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Abstract:
This paper addresses the influence of the actuator size on the closed loop stability of collocated
and non-collocated transfer functions utilized in the structural control of flexible beams. Besides
the well known robustness advantages of collocated transfer functions it is shown, that if
the actuator is small compared to the flexible structure, a non-collocated actuator/sensor
configuration provides larger stability margins. It is shown, that this effect arises from
the uncertainty associated with the steady state gain of collocated transfer functions. The
applicability to other types of boundary conditions and limitations due to length and spatial
frequencies of the beam are also addressed.
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1. INTRODUCTION

The placement of actuators and sensors along a flexible
structure for active vibration damping has a direct effect
on the achievable performance. A vast amount of posi-
tioning criteria can be found in literature. In many cases
optimality is defined as the maximum of either the H2-,
H∞- or the Hankel system norm of the transfer function
matrix from the actuators to the sensors. Some examples
are given in Gawronski [1997], Leleu et al. [2001], Hać
[1995], Moheimani and Ryall [1999], and Gawronski [1999].
All of these criteria will lead to almost the same optimal
positions for actuators as well as sensors when the devices
are of the same type and size (collocation).

A collocated actuator/sensor placement leads to minimum
phase transfer functions (e.g. Preumont [1997]) which are
of advantage in terms of closed loop stability. Furthermore,
the minimum phase behavior of collocated transfer func-
tions can be shown to be superior in terms of robustness
for any controller design method when compared to non-
collocation (MacMartin [1995]).

For any controller design a low order system model is
needed. It is a well known fact that the truncation of
higher order dynamics leads to a perturbation of the in-
bandwidth zeros and the steady state transfer function
gain (Clark [1997]). Additionally, for collocation a de-
creasing actuator size leads to a stronger influence of the
higher order modes and therefore a stronger perturbation
due to direct truncation (Benatzky and Kozek [2005]).
The present contribution also extends and formalizes the
results given in Moheimani and Ryall [1999]. Thus, for
a small collocated actuator/sensor pair applied to highly
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flexible structures a higher number of modes is needed
to accurately describe transfer function gains in the lower
frequency region.

In the following it is shown for the flexible beam that if
only a limited number of flexible modes is available for
model correction, the non-collocated approach leads to a
more robust control system due to a smaller low-frequency
uncertainty. This is especially important in the presence of
parameter uncertainties.

The remainder of this paper is organized as follows: First
the simply supported beam is defined and the necessary
transfer functions are given. Then the functionality of a
transfer function correction as well as its effect on collo-
cated and non-collocated transfer functions is discussed. In
the next section a state vector feedback controller and an
observer are designed, both by pole placement. Finally, uti-
lizing the closed loop system and the small gain theorem,
the robustness properties of the closed loop system are
investigated to demonstrate the effects of non-collocation
on robustness.

2. THE SIMPLY SUPPORTED BEAM

2.1 Model equations

For the homogeneous Euler-Bernoulli beam depicted in
Fig.1, E, J , F , ρ, h, b, and l are the modulus of elasticity,
area moment of inertia, cross sectional area, density,
height, width and length of the beam. Here, a piezoelectric
actuator is modeled as a pair of moments acting on the
beam as external excitation. Furthermore, xa1 and xa2 are
the start and end position of the actuator. The beam’s
equation of motion is given by Timoshenko et al. [1974]

EJ
∂4w(x, t)

∂x4
+ ρF

∂2w(x, t)

∂t2
=
∂2M(x, t)

∂x2
(1)
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Fig. 1. Simply supported beam with patch actuator

with M(x) being the bending moment of the beam. From
the partial differential equation (1) the static curvature
distribution is found by setting ẅ(x, t) = 0 to be w′′′′(x) =
M ′′

a (x)/EJ or

w′′(x) = M(x)/EJ = (Ma(x) + ax+ b)/EJ. (2)

Ma(x) is the actuator moment

Ma(x) = M [σ(x− xa1) − σ(x− xa2)] (3)

and the integration constants a and b follow from the
boundary conditions of the beam.

