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Abstract: According to the study of nervous system ethology, it is thought that a walk
movement of an animal is controlled by Central Pattern Generator (CPG). There are a lot
of studies to try the control of the leg type robot based on CPG principle. However, most of the
studies consider two or four leg type robots, and there are not many studies performed for robots
more than six legs. One of its factor is probably difficulty of constituting stable and periodic
CPG in the case of many number of the legs. Therefore, this paper proposes the novel CPG
model which is based on coupled van del Pol oscillators. And this paper reports the analysis
of proposed coupled van del Pol oscillators model and the implementation result to an actual
myriapod robot.
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1. INTRODUCTION

As mechanism to realize movement in the irregular ground,
a lot of research of 2 and 4 legs walking robot have been
performed till now.However, it is difficult to control the
whole while controlling a system intensively because the
system controlling a leg type walking robot is complicated.
There are problems to become the poor system in tolerance
for the trouble and flexibility when control the whole
system in one place.

In late years it attracts its attention to apply the autonomy
dispersion system which is kind of the disperse system
system to the control of the leg type robot. The autonomy
dispersion system consists of a subsystem, each subsystem
does autonomy of that, and that trouble tolerance and
flexibility are high (Ishii [2004]).

When apply an autonomy dispersion system to a leg type
robot, the research of a control method based on the
motion principle of the animal is performed , and even
this research examines a method to use CPG(Central Pat-
tern Generator) for motion pattern generation. Research
of CPG are performed well, for example, there are the
research that used a cat (Shink et al. [1976]). In addition,
a research that showed what can generate the change of
various walk patterns by CPG and a reserach that apply
CPG to a robot and realized a walk. However, there are
many things which intend for four or two legs robots
and example which implemented is seen implemented to
a robot of the number of the legs more than 6, for the
research that applied CPG to the control of a myriapod.

As the number of the legs increases, as for this, it seems
that it is difficult to constitute periodic CPG by stability.

Therefore, by this paper, it is based on van der Pol
oscillator well-known as a classic problem and proposes the
CPG model that a plural number connected this. There is
as similar research, but remains if that argue qualitatively
in wave pattern of oscillators changing depending on a
parameter. In this paper, report that analysis of coupled
van der Pol oscillators and implementation to a myriapod.

2. MYRIAPOD ROBOT

A myriapod robot is shown in Fig.1. In addition, a speci-
fications for one module of this robot is shown in Table
1. This myriapod robot consists of by connecting with
modules with two legs right and left. It can be connected
to 30 legs 15 modules at the maximum it, and the full
length becomes about 1.8[m]. Each leg is equipped with
two servomotors and becomes two degree of freedom of
the top, bottom, front and back direction. In addition,
it is equipped with the servomotor which can work in a
horizontal direction between each modules, and the control
of five degree of freedom is possible because of one module.

Each module is equipped with a CPU (a microcomputer).
Each module interval is connected by a serial signal line,
and a outside host PC or central control with it being
connected to a high rank microcomputer and control of the
autonomy dispersion by the communication between the
module are possible. In addition, can develop the software
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Fig. 1. Appearance of a myriapod robot.

Table 1. Specification of a module.

Number of the
operation

Each left and right leg 2, connection 1 (Five
degree of freedom)

Actuator Servomotor for radio control (Futaba S9206)

Size 400(W)×120(D)×120(H)[mm]

Weight 1.2[kg]

Serial commu-
nication

RS485 or RS232C (original protocol)

CPU SH7047 (SH-2 Core)

Memory SRAM 256KB (battery backup) FlashROM
256KB (in CPU)

Power supply cable broadcasting in DC12V from the outside

Battery for
memory

CR123A (3V lithium battery for cameras)
electric double layer condenser

of the CPU by C language, RAM and the Flash ROM can
be written in.

The power supply becomes the method to supply to each
module from the outside. A panel made by acrylic sticks
to the top surface of the module and can be superior to the
conservatism of the inside base because the putting on and
taking off by the hand-operation is possible. In addition,
expansibility is high because putting on and taking off
between each modules is hand-operated.

