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Abstract: This paper is concerned with predictive control combined with set–point optimization in the 

case of fast changing disturbances. The problem is encountered in many practical applications. Because of 

high computational complexity, nonlinear economic optimization cannot be repeated frequently. 

Therefore, in practice an additional steady–state target optimization repeated as often as the MPC (Model 

Predictive Control) algorithm is used. Typically, the steady–state target optimization is based on a linear 

steady–state process model. Unfortunately, in some cases, as the one studied in the paper, the target set–

point optimization based on linear or linearized models fails. It is demonstrated in the paper that a solution 

to this problem can be the piecewise linear approximation of the nonlinear steady–state process model in 

the target optimization. The research is done for the control system of a MIMO chemical reactor. The 

presented results clearly show the effectiveness of the proposed approach. 

 

1. INTRODUCTION 

An important problem in the control systems with classical 

hierarchical approach is caused by disturbances of dynamics 

not much slower than the dynamics of the process. If the 

steady–state economic optimization is repeated infrequently, 

it usually leads to solutions with lower economic 

effectiveness (Brdys and Tatjewski, 2005; Findeisen et al., 

1980). The best solution, in theory, would be to increase the 

frequency of intervention of the economic optimization layer. 

However, in most cases it would be unrealistic because of the 

complexity of the nonlinear steady–state optimization 

problem solved at the economic optimization layer. 

In modern control systems Model Predictive Control (MPC) 

is often applied in practice (Camacho and Bordons, 1999; 

Maciejowski, 2002; Qin and Badgwell, 2003; Rossiter, 

2003). MPC algorithms dominate as the algorithms of the 

advanced control layer. One of their main advantages is the 

unique ability to take into account in a natural way the 

constraints imposed on both manipulated variables and 

output variables (included in the optimization problem solved 

at each algorithm iteration). Moreover, the MPC algorithms 

can be relatively easy designed for MIMO processes. 

There are two possible solutions to the problem. The first one 

consists in supplementing the MPC controller with a 

simplified linear economic optimization task, called usually a 

steady–state target optimization problem, solved as 

frequently as the MPC controller executes (Qin and 

Badgwell, 2003; Kassmann et al., 2003, Ławryńczuk et al., 

2006; Tatjewski, 2007; Tatjewski et al., 2006). The second 

solution is to integrate the MPC algorithm with the economic 

steady–state optimization into one optimization problem. It is 

done in such a way that a computationally efficient algorithm 

requiring solving on–line a quadratic programming problem 

is obtained (linearization of the nonlinear steady–state 

process model is performed at each iteration) (Lawrynczuk et 

al., 2006; 2007a; 2007b; Tvrzska et al., 1998; Zanin et al., 

2000; 2002). 

Unfortunately, in the case of some control plants, the 

linearization approach gives very disappointing results due to 

highly nonlinear nature of the controlled process. Such a 

case, of a highly nonlinear MIMO chemical reactor, is 

thoroughly studied in the paper. The solution applied is to use 

a piecewise linear approximation of the nonlinear steady–

state process model in the target set–point optimization. It is 

demonstrated that thanks to such an approach very good 

control system operation can be obtained, almost as good as 

in the theoretically best possible case when a nonlinear 

steady–state economic optimization is repeated as often as 

the MPC controller executes. 

The paper is organized as follows. In Sections 2 the classical 

multilayer control system structure is described. Section 3 

details the additional target set–point optimization with 

linearization. Section 4 contains description of the proposed 

method using the piecewise linear approximation of the 

nonlinear steady–state process model. In Section 5 the 

example of a highly nonlinear control plant – a MIMO 

chemical reactor is presented. Moreover, simulation results 

obtained in the control system using the proposed approach, 

show the good performance offered by it comparing to the 

usually used control structures. Section 6 shortly concludes 

the paper. 
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2. STANDARD CONTROL SYSTEM STRUCTURE 

In Fig. 1 the structure of the standard hierarchical control 

system with the MPC advanced control layer is shown. A 

supervisory global plant–wide optimization layer aims at 

maximizing the economic yield obtained from many 

technological processes. The Local Steady–State 

Optimization (LSSO) layer takes into account a single plant. 

