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Abstract: The paper investigates the optimal control problem for a stochastic linear di®erential
system, driven by a persistent disturbance generated by a nonlinear stochastic exogenous system.
The assumption of incomplete information has been assumed, that is neither the state of
the system, nor the state of the exosystem are directly measurable. The standard quadratic
cost functional has been considered. The approach followed consists of applying the º-degree
Carleman approximation scheme to the exosystem, which provides a stochastic bilinear system.
Then, the optimal regulator is obtained (i.e. the solution to the minimum control problem among
all the a±ne transformations of the measurements). Better performances of the regulator are
expected using higher order system approximations.
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1. INTRODUCTION

Given the probability triple (−;F ;P), consider the optimal
control problem for the following linear stochastic di®er-
ential system described by the Itô equations:

dx(t) = Ax(t)dt+Hu(t)dt+Mz(t)dt+NdW x(t);

x(0) = x0;

dy(t) = Cx(t)dt+GdW y(t); y(0) = 0 a:s:; (1)

where x(t) 2 IRn is the state of the system, u(t) 2 IRp
is the control input, y(t) 2 IRq is the measured output,
W x(t) 2 IRb, W y(t) 2 IRd are independent standard
Wiener processes with respect to a family of increas-
ing ¾-algebras

©Ft; t ¸ 0
ª
. The standard assumption

rank(GGT ) = q is made. The initial state x0 is an F0-
measurable random vector, independent of W x(t) and
W y(t). z(t) 2 IRm is a persistent disturbance generated
by the following nonlinear stochastic exogenous di®erential
system (the exosystem):

dz(t) = Á
¡
z(t)

¢
dt+ FdW z(t); z(0) = z0; (2)

where Á : IRm 7! IRm is a smooth nonlinear map and
W z(t) 2 IRh is a standard Wiener processes with respect
to
©Ft; t ¸ 0ª, independent of the state and output noise

processes W x(t) and W y(t).

In the case of output regulation, coping with the task of
tracking an assigned trajectory and/or rejecting persistent
disturbances, the control problem is standardly stated in
a deterministic framework and important results in the

? This work was supported by the Italian National Research Council
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designing of a suitable control law have been reached, even
in the case of uncertainties a®ecting the model and/or
the exosystem. If the dynamics of the exosystem is not
known, but it is known that it belongs to a prescribed
family of functions, the so called internal-model principle
allows to reconstruct in some way this lack of information
(see Francis et al. (1976) and Isidori et al. (1990) for
linear and nonlinear systems, respectively). For instance,
an internal-model based control is able to cope with
uncertainties a®ecting the amplitude and phase of an
exogenous sinusoid, but it requires the knowledge of the
frequency; in order to overcome this limitation, in Serrani
et al. (2001) an adaptation mechanism has been used
so that the natural frequencies of the internal model are
tuned to match those of the unknown exosystem.

In this paper, a stochastic framework has been considered,
according to which the optimal control problem of mini-
mizing the following quadratic cost functional on the ¯nite
horizon [0; tf ] has been stated:

J(u) =
1

2
IE

½
xT (tf )Sx(tf )

+

tfZ
0

³
xT (t)Qx(t) + uT (t)Ru(t)

´
dt

¾
;

(3)

with S, Q symmetric positive-semide¯nite matrices, and R
a symmetric positive-de¯nite matrix. As a matter of fact,
the coupling of the index (3) to the di®erential constraints
(1-2) gives rise to a nonlinear stochastic optimal control
problem. According to the incomplete information case
here adopted, we do not assume to have direct measure-
ments neither of the state x of the system, nor of the
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state z of the exosystem. A general setting of the problem
consists of looking for the optimal solution u among all
the Borel transformations of the measured output y. In
this case, the optimal solution requires the knowledge of
the conditional probability density, whose computation
leads, in general, to an in¯nite-dimensional problem. For
instance, in Charalambous et al. (1998) the authors over-
come the drawback of incomplete information for a class
of nonlinear optimal control problems by means of a set
of partial di®erential equations providing the conditional
probability density. A di®erent research line consists of
looking for suboptimal controllers providing the optimal
solutions in a restricted family of measurable functions
of the observations. Such an approach has been recently
applied by Carravetta et al. (2007) to the optimal control
of linear systems with state- and control-dependent noise.
The control law provided achieves the optimal solution
among all the a±ne transformations of the measurements.