2.2 Determined or under-determined beam

In this case the solution of (2) using a patch actuator
always yields a bending moment M(x) = Ma(x) since the
actuator moment Ma(x) and both constants a and b from
(2) become zero. Therefore, the bending moment M(x) is
proportional to the curvature w′′(x). This is shown for the
simply supported (hinged–hinged) beam in Fig.2 with a
resulting deflection w(x) of

w (x) =
M

2EJ

[

x(1/l(x2
a2 − x2

a1) + 2lp)

+ σ(x− xa1)(x − xa1)
2 − σ(x − xa2)(x− xa2)

2
]

, (4)

where σ(·) is the unit step-function and lp = xa2 − xa1 is
the actuator length. For the free–floating, hinged–free, and
clamped–free beam the bending moment will be identical
to (3), and hence the actuator action does not extend along
the beam.

sensors

actuator

M
x

Fig. 2. Bending moment and deflection of the simply
supported beam

2.3 Over-determined beam

For the over-determined beam the bending moment M(x)
strongly depends on the boundary conditions and the
constants a and b are non-zero. For the clamped–clamped
beam the integration constants in (2) are

a= 6Mlp/l
2[1 − lp/l − 2xa1/l]

b=−4Mlp/l[1 − 0.75lp/l − 1.5xa1/l], (5)

and for the clamped–hinged beam the result is

a= 3Mlp/l
2[1 − 0.5lp/l − xa1/l]

b=−3Mlp/l[1 − 0.5lp/l− xa1/l]. (6)

2.4 Modal representation and transfer function

The beam’s deflection w(x, t) can also be defined as

w(x, t) =

∞
∑

i=1

φi(x)qi(t), (7)

where φi(x) is the i-th undamped natural mode shape
and qi(t) is the according modal coordinate. Inserting (7)
into (1), integrating over the beams length and utilizing
the orthogonality properties of the mode shapes, leads
to an infinite number of decoupled ordinary differential
equations for the modal coordinates qi(t)

q̈i + 2q̇iζiωi + ω2
i qi =

M(t)

ρF
ψi,u. (8)

In (8) the modal damping coefficient ζi, the undamped
natural frequency of the i-th mode ωi, and the actuator
influence coefficient ψi,u are introduced, where the latter
is given by:

ψi,u = [φ′i(xa2) − φ′i(xa1)]. (9)

For a piezoelectric patch M(t) = K̄Va(t) in (8) holds,
where Va(t) is the actuator voltage and K̄ is a constant
factor from data of beam and patch.

The measurement y(t) is defined to be proportional to the
integral over the beam’s curvature between xs1 and xs2

(start and end positions of a piezoelectric sensor patch)

y(t) = Υ

∫ xs2

xs1

w′′(x, t)dx = Υ
∞
∑

i=1

∫ xs2

xs1

φ′′i (x)qi(t)dx

= Υ

∞
∑

i=1

ψi,yqi(t), (10)

where, similar to (9),

ψi,y = [φ′i(xs2) − φ′i(xs1)] (11)

and Υ is a constant factor. The factors K̄ and Υ are given
in Halim and Moheimani [2001].

The transfer function from the moment pair M(t) to the
measurement y(t) is obtained by Laplace-transforming and
combining (8) and (10):

Y (s)

M(s)
=

Υ

ρF

∞
∑

i=1

ψi,yψi,u

s2 + 2ζiωis+ ω2
i

. (12)

In (12) the influence coefficients ψi,y and ψi,u depend on
the boundary conditions of the beam.

3. CORRECTION OF REDUCED TRANSFER
FUNCTIONS

The modal description (12) consists of an infinite number
of modes

G(s) =
∞
∑

i=1

αi

s2 + 2ζiωis+ ω2
i

. (13)

In (13) αi is the influence coefficient of the i-th mode
that describes the contribution of this mode to the overall
solution. For a reduced order model the series expansion
(13) is restricted to the first N modes

Gred(s) =
N

∑

i=1

αi

s2 + 2ζiωis+ ω2
i

. (14)
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Due to direct truncation the in-bandwidth poles of (14)
remain the same as in (13) while the in-bandwidth zeros
are perturbed. Therefore, different correction methods
have been proposed to correct the in-bandwidth zeros. The
addition of a feed-through term Kc was first proposed in
Bisplinghoff and Ashley [1962] and then applied to flexible
structures by Clark [1997]. There the corrected model is
given by

Gcorr(s) =

N
∑

i=1

αi

s2 + 2ζiωis+ ω2
i

+Kc, (15)

where Kc is

Kc =
∞
∑

i=N+1

αi

ω2
i

≈
L

∑

i=N+1

αi

ω2
i

, L≫ N. (16)

Utilizing the factorKc, the corrected model Gcorr will have
a small steady-state gain error. According to Fig.2, the
steady-state gain of the non-collocated sensor is zero in
the case of an determined or under-determined beam, and
for the over-determined beam it will be very small (see
section 4.1).The correction term Kc for the non-collocated
transfer function is given by

Kc = −Gred|s=0. (17)

This Kc is the exact solution for any order N of the
reduced model leading to zero steady-state error.