3. VAN DER POL OSCILLATOR

3.1 Single van der Pol Oscillator

van der Pol oscillator (van der Pol [1926]) is well known
as a classic problem, and it is expressed by the next
differential equation.

Fig. 2. Single van der Pol oscillator.

x′′ − ε(1− x2)x′ + x = 0, t > 0 (1)

If a solution of this equation is ε > 0, it is proved
that become limit cycle by Pincaré-Bendixson theorem.
Therefore, x(t) generates the periodic output such as Fig.2
after time passed enough.

3.2 Coupled van der Pol Oscillators

It is thought that the van der Pol oscillator can function as
CPG controlling the periodic walk exercise of the animal in
a thing self-excitation vibration. However, it is necessary
to connect the output of the osillator with the movement
of each leg to apply to the control of the myriapod robot
having plural legs. Therefore, it is necessary to constitute
oscillator system having the number of legs and the output
of the same number. By this paper, We assume that control
the myriapod robot of the N leg and propose connection
type van der Pol oscillator to have the output of an N unit
showing in eq.(2).

x′′i − ε(1− x2
i )x

′
i + xi =

{
k(xi − xi−1), i 6= 1
k(x1 − xN ), i = 1

(2)

Here, k is a real number to become the design parameter.
The output example in case of N = 2 seems to become
Fig.3.

3.3 Existence characteristics of in-phase solution and
out-of-phase solution

In eq.(2), assume it x1 = y, x2 = z and think about the
next system consisting of two continuous function of real
variable y = y(t), z = z(t).{

y′′ − ε(1− y2)y′ + y = k(y − z)
z′′ − ε(1− z2)z′ + z = k(z − y), t > 0

(3)

Here, define the next for the eq.(3) output.

Definition 1. When a steady solution after enough time
passed becomes y(t) = z(t) in expression eq.(3), this is
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Fig. 3. Coupled van der Pol oscillator.

called in-phase solution. In addition, this is called out-of-
phase solution when it becomed y(t) = −z(t).

By the output of Fig.3, it is it with out-of-phase solution
that phase of two output just reversed in a thing of
a solution becoming x1(t) = −x2(t) in a steady state
being provided. It is thought that this is the output
corresponding to two pairs of normal walks movement
that the leg of right and left exercises in turn. When
x1(t) = x2(t) clearing up eq.(2) from a different initial
value for this and the solution that it is provided, there is
thought that is corresponding to two pairs of animal that
the jump movement. About the eq.(3) steady solution, the
next theorem holds good.

Theorem 2. Suppose it to be ε ¿ 1 in expression eq.(3).
There is stability in-phase solution or out-of-phase solution
depending on an initial value after time passed enough
then.

Proof. See the appendix A.

The coupled van der pol oscillator eq.(3) than this is
dependent on an initial value and generates the output
of in-phase or out-of-phase by a steady state. When fixed
ẋ1(0) and ẋ2(0) among initial values and simulated it while
changing initial value x1(0) and x2(0)(N = 2), there were
the relations that seemed to be Fig.4 about phase relations
of two output. In other words, in a phase plane consisting
of it by initial value x1(0) and x2(0), as for initial value,
it is it with in-phase solution of the first and the third
quadrant, and, as for initial value, it is it with out-of-phase
solution of the second and the fourth quadrant. From this,
setting of an appropriate initial value becomes important
to generate a desired walk movement.

4. IMPLEMENTATION OF VAN DER POL
OSCILLATOR

4.1 Output of oscillator and correspondence of the real
movement

If van der Pol oscillator works normally, the output be-
comes the periodic vibration, but, for the output and
associating of the exercise of the leg, there are various
methods. By this report, implementation to the robot by
associating the output and the joint angle of the leg.

Fig.5 shows image of the movement. A wave line of Fig.5
expresses output of van der Pol oscillator(x(t)) operates
joint angle of leg(θ(t)) to become as follows equation.

θ(t) = αx(t) (4)

α is relation coefficient of the output amplitude of oscil-
lator and movement range of legs. When the output of
the trembler is maximum, working a leg most forward and
working a leg most backward when the output is minimum.