On the other hand, even neglecting the stochastic dis-
turbances, according to the complete information case,
the application of the maximum principle to nonlinear
systems does not ensure an analytical solution to the
resulting nonlinear Two-Point Boundary-Value (TPBV)
problem (see Bryson et al. (1995)). In the last decades
a great deal of literature has been developed in order
to obtain implementable control schemes from the max-
imum principle optimality conditions, see Betts (1999)
and references therein. In a recent paper of Tang (2005),
a successive-approximation approach has been adopted
obtaining approximate solutions to the nonlinear TPBV
problem. However, these techniques do not provide a real
time algorithm, approaching the problem from a numerical
point of view.

In this paper the solution to the optimal control problem
is achieved by means of the Carleman approximation of
a chosen degree º of the nonlinear stochastic exosystem
(2) in the form of a bilinear system (linear drift and
state-dependent noise) with respect to a suitable de¯ned
extended state made of the Kronecker powers of the orig-
inal state z up to degree º. Such a methodology has
been recently successfully applied in order to improve the
performances of the Extended Kalman Filter both in the
discrete-time (see Germani et al. (2005a), Germani et al.
(2005b)) and in the continuous-time frameworks (see Ger-
mani et al. (2007)). Then, the Carleman bilinear approxi-
mation of the exosystem is coupled to the state equations
(1) and the optimization problem is restated in a bilinear
setting. Unfortunately, the optimal solution in the general
case of incomplete information requires the building of the
optimal ¯lter, which is still not implementable according
to a ¯nite-dimensional algorithm. It is worthwhile, then, to
look for suboptimal estimates. Here, we propose the opti-
mal linear regulator, by extending the results of Carravetta
et al. (2007), consisting of the optimal solution among of
all the IRp-valued square-integrable a±ne transformations
of the observations.

The same approach, based on the Carleman approximation
scheme, has been applied in a recent paper by the authors
for the equivalent optimal control problem in the discrete-
time framework (see Mavelli et al. (2007)).

In the sequel Im will denote the identity matrix of orderm,
Or£c a matrix of zeros in IRr£c and IEf¢g the expectation
value operator.

2. CARLEMAN APPROXIMATION OF THE
STOCHASTIC EXOSYSTEM

Under standard analyticity hypotheses, the exosystem
equations can be written by using the Taylor polynomial
expansion around a given point ~z. Denote with Fj the j-th
column of matrix F , and with W z

j (t) the j-th element of

vector W z(t). According to the Kronecker formalism, the
di®erential system in (2) becomes:

dz(t) =

1X
i=0

©i(~z)
¡
z(t)¡ ~z¢[i]dt+ hX

j=1

FjdW
z
j (t); (4)

with the square brackets denoting the Kronecker power
(see Carravetta et al. (1997) for a quick survey on the
Kronecker algebra and its main properties) and:

©i(z) =
1

i!

³
r[i]z − Á

´
: (5)

The di®erential operator r[i]
z − applied to a generic func-

tion Ã = Ã(z) : IRm 7! IRp is de¯ned as follows

r[0]z − Ã=Ã; r[i+1]z − Ã=rx −
¡r[i]z − Ã¢; i ¸ 1; (6)

with rz = [@=@z1 ¢ ¢ ¢ @=@zm] and rz−Ã the Jacobian of
the vector function Ã.