In the case of collocated actuator and sensor the measure-
ment signal according to (10)is given by y(x, t)=MΥlp/EJ .
Therefore, the correction factor for collocated transfer
functions of statically determined, under-determined, and
approximately also of over-determined homogenous beams
is defined as

Kc =
Υlp
EJ

−Gred|s=0. (18)

A correction factor for collocated transfer functions ac-
cording to (18) has to be calculated from the infinite series
(16) by an approximation of order L. It is important to
note that for collocated transfer functions all the influence
factors αi in (16) have the same sign (Martin [1978]), and
the correction factor Kc has to include a high number of
out-of-bandwidth modes (Clark [1997]).

Other methods for the calculation ofKc are given in Halim
and Moheimani [2002] , Moheimani and Halim [2004] , and
Benatzky and Kozek [2005]. Halim and Moheimani [2002]
propose a feed-through term to compensate for out-of-
bandwidth modes with respect to weighted point-wise and
spatial H2-norm error minimization (using analytic results
for the damped case). A similar approach is presented by
Moheimani and Halim [2004], where an LMI optimization
problem is formulated and the corresponding H2- and H-
inf-error norms are minimized. Finally, in Benatzky and
Kozek [2005] the use of additional frequency response
modes is proposed in order to efficiently model the local
actuator action. All of these methods are considerably
more complex than the corrections (17) and (18), and no
results on robustness with respect to model uncertainties
are included.

4. ACTUATOR SIZE AND LOCAL ACTION

The following definitions and formulations are derived
for the static solutions of the flexible beam according to

section 2. This is not a strong restriction since the spatial
frequencies of the beam will be explicitly incorporated into
the considerations.

4.1 Definition of local actuator action

The actuator action can be approximately regarded as
local if the curvature along the beam is smaller than a
predefined scalar factor µ of the curvature at the actuator
location. The necessary condition can be formulated in
terms of the bending moment as

Definition 1. A patch actuator placed at xa1 ≤ x ≤ xa2

on a beam of length l is said to act locally if

|M(x)| ≤ µmin |M(ξ)| |xa1≤ξ≤xa2
, ∀xǫ[0;xa1) ∪ (xa2; l]

with 0 ≤ µ < 1 holds.

Under the assumption of static deformations of the deter-
mined or under-determined beam µ=0 holds. A suitable
choice of µ for the over-determined beam is motivated
by (5) and (6), which indicate that the extremal moment
always occurs at either x = 0 or x = l. For the clamped–
clamped beam the absolute value of the maximal bending
moment Mmax is in both cases

Mmax(lp, xa1) = 4Mlp/l[1 − 0.75lp/l− 1.5xa1/l], (19)

and for the clamped–hinged beam the resulting moment is

Mmax(lp, xa1) = 3Mlp/l[1 − 0.5lp/l − xa1/l]. (20)

4.2 Definition of a small actuator

A suitable choice of µ will depend on the required accuracy
of the solution, however, by relating µ with |Mmax/M |
and incorporating the spatial frequencies of the modes
(Benatzky and Kozek [2005]) a necessary criterion for a
small actuator size lp/l results:

Definition 2. A patch actuator of length lp is defined as
small of order N with regard to a beam with length l
if the quotient between maximum bending moment along
the beam Mmax and actuator moment M is smaller than
some predefined constant 0 ≤ µ < 1 multiplied with
the argument of the maximum λmax(N) of the actuator
influence function F (N, lp/l) of order N :

|Mmax/M | ≤ µ arg max
lp/l

(

ψN,u(lp/l)

ψN,u(lp,ref/l)

)

= µλmax(N)

Note that the reference length lp,ref does not affect the
criterion, since it is merely a scaling factor of the function
F (i, lp/l) defined as

F (i, lp/l) =
ψi,u(lp/l)

ψi,u(lp,ref/l)
= ν(i)ψi,u(lp/l). (21)

In (21) ν(i) is a scaling factor only depending on the mode
number i.

