find K ∈ R
2×2 such that, with u = Ky ,

the closed loop system is BIBO–stable and ‖GK‖∞ ≤ 10 .

It is a reachable and observable system whose poles are
1 and −1/4 (both with double multiplicity) , therefore
the system is not BIBO–stable. The transfer matrix of the
system is

G(z) =
(

2z −1
1/2 z

)
1

z2 − 3
4z − 1

4

,

then G(z) = N(z)
(
I2 + D(z)

)−1 with

D(z) :=
1
z2

[
−3

4
I2z − 1

4
I2

]
and

N(z) :=
1
z2

[(
2 0
0 1

)
z +

(
0 −1

1/2 0

)]
.

According to the notation of Corollary 2 , let

D =
(−3/4 0 −1/4 0

0 −3/4 0 −1/4

)
and

N =
(

2 0 0 −1
0 1 1/2 0

)
.

As ‖N‖∞ = 3 , we look for K ∈ R
2×2 such that ‖D −

KN‖∞ ≤ 1 − 3
10 = 7

10 . We have

D−KN=

(− 3
4 − 2K1,1 −K1,2 − 1

4 − K1,2
2 K1,1

−2K2,1 − 3
4 − K2,2 −K2,2

2 − 1
4 + K2,1

)
,

thus system (11) takes the form of{ ∣∣ 3
4 + 2K1,1

∣∣ + |K1,2| +
∣∣ 1
4 + K1,2

2

∣∣ + |K1,1| ≤ 7
10

|2K2,1| +
∣∣ 3
4 + K2,2

∣∣ +
∣∣K2,2

2

∣∣ +
∣∣K2,1 − 1

4

∣∣ ≤ 7
10 .
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Fig. 2. The feasibility regions of system (11) in the case considered in Example 3 .

The system is solved for (K1,1,K1,2) ∈ K1 ⊂ R
2 , where

K1 is the quadrilateral whose vertices are

P1 =
( − 3

8 , 1
20

)
, P2 =

( − 3
10 , 0

)
,

P3 =
( − 3

8 , − 3
20

)
, P4 =

( − 2
5 , 0

)
,

and for (K2,1,K2,2) ∈ K2 ⊂ R
2 , where K2 is the

quadrilateral whose vertices are

Q1 =
(
0 , − 3

5

)
, Q2 =

(
3
40 , − 3

4

)
,

Q3 =
(
0 , − 4

5

)
, Q4 =

( − 1
40 , − 3

4

)
,

see Fig. 2 .
One feasible choice for K is

K =
(−7/20 −1/20

1/40 −7/10

)
(which is identified by the points P and Q represented
in Fig. 2) . For such a K , we have ‖D − KN‖∞ = 27/40
and hence ‖GK‖∞ ≤ 3

1−27/40 = 120
13 � 9.2308 .

Notice that, because the closed loop system is reachable
and observable, then A + BKC is a Schur matrix. ♣

5. CONCLUSION

A method for the computation of an upper bound for the
�∞–gain of discrete–time BIBO–stable linear systems is
presented which is based on factorization theory. The ap-
proach is extended to deal with the static output feedback
control problem.
Several issues are open for further investigations. The
factorization of the transfer function allowing for the com-
putation of the bound is not unique and results are quite
different at the varying of the considered factorization.
Moreover, the coprime factorization does not lead, in
general, to the less conservative result. This raises the
question of the search for the factorization that minimize
the corresponding upper bound for ‖G‖∞ .
While the bound is proved to be tight for a particular class
of single–input positive systems, more effort is needed to
identify the class of systems where the proposed approach
results to be non–conservative. Further investigations will
be also devoted to the applications of the proposed tech-
nique to control synthesis problems for positive systems.

Acknowledgement: We are grateful to Annalisa Zap-
pavigna for useful discussions on the subject of the paper.
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