Based on the building of an extended vector made up of
the powers of the state of the original nonlinear system,
in the derivation of the Carleman approximation the Itô
formula for the computation of stochastic di®erentials,
written using the Kronecker formalism, is required (see
Liptser et al. (1977)): consider the stochastic process

dÂt=f(Ât)dt+ g(Ât)dWt=f(Ât)dt+

pX
k=1

gk(Ât)dWk;t; (7)

where Ât 2 IRn, f : IRn 7! IRn, g : IRn 7! IRn£p, gk(¢), k =
1; : : : ; p are the columns of g(¢), Wt =

£
W1;t ¢ ¢ ¢ Wp;t

¤T
is

a standard Wiener processes in IRp; given a transformation
³t = '(t; Ât), with ' : IR£ IRn 7! IRq twice di®erentiable,
the Itô di®erential d³t can be written as:

d³t =
@'

@t
dt+

¡rÂ − '¢dÂt+1
2

¡r[2]Â − '¢¹g(Ât)dt (8)

with ¹g(Ât) =
Pp

k=1 g
[2]
k (Ât). According to (8), the di®er-

ential of the Kronecker power z[k], k ¸ 2, can be written
as:

dz[k](t) =

µ¡rz − z[k]¢Á¡z(t)¢+ 1
2

¡r[2]z − z[k]¢ ¹F¶ dt
+
¡rz − z[k]¢FdW z(t); with ¹F =

hX
j=1

F
[2]
j ;

(9)

Finally, by exploiting some properties of the Kronecker
algebra:

dz[k](t) = Ukm
¡
Im − z[k¡1](t)

¢
Á
¡
z(t)

¢
+
1

2
Okm

¡
Im2 − z[k¡2](t)¢ ¹Fdt

+Ukm
¡
Im − z[k¡1](t)

¢
FdW z(t); k ¸ 2

(10)
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with Ukm, O
k
m suitably de¯ned matrices (see Germani et al.

(2007) for more details).

The º-degree Carleman approximation of the stochastic
nonlinear exosystem (2) is, then, achieved according to
the following steps:

1. consider the Taylor expansion around a given point
~z of the nonlinear terms of the di®erentials dz[k], k =
1; : : : ; º, by using (4) for k = 1 and suitably exploiting
the Kronecker product properties in (10) for 2 · k · º:

dz[k](t) =

1X
i=0

Aki(~z)
¡
z(t)¡ ~z¢[i]dt

+
hX
j=1

¡
Bkjz

[k¡1](t) + Fkj
¢
dW z

j (t);

(11)

2. neglect in the summations in (11) the higher order
terms greater than º and expand the binomials (z(t)¡~z)[i]
according to the Kronecker binomial power formula (see
Germani et al. (2007)):

dz[k](t) '
ºX
i=0

Aki(~z)z
[i](t)dt

+
hX
j=1

¡
Bkjz

[k¡1](t) + Fkj
¢
dW z

j (t);

(12)

3. substitute in (12) the powers z[k] with a vector Zºk of
the same dimensions:

dZºk (t) =

ºX
i=0

Aki(~z)Z
º
i (t)dt

+

hX
j=1

¡
BkjZ

º
k¡1(t) + Fkj

¢
dW z

j (t):

(13)

Comparing the equations (12) and (13), it is clear that
Zºk (t) is aimed to approximate z

[k](t), k = 1; : : : ; º.

Finally, the bilinear approximation may be written in a
more compact form, de¯ning the extended state Zº(t) =£
ZºT1 (t) ¢ ¢ ¢ ZºTº (t)

¤T 2 IRmº , mº = m+m
2 + ¢ ¢ ¢mº :

dZº(t) = Aºz(~z)Zº(t)dt+Dºz (~z)dt

+

hX
j=1

¡Bºz;jZº(t) + Fºz;j¢dW z
j (t);

(14)

with Zº(0) = Zº0 =
£
zT0 ¢ ¢ ¢ z[º]T0

¤T
. Explicit computa-

tions of the matrices involved in the Carleman approxi-
mations in (11-14) can be found in Germani et al. (2007).