4.3 Definition of an upper bound for λ(i)

An upper bound of λ(i) obviously depends on the spatial
frequencies of the modes as given in (9) and (21) and
discussed in Moheimani and Ryall [1999]. Therefore, a
proper quantitative measure is given by the following
definition:
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Definition 3. An upper bound λmax(i) for the scalar factor
λ in Definitions2 and for the i-th mode is given by the
argument of the maximum value of the actuator influence
function F (i, lp/l) with respect to lp/l:

λmax(i) = arg max
lp/l

(F (i, lp/l)) = argmax
lp/l

(ψi,u(lp/l)) .

For the hinged–hinged beam

F (i, lp/l) =
sin(

iπlp
2l )

sin(
iπlp,ref

2l )
⇒ λmax(i) =

1

i
(22)

holds. In that case a small actuator is at least smaller by a
factor µ than the argument of the maximum of the given
surface for each mode i (depicted by a red line in Fig.3).

5

10

15

20

25

30 0

0.2

0.4

0.6

0.8

1

−20

0

20

40

60

F
(i
,l

p
/
l)

mode no. i lp
l

Fig. 3. Function F (i, lp/l) for lp,ref=0.01m and l=1m for
the simply supported beam

5. COLLOCATED AND NON-COLLOCATED
TRANSFER FUNCTIONS

5.1 Steady-state correction

To demonstrate the influence of the actuator size on the
transfer function (12), a simply supported beam with the
data according to Table 1 is taken as example.

Table 1. Data of the simply supported beam

parameter value parameter value

length l 1m width b 3·10−2m

height h 3·10−3m el. modulus E 7·1010N/m2

density ρ 2.7·103kg/m3 mod. damp. ζj 0.01

A modal damping of 0.01 complies with many typ-
ical lightweight structures. The actuator is placed at
xa1=0.22m using the criteria given in Gawronski [1997]
- Gawronski [1999]. A patch length (actuator and sensor)
of lp=0.025m is considered. The sensor is either collocated
with the actuator (xs1=0.22m) or placed at xs1=0.40m
where a smaller local optimum of the above cited crite-
ria exists. In Fig.4 and Fig.5 the collocated and non-
collocated transfer functions for Υ=1 are given for a model
consisting of N=500 modes. There the 500 mode model
(”nom.”), a truncated three mode model (”red.”), a three
mode model with a correction factor calculated from the
steady-state contribution (16) of mode four to L = 50
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Fig. 4. Collocated transfer functions for lp/l=0.025
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Fig. 5. Non-collocated transfer functions for lp/l=0.025

(”corr.”), and the three mode model including the cor-
recting factors Kc according to (17) or (18) (”opt.corr.”)
are shown, respectively. There is a visible difference be-
tween the model corrected with the contribution of mode
N + 1 = 4 to L = 50 and the model corrected with
(18) for collocation, whereas this is not the case for non-
collocation. In Fig.6 the steady-state gain of the full
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numbers of modes N in the truncated model Gred
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system G (upper bound) is compared to various truncated
systems Gred when the sensor patch is moved along the
beam. The upper bound again indicates, that the steady-
state gain of Gred is zero as long as sensor and actuator
patch do not overlap and increases linearly with the length
of overlap. Moreover, for non-collocated transfer functions
the steady-state gain error decreases with the separation
of the patches. The correction error for fully overlapping
patches is displayed in Fig.7 for increasing actuator length.
It can be seen, that for an actuator size of lp/l=0.025 even
for a model including 100 modes an error of approximately
10% remains at steady-state.

6. STABILITY ANALYSIS AND ROBUSTNESS

In order to compare the closed loop stability for collocated
and non-collocated transfer functions a control system
based on state vector feedback methods is designed. Both
the controller and observer are designed by pole placement
for a reduced system of order three, and the feedback gain
L is derived by placing the poles at

pi,des = −ωiζi,des ± ωi

√

1 − ζi,des, (23)

i.e. only the damping is increased by the controller. The
damping coefficients of the first three modes are chosen to
be ζdes=[0.3, 0.2, 0.01]. This choice is motivated by prac-
tical applications, where significant damping is applied
only to the structural modes of interest. For the design
of the observer feedback matrix H the desired damping
is doubled. The structure of the controller K(s) is shown

u y
flexible beam

Kc

H

B

A

∫

dt C

-L K(s)

-

-
x̂˙̂x

Fig. 8. Flexible beam control system

in Fig.8. Evaluating the controller transfer function K(s)
results in

K(s) = −L [sI − A + (B − HKc)L + HC]
−1

H . (24)

Equation (24) states, thatKc directly affects the controller
poles. For collocation, the feed-through termKc dominates
the transfer function behavior. The pole locations of the
closed-loop in the complex s-plane are plotted in Fig.9
for a collocated actuator/sensor pair of size lp/l=0.025.
There, 2 are the closed-loop poles predicted by the con-
troller design for a three mode model corrected with the
contribution of mode four to 100. Since the real system
has a higher transfer function gain, the actual closed-loop
poles are shifted towards the imaginary axis (2→♦), and
one of the controller poles becomes even unstable.