Each layer operates with different frequency of intervention. 
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Fig. 1. Hierarchical control system structure with MPC 

advanced control layer (LSSO+MPC) 

In the classical multilayer control system structure the 

economic LSSO layer usually solves the following 

optimization problem 
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where ywu
nnn

F ℜ→ℜ×ℜ:  denotes a comprehensive 

nonlinear steady–state process model relating outputs 
ynssy ℜ∈  with controls unssu ℜ∈ , nu, nw, ny are the numbers 

of: manipulated variables, disturbances affecting the plant 

and controlled variables, respectively, w~  is the current 

estimate or measurement of disturbances. The vectors 

un

uc ℜ∈ , yn

yc ℜ∈  are the prices resulting from economic 

considerations, umin, umax, ymin, ymax are vectors of constraints 

imposed on inputs and outputs. 

Let ss
û  denote the optimal solution to the optimization 

problem (1). Using the nonlinear steady–state model the 

value ss
ŷ  corresponding to ss

û  is calculated. The vector ss
ŷ  

is then passed as the desired set–point to the MPC 

optimization problem. The MPC problem with a linear model 

and soft constraints written in a vector–matrix notation is 

(Maciejowski, 2002; Rossiter, 2003; Tatjewski, 2007) 
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are vectors of the length nuNu and 
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are vectors of the length nyN and 
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is a matrix of dimension nuNu×nuNu. 

The solution of the nonlinear optimization problem (1) is in 

most cases time consuming. Thus, it is usually repeated much 

less often than the control derivation by the MPC algorithm. 

If the dynamics of disturbances is comparable to the 

dynamics of the control plant, such an approach can result in 

economic process performance degradation. 
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3. MULTILAYER STRUCTURE WITH LINEAR 

STEADY–STATE TARGET OPTIMIZATION 

Since at the LSSO layer a comprehensive nonlinear steady–

state model of the process is typically used, the economic 

optimization problem (1) is usually difficult to solve and time 

consuming, with constraints which significantly decrease the 

set of possible solutions. When dynamics of disturbances is 

comparable with the dynamics of the process, the economic 

performance is likely to be below expectations (Blevins et al., 

2003; Kassmann et al., 2000; Qin and Badgwell, 2003; 

Tatjewski, 2007). 

Since increasing the frequency of the LSSO layer is limited 

in practice because of its high computational burden, the 

MPC layer is often supplemented with an additional Steady–

State Target Optimization (SSTO) layer, as it is shown in Fig. 

2 (Blevins et al., 2003; Kassmann et al., 2000; Qin and 

Badgwell, 2003; Tatjewski, 2007). The SSTO closely co–

operates with the MPC layer, the steady–state operating–

point determined by the LSSO layer activated less often is 

recalculated as frequently as the MPC executes. Typically, in 

steady–state target optimization a linear model corresponding 

to the linear dynamic model used by the MPC algorithm is 

used 
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where H is the gains matrix corresponding to the linear 

model used in (2). 
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Fig. 2. Hierarchical control system structure with MPC 

advanced control layer and steady–state target calculation 

(LSSO+MPC+SSTO) 

In order to increase the accuracy of the steady–state model 

used in the SSTO problem, the nonlinear steady–state model 

may be approximated on–line (Ławryńczuk et al., 2007c; 

Ławryńczuk et al., 2006; Tatjewski et al., 2006). Instead of 

the constant model a linear updated on–line approximation 

ssss
ukwkuFy ∆+−= )()~),1(( H  (8) 

is employed, where the gain matrix H(k) of dimension ny×nu 

contains partial derivatives of the nonlinear function 
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It is usually computed numerically using finite difference 

approach. Thus, the steady–state model used at the SSTO 

layer is consistent with the nonlinear model used at the LSSO 

layer rather than with the linear dynamic model used at the 

MPC layer as it is done in the standard SSTO approach with 

a constant linear model. The linearized steady–state model 

(8) is finally used to calculate the value ss
ŷ corresponding to 

ss
û  which is then passed to the MPC optimization problem. 