In order to couple the º-degree Carleman approximation
(14) to the di®erential system (1), the original state and
output vectors x(t), y(t) are substituted by vectors of
the same dimension xº(t), yº(t), so that the following
equations are obtained:

dxº(t) = Axº(t)dt+Hu(t)dt+Mº
zZ

º(t)+NdW x(t);

dZº(t) = Aºz(~z)Zº(t)dt+Dºz (~z)dt

+

hX
j=1

¡Bºz;jZº(t) + Fºz;j¢dW z
j (t);

dyº(t) = Cxº(t)dt+GdW y(t);

(15)

withMº
z=
£
M On£(mº¡m)

¤
and xº(0)=x0, Z

º(0)=Zº0 .
By de¯ning the following vectors and matrices (in (18) Nj
denotes the j-th column of matrix N):

X º(t) =

·
xº(t)
Zº(t)

¸
;

Hº =

·
H

Omº£p

¸
;

Aº(~z) =
·

A Mº
z

Omº£n Aºz (~z)
¸
;

Dº(~z) =
·
On£1
Dºz (~z)

¸
;

(16)

Bºj =

8><>:
O(n+mº)£(n+mº); j = 1; : : : ; b·
On£n On£mº

Omº£n Bºz;j¡b
¸
; j = b+ 1; : : : ; b+ h

(17)

Fºj =

8>>><>>>:

·
Nj

Omº£1

¸
; j = 1; : : : ; b

·
On£1
Fºz;j¡b

¸
; j = b+ 1; : : : ; b+ h

(18)

Cº = £C Oq£mº

¤
; W(t) =

·
W x(t)
W z(t)

¸
; (19)

system (15) is put in a more compact form:

dX º(t) = Aº(~z)X º(t)dt+Hºu(t)dt+Dº(~z)dt

+

b+hX
j=1

¡BºjX º(t) + Fºj
¢
dWj(t);

X º(0) =
£
xT0 ZºT0

¤T
;

dyº(t) = CºX º(t)dt+GdW y(t):

(20)

According to (16), the cost functional (3) becomes:

Jº(u) =
1

2
IE

½
X ºT (tf )SºX º(tf )

+

tfZ
0

³
X ºT (t)QºX º(t) + uT (t)Ru(t)

´
dt

¾
;

(21)

with:

Sº=
·

S On£mº

Omº£n Omº£mº

;̧ Qº=
·

Q On£mº

Omº£n Omº£mº

:̧ (22)

3. OPTIMAL LINEAR REGULATOR

The optimal control problem here proposed is solved by
applying the optimal linear regulator to the bilinear di®er-
ential system (20), obtained by means of the Carleman ap-
proximation of the nonlinear stochastic exosystem. More
precisely we seek a solution u(t) to the minimum of the
index (21), which belongs to the space Lpt (yº) of all the
IRp-valued square-integrable a±ne transformations of the
random variables fyº(¿); 0 · ¿ · t · tfg:

min
u(t)2Lpt (yº)

Jº(u); with u;X º ; yº subject to (20):

Such a problem has been properly formalized (quadratic
functional cost and bilinear di®erential system) and solved
in Carravetta et al. (2007); however, the solution proposed
in Carravetta et al. (2007) cannot be directly applied,
because in addition to the case investigated in that paper,
here we have also a pure additive noise and a given

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8029



deterministic drift in the state-di®erential equation (20).
Therefore, this Section is devoted to extend the results of
Carravetta et al. (2007) to such a more general framework.

Let us state a preliminary lemma before giving the main
result.

Lemma 1. Let V (t), t 2 IR, a twice di®erentiable matrix
function taking values in IRn£n, and M(t) the martingale
de¯ned by:

M(t) =

qX
k=1

tZ
0

¡
BkX(¿) + Fk

¢
dWk(¿ ); (23)

whereW =
£
W1 ¢ ¢ ¢ Wq

¤T
is a Wiener process in IRq, and

X(t) is a process in IRn, such that X(t) is independent
of fW (s); s · tg; Bk; Fk, k = 1; : : : ; q are suitably
dimensioned given matrices. Then, the following equality
holds:

1

2

nX
i;j=1

µ
@2(xTV (t)x)

@xi@xj

¶
x=X(t)

dhMi;Mjit

= XT (t)

µ qX
k=1

Bk
TV (t)Bk

¶
X(t)dt

+2X(t)T
µ qX
k=1

Bk
TV (t)Fk

¶
dt+

qX
k=1

Fk
TV (t)Fkdt;

(24)

where dhMi;Mjit is the mutual quadratic variation pro-
cess of the i-th and j-th entries of the process M(t).