Only in swing movement, it supports the output of oscil-
lator this paper. In rift movement, take down a leg when
backward from front in swing movement, raise a leg when
front from backward.

Fig. 4. Distribution of initial value.

Fig. 5. Relationship between leg motion and output of van
der Pol oscillator.
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Fig. 6. Algorithm of implementation.

4.2 Algorithm of implementation

In this time, implementation of one module of the
robot.(N = 2) Algorithm is shown in below.

(1) Solve a differential equation fot take the trembler
output

(2) Convert the output value into a movement angle and
move a leg

(3) get the angle information of legs

The robot walks by repetition of 1→2→3→1· · · every
0.1[s]. Fig.6 shows these a series of flows.

It is step 1 and solve of eq.(2) every 0.1[s] with Runge-
Kutta method. By a joint angle provided in eq.(4), working
swing movement. During the movement, feed back the
joint angle information from a leg by step 3. And solving of
van der Pol oscillators output by next step 1 again. Finish
a calculation, and a waiting, and movement is completed,
working the next movement by step 2.

In rift movement, take down a leg when (x′ varies from −
to +), raise a leg when (x′ varies from + to −).

4.3 Implementation result

With the algorithm that above, show in below the result
that implemented coupled van der Pol oscillators to a

Table 2. A parameter value of oscillator.

parameter value

ε 0.01

k 0.1

period 0.1[s]

Table 3. Initial value of oscillator.

x1(0) x′1(0) x2(0) x′2(0)

in-phase 1.0 0.0 0.1 0.0

out-of-phase 1.0 0.0 -0.1 0.0

Fig. 7. In-phase.

myriapod robot(1 module). Each fixed number and an
initial value is shown in Table2,Table3. Table3 seted two
pattern of initial values to coupled van der Pol oscillator
become in-phase solution or out-of-phase solution(section
3.3). Fig.7 and Fig.8 shows a simulation result in case
of a each pattern(movement start, steady state). The
movement of the leg is inconsistent at the time of the
movement start, becomes in-phase and out-of-phase at the
time of steady state. We was able to realize movement
corresponding to output of coupled van der Pol oscillator.
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Fig. 8. Out-of-phase.

5. CONCLUSION

In this paper, We proposed coupled van der Pol oscillators
and proved existence characteristics of in-phase solution
and out-of-phase solution(N = 2). We implemented it for
one module of a myriapod robot and realized movement
corresponding to oscillators output. Analysis about the
initializing of the oscillators proposed and implementation
to a myriapod robot of plural modules will be problems in
future.
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Appendix A. PROOF OF THEOREM 2

Here, proved only existence characteristics. The perfect
proof refers to Nohara et al. [2007]. Introduce t1 = t, t2 =
εt1 and use multiple scale analysis (Nayfeh [1973]). Time
differential calculus used t1, t2.

d

dt
−→ dt1

dt

∂

∂t1
+

dt2
dt

∂

∂t2
=

∂

∂t1
+ ε

∂

∂t2
(A.1)

∂
∂t1

is ∂t1 ,
∂

∂t2
is ∂t2 for simplify it. Then eq.(3) is as follows.





(∂2
t1 + 2ε∂t1∂t2 + ε2∂2

t2)y
−ε(1− y2)(∂t1 + ε∂t2)y + y = k(y − z)

(∂2
t1 + 2ε∂t1∂t2 + ε2∂2

t2)z
−ε(1− z2)(∂t1 + ε∂t2)z + z = k(z − y)

(A.2)

And expand solution y(t), z(t)
{

y(t) ∼ y0(t1, t2) + εy1(t1, t2) + ε2y2(t1, t2) + · · ·
z(t) ∼ z0(t1, t2) + εz1(t1, t2) + ε2z2(t1, t2) + · · ·

(A.3)
Following as an equation of O(1) about ε when substitute
this for eq.(A.2).