Finally, to more closely investigate the stability behav-
ior the small gain theorem (Skogestad and Postlethwaite
[1996]) is utilized to determine stability bounds for col-
located and non-collocated transfer functions. For this
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Fig. 9. Pole plot: stability loss due to uncertain correction
factor Kc

reason, the correction factor Kc according to (16) is built
from the compliance terms of mode four up to mode 100
for the small (lp/l=0.025) and a large actuator (lp/l=0.1).
For the collocated case, the difference between Kc and
its upper bound (18) is 11.3% and 3.3% for the small and
the large actuator, respectively. These percentile errors are
modeled as multiplicative input uncertainty for stability
analysis. For the non-collocated case the same amount of
multiplicative input uncertainty is utilized.

A system with multiplicative input uncertainty Gd is given
by Gd=Gcorr(1+∆mWm), where Gcorr is the nominal plant
(three modes corrected with the compliance contribution
of modes four to 100), ∆m is the uncertainty (|∆m| ≤ 1,
∆m ∈ C), and Wm is a weighting factor describing the
size of the uncertainty over frequency. The loop of Gd is
closed via the controller K(s) (Fig.10). Then, the transfer

Gcorr

Wm ∆m

K

u y

δy δu

Fig. 10. Compliance uncertainty model

function M from the output δu of the uncertainty ∆m to
its input δy for positive feedback is given by

M =
δy
δu

= Wm

GcorrK

1 −GcorrK
. (25)

The small gain theorem states, that the closed loop system
is stable under all perturbations ∆m if and only if

max
s=jω

σ̄(M(s)) = max
s=jω

(|M |) < 1. (26)

To evaluate (26), σ̄(M(jω)) is plotted for the small and
the large actuator in Fig.11 and Fig.12 for the collocated
and the non-collocated case, respectively. For collocated
sensor and actuator (Fig.11) the maximum of σ̄(M(s)) is
3.65 for the small actuator and 0.24 for the large actuator,
thus clearly indicating the instability of the closed loop
with the small actuator/sensor pair. To achieve robust
stability for the small actuator pair the uncertainty has
to be reduced to 27.4% of its current value, whereas for
the large actuator/sensor pair only a 4.18 times or larger
uncertainty would lead to instability. Finally, from Fig.12
it is clear, that in the case of non-collocation for the same
uncertainty stability is guaranteed. As a matter of fact,
for the small actuator/sensor pair the uncertainty could
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be increased by a factor of 4.44 and for the large pair by
9.98 before instability occurs.

For small actuator/sensor pairs the in-bandwidth part
of the transfer function is more strongly influenced by
the out-of-bandwidth modes for collocation than for non-
collocation. Therefore, regarding robustness issues associ-
ated with the accuracy of the correction terms, the non-
collocated placement of actuators and sensors is better
suited than the utilization of collocated pairs. The im-
portance of this proposition increases when the actuator
size decreases compared to the size of the structure to be
controlled.

7. CONCLUSION

In this paper the influence of the actuator size on the closed
loop stability of collocated and non-collocated transfer
function models for flexible beams has been investigated.
The notion of a small actuator was defined, and a criterion
for the applicability of the proposed methods on different
beam supports was formulated. It was found, that for col-
location the correction of the steady state transfer function
gain is of vital importance to achieve closed loop stability.
For statically determined and under-determined flexible
structures the correction factors for non-collocation can
be computed. For statically over-determined structures an
approximation with a quantitative criterion was derived,
and a stability analysis for parametric reduction-induced
uncertainties was carried out. Therefore, for small actu-
ators and highly flexible structures, the non-collocated
placement of actuators and sensors is of advantage for
flexible structure control, especially in the presence of
uncertain parameters.

Future work will be focused on appropriate modifications
to optimal positioning criteria as well as the problem
of MIMO-control systems. Although that case is already
covered in principle by the methods presented here, some

open questions related to closely neighboring actuators or
sensors still remain.
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