The proof (here omitted for brevity) follows the same
steps of the corresponding Lemma 3.1 in Carravetta et al.
(2007).

Theorem 2. Suppose a solution exists for the following
backward generalized Riccati equations:

_V (t) = ¡AºT (~z)V (t)¡ V (t)Aº(~z)¡Qº

¡
b+hX
k=b+1

¡BºkTV (t)Bºk¢+V (t)HºR¡1HºTV (t); (25)

V (tf ) = Sº ;
_g(t) = ¡2V (t)Dº(~z)¡AºT (~z)g(t)

+V (t)HºR¡1HºT g(t)¡2
b+hX
k=b+1

BºkTV (t)Fºk ; (26)

g(tf ) = 0;

with V (t) = V T (t) ¸ 0. Then the solution to the optimal
control problem of minimizing the cost criterion (21),
under the di®erential constraints (20), with u(t) 2 Lpt (yº)
is given by:

uo(t) = Lo(t)cX º(t) + ®(t); (27)

with

Lo(t) = ¡R¡1HºTV (t); ®(t) = ¡1
2
R¡1HºT g(t); (28)

where cX º(t) is the optimal (in the sense of the min-
imum error variance) estimate of X º(t) among all the
IRn+mº -valued square-integrable a±ne transformations of
fyº(¿ ); 0 · ¿ · t · tfg.

Proof. De¯ne the process:

»t = X ºT (t)V (t)X º(t) + gT (t)X º(t): (29)

By exploiting the ¯nal conditions in (25-26), we have:
tfZ
0

d»t = X ºT (tf )SºX º(tf )¡X ºT (0)V (0)X º(0)

¡gT (0)X º(0);

(30)

so that the index (21) may be rewritten as follows:

Jº(u)=
1

2
IE

8<:
tfZ
0

³
X ºT (t)QºX º(t) + uT (t)Ru(t)́ dt

+

tfZ
0

d»t + X ºT (0)V (0)X º(0) + gT (0)X º(0)

9=; :
(31)

Recall that, in case of a scalar function '(¢; ¢), the Itô
formula in (8) particularizes as:

d³t=
@'

@t
dt+

¡rÂ − '¢dÂt+1
2

nX
i;j=1

@2'

@Âi@Âj
dhMi;Mjit;(32)

with M(t) as in (??). Then, applying (32) to the process
»t:

d»t=
³
X ºT (t) _V (t)X º(t) + _gT (t)X º(t)

´
dt+ gT (t)dX º(t)

+ dX ºT (t)V (t)X º(t) + X ºT (t)V (t)dX º(t)

+
1

2

n+mºX
i;j=1

µ
@2(xTV (t)x)

@xi@xj

¶
x=Xº(t)

dhMi;Mjit;

(33)

where

dM(t) =
b+hX
k=1

³
BºkX º(t) + Fºk

´
dWk(t): (34)

Now, by using Lemma 1, and substituting in (33) the right-
hand side of the extended state equation in (20), it results:

d »t =

Ã
X ºT (t) _V (t)X º(t) + _gT (t)X º(t)

+X ºT (t)AºT (~z)V (t)X º(t) + X ºT (t)V (t)Aº(~z)X º(t)

+2uT (t)HºTV (t)X º(t) + 2DºT (~z)V (t)X º(t)

+ gT (t)Aº(~z)X º(t) + gT (t)Hºu(t) + gT (t)Dº(~z)

+X ºT (t)

µ b+hX
k=b+1

BºkTV (t)Bºk
¶
X º(t)

+2X ºT (t)