4. MULTILAYER STRUCTURE WITH PIECEWISE 

LINEAR STEADY–STATE TARGET OPTIMIZATION 

To approximate nonlinearity of the steady–state process 

model of constrained outputs which preserves a relatively 

simple and robust SSTO problem, a local piecewise linear 

approximation may be proposed. The approximation can be 

generally presented in a form 
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where hi are constant vectors, ∆i are subsets of the domain 

under consideration in which the gain matrices H
i
(k), 

i=1,…,ns of dimension ny×nu contain local approximations of 

the nonlinear function )~,( wuFy
ssss = , ns – number of regions 

with local linear approximations. Piecewise linear 

approximation of a nonlinear function is a well known 

concept in mathematical programming, especially in 

separable programming, leading to mixed LP (Linear 

Programming) problems, or LP problems if the applied LP 

procedure allows for declaration of SOS (Special Ordered 

Sets) for additional variables describing the piecewise linear 

approximations (Williams, 1995). The problem can also be 

solved (with certain suboptimality) by checking values of the 

objective function at selected grid points defining the 

piecewise linear approximation mesh. It can be done because 

solutions to LP problems are always located at vertices of the 

constraint set. Such a method was used during the 

experiments. 

In details, the applied approach is simply to check values of 

the objective function and constrained outputs only at input–

feasible grid points of the piecewise linear approximation, 

chosen locally around a current operating point, in this way 

selecting an economically best output–feasible one. If finer 
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solution is needed, the search can be repeated with finer grid 

mesh around the found point (i.e., using finer local piecewise 

linear approximation), but it was found not necessary in our 

study and may not be reasonable in practice due to 

unavoidable uncertainty. 

5. SIMULATION RESULTS 

The process under consideration is an isothermal, constant–

volume, continuous, stirred–tank reactor (Soroush et al., 

2005) shown in Fig. 3. The reactor has two feed streams (A 

and B). The stream A does not contain the reactant B, and the 

stream B does not include the reactant A. Mathematical 

model of the reactor in continuous–time domain is 

V
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where CA and CB are concentrations of reactants A and B in 

the outlet stream, respectively; CAi is concentration of the 

reactant A in the feed stream A and CBi is concentration of the 

reactant B in the feed stream B; qA and qB are the volumetric 

flow rates of the feed streams, respectively; K is the reaction 

rate constant; and V is the volume of the reactor. Parameters 

of the model are: K=2.778×10
–3

 m
3
 kmol

–1
 s

–1
, nominal 

concentrations of reactants in the feed streams are CAi=1 

kmol m
–3

, CBi=1.2 kmol m
–3

. It is assumed that a fast 

controller stabilizes the volume of the reactor. 

 

 qA  qB 

 V 

CA, CB 
 

Fig. 3. Schematic diagram of the chemical reactor 

The process has two input (manipulated) variables: v1=qA/V, 

v2=qB/V and two output (controlled) variables: CA and CB. 

Manipulated variables are constrained as follows 

max

22

max

11 00 vvvv ≤≤≤≤  (12) 

Where 13max

1 109.1 −−×= sv , 14max

2 106 −−×= sv . Nonlinear 

steady–state characteristics of the process are depicted in Fig. 

4. 

Since concentrations of the reactants A and B in the feed 

streams (CAi and CBi) can change, they are treated as 

disturbances. In this study it is assumed that CBi is equal to its 

nominal value. It is assumed that changes in the disturbance 

signal CAi are described by the equation 

( ))sin()sin()( 00 ββα −−= kCkC AiAi
 (13) 

where CAi0 is the nominal value, α=0.45, β=0.015, β0=0.045. 

Maximum production rate is required, the following 

performance function in the economic optimization is used 

ssss

E vcvcJ 2211 −−=  (14) 

where c1=c2=1 are prices. Because of technological reasons, 

the lower bound on the composition of the first substance is 

imposed 

33 mkmol105.0 −−×≥AC  (15) 

Although the economic performance function (14) is linear, 

the constraint (15) is nonlinear. As a result, one obtains the 

nonlinear economic optimization problem. 