{
(∂2

t1 + 1)y0 = k(y0 − z0)
(∂2

t1 + 1)z0 = k(z0 − y0)
(A.4)

And soluve this.{
y0 = A1(t2) cos(η1) + A2(t2) cos(η2)
z0 = A1(t2) cos(η1)−A2(t2) cos(η2)

(A.5)

It is η = t1 + φ1(t2), η2 =
√

1− 2kt1 + φ2(t2) here. We
can suppose it to be A1 ≥ 0, A2 ≥ 0(Without losing
generality). Equation O(ε) likewise.
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{
(∂2

t1 + 1)y1 = (1− y2
0)∂t1y0 − 2∂t1∂t2y0 + k(y1 − z1)

(∂2
t1 + 1)z1 = (1− z2

0)∂t1z0 − 2∂t1∂t2z0 + k(z1 − y1)
(A.6)

Eq.(A.6) is as follows by a simple calculation.

(∂2
t1 + 1)y1 − k(y1 − z1) =(

1
2
A1A

2
2 −A1 +

1
4
A3

1 + 2A
′
1

)
sin η1

+
√

1− 2k

(
1
2
A2

1A2 −A2 +
1
4
A3

2 + 2A
′
2

)
sin η2

+ (2A1φ
′
1) cos η1

√
1− 2k(2A2φ

′
2) cos η2 +

1
4
A3

1 sin 3η1

+
1
4

√
1− 2kA3

2 sin 3η2
1
2
A1A

2
2 sin η1 cos 2η2

+ A2
1A2 sin 2η1 cos η2

1
2

√
1− 2kA2

1A2 sin η2 cos 2η1

+
√

1− 2kA1A
2
2 cos η1 sin 2η2 (A.7)

(∂2
t1 + 1)z1 − k(z1 − y1) =(

1
2
A1A

2
2 −A1 +

1
4
A3

1 + 2A
′
1

)
sin η1

+
√

1− 2k

(
−1

2
A2

1A2 + A2 − 1
4
A3

2 + 2A
′
2

)
sin η2

+ (2A1φ
′
1) cos η1

√
1− 2k(2A2φ

′
2) cos η2 +

1
4
A3

1 sin 3η1

− 1
4

√
1− 2kA3

2 sin 3η2
1
2
A1A

2
2 sin η1 cos 2η2

−A2
1A2 sin 2η1 cos η2

1
2

√
1− 2kA2

1A2 sin η2 cos 2η1

+
√

1− 2kA1A
2
2 cos η1 sin 2η2 (A.8)

solvability conditions by these equation.




2A
′
1 = A1

(
1− 1

4
A2

1 −
1
2
A2

2

)

2A
′
2 = A2

(
1− 1

4
A2

2 −
1
2
A2

1

)

2A1φ
′
1 = 0

2A2φ
′
2 = 0

(A.9)





2A
′
1 = A1

(
1− 1

4
A2

1 −
1
2
A2

2

)

2A
′
2 = −A2

(
1− 1

4
A2

2 −
1
2
A2

1

)

2A1φ
′
1 = 0

2A2φ
′
2 = 0

(A.10)

Eq.(A.9) and eq.(A.10) are AND condition.

A2(t2) = const.(= c2), φ2(t2) = const.(= c3) (A.11)

A1 is as follows with A2(t2) = c2

A1(t2) =
√

2
√

c2
2 − 2√

2c1(c2
2 − 2)e

c2
2
−2

2 t2 − 1
, c1 = const. (A.12)

Finally
φ1(t2) = const.(= c4) (A.13)

Than the above.

(1) In case of A2 = c2 6= 0, A1 is expressed in eq.(A.12).

{
A1 →

√
2
√

2− c2
2 as t →∞, for 0 ≤ c2 <

√
2

A1 → 0 as t →∞, for
√

2 ≤ c2 ≤ 2

It is out-of-phase at the time of
√

2 ≤ c2 ≤ 2. (get
the condition of c2 < 2 from the second equation of
solvability condition)

(2) In case of A2 = 0, following from first and third
equation of eq.(A.9).

A1 =
√

2
√−2√

2c1(−2)e−t2 − 1
→ 2 as t →∞

φ1 = const.

There is in-phase.
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