 

 

Fig. 4. Steady–state characteristics of the chemical reactor 

GPC type MPC algorithm is developed. Parameters of this 

algorithm are: N=10, Nu=3, M=[1 1] and ΛΛΛΛ=[1000 1000], the 

sampling period is 10 seconds. 

At first the classical multilayer control structure with 

nonlinear economic optimization activated at each sampling 

instant was tested. Then it is used as the reference for the 

other structures. Next, the structure with steady–state target 

optimization based on steady–state model linearized on–line 

is used. Simulation results of these two structures are 

depicted in Fig. 5. It is clearly seen that starting from the 

sampling instant k=36 the linearization–based approach 

produces totally wrong operating points – the constraint (15) 

put on concentration CA is violated due to inaccuracies of 

linearized process model. Such behavior of the system is 

caused by the shape of the steady–state characteristics and the 

objective function. As the result, the linear steady–state target 

optimization is unable to find the optimal point. 
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Fig. 5. Simulation results of the multilayer control structure 

with: nonlinear economic optimization activated at each 

sampling instant (solid line) and with steady–state target 

optimization based on steady–state model linearized on–line 

(dashed line); ss

AC , ss

BC  – optimal steady–state set–points 
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Fig. 6. Simulation results of the multilayer control structure 

with: nonlinear economic optimization activated at each 

sampling instant (solid line) and with low accuracy piecewise 

linear steady–state target optimization (dashed line) 

In order to improve the operation of the control system, 

piecewise linear steady–state target optimization is used. Fig. 

6 depicts responses obtained when low accuracy piecewise 

linear approximation is used, i.e. the number of grid points is 

9. They are evenly located in the neighborhood of the optimal 

operating point obtained at the previous sampling instant. 

The neighborhood is as small as 10% of max

1v  and 16% of 

max

2v .  Unlike the steady–state target optimization based on a 

linearized model, this approach gives good results because 

the constraint (15) is satisfied. 

To further improve operation of the system the number of 

grid points is increased to 25 with the same area covered. Fig. 

7 presents responses obtained. Naturally, the more accurate 

the approximation, the closer the obtained responses to the 

reference ones obtained in the multilayer control structure 

with nonlinear economic optimization activated at each 

sampling instant. 
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Fig. 7. Simulation results of the multilayer control structure 

with: nonlinear economic optimization activated at each 

sampling instant (solid line) and with high accuracy 

piecewise linear steady–state target optimization (dashed 

line) 

6. CONCLUSIONS 

Cooperation of Model Predictive Control (MPC) algorithms 

with nonlinear steady–state economic optimization is 

important when dynamics of disturbances is comparable with 

dynamics of the process. A reliable, comprehensive steady–

state model of the process is usually complex and nonlinear, 

leading to a difficult economic optimization problem. Thus, it 

is very rarely possible in practice to repeat the nonlinear 

LSSO at each sampling instant of the MPC controller. 
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Therefore, in practice usually an additional MPC target set–

point optimization is performed. The solutions proposed in 

the literature were based on linear models. However in the 

case of highly nonlinear plants (like the one considered in the 

paper) such an approach generates erroneous set–points. 

The solution to the problem can be the piecewise linear target 

set–point optimization. The discussed approach was 

illustrated on a chemical reactor example. Because of the 

shape of the steady–state characteristics and the objective 

function the SSTO based on a linear model was unable to 

find the optimal operating point. Finally, the piecewise linear 

SSTO problem was formulated which could be solved by a 

linear programming routine, but a proposed simplified 

procedure was applied which calculates values of the 

economic objective function and constrained outputs for a 

chosen set of input–feasible grid points only, at each 

sampling instant. The used approach is computationally 

effective and the calculated steady–states can be close to the 

optimal ones, i.e. to those calculated by the LSSO using a 

comprehensive nonlinear model of the plant. Moreover, the 

accuracy of the solution can be easily improved by making 

the grid of points to be searched denser. Thus, the demanded 

compromise between quality of control and computational 

demand can be obtained. 
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