µ b+hX
k=b+1

BºkTV (t)Fºk
¶
+

b+hX
k=1

Fºk TV (t)Fºk
!
dt

+2

b+hX
k=b+1

X ºT (t)BºkTV (t)X º(t)dWk(t)

+2
b+hX
k=1

Fºk TV (t)X º(t)dWk(t)+
b+hX
k=1

gT (t)Fºk dWk(t)
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+
b+hX
k=b+1

gT (t)BºkX º(t)dWk(t); (35)

(recall that the summations involving Bºk , k = 1; : : : ; b,
vanish according to (17)). By substituting (35) in (31),
taking into account that the expectations values of the
noise-dependent terms in (35) vanish, and exploiting (25)
and (26), it follows that:

Jº(u)=
1

2
IE

( tfZ
0

X ºT (t)
¡
V (t)HºR¡1HºTV (t)

¢X º(t)dt

+

tfZ
0

X ºT (t)V (t)HºR¡1HºT g(t)dt

+

tfZ
0

2X ºT (t)V (t)Hºu(t)dt+

tfZ
0

uT (t)Ru(t)dt

+

tfZ
0

³
gT (t)Hºu(t) + gT (t)Dº(~z) +

b+hX
k=1

Fºk TV (t)Fºk
´
dt

+X ºT (0)V (0)X º(0) + gT (0)X º(0)

)
: (36)

By considering the gain matrix Lo(t) = ¡R¡1HºTV (t),

and the vector ®(t) = ¡(1=2)R¡1HºT g(t), the index Jº is
¯nally given by:

Jº(u) =
1

2
IE

½ tfZ
0

X ºT (t)LoT (t)RLo(t)X º(t)dt

+

tfZ
0

2X ºT (t)LoT (t)R®(t)dt¡
tfZ
0

2X ºT (t)LoT (t)Ru(t)dt

+

tfZ
0

uT (t)Ru(t)dt¡
tfZ
0

2®(t)TRu(t)dt+

tfZ
0

gT (t)Dº(~z)dt

+X ºT (0)V (0)X º(0)+gT (0)X º(0)+

tfZ
0

b+hX
k=1

Fºk TV (t)Fºk dt
¾

=
1

2
IE

½ tfZ
0

³
u(t)¡ Lo(t)X º(t)¡ ®(t)

´T
R

¢
³
u(t)¡ Lo(t)X º(t)¡ ®(t)

´
dt

+

tfZ
0

Ã
gT (t)Dº(~z)¡ ®(t)TR®(t) +

b+hX
k=1

Fºk TV (t)Fºk
!
dt

+gT (0)X º(0)+X ºT (0)V (0)X º(0)

¾
: (37)

Since only the ¯rst term in the above expression of Jº
depends of the control law u(¢), the minimum of Jº is
achieved by minimizing the quantity:

IE
©ku(t)¡ Lo(t)X º(t)¡ ®(t)k2ª (38)

for almost all t 2 [0; tf ]. Hence, according to the constraint
of u(t) 2 Lpt (yº), the solution is given by (27-28) and the
Theorem is proved.

4. THE ASSOCIATED FILTERING ALGORITHM

In the complete information case, that is assuming to
have a direct measurement of the extended state X º(t)
(that is direct measurements of x(t) and z(t), actually),
it is straightforward from Theorem 2 that the optimal
regulator would be: u¤(t) = Lo(t)X º(t) + ®(t). On the
contrary, the case under investigation is that of incomplete
information, therefore we need to solve the ¯ltering prob-
lem of providing the estimate of X º(t) from the available
measurements yº . It is well known that such a problem
is optimally solved (in the sense of the minimum error
variance) by the conditional expectation w.r.t. all the
Borel transformations of the measurements, whose compu-
tation, in general, cannot be obtained through algorithms
of ¯nite dimension. It is worthwhile, then, to look for
suboptimal estimates providing implementable ¯ltering al-
gorithms. As previously stated in Theorem 2, the extended

state estimate fX º(t) here proposed is the optimal linear
estimate among all the IRn+mº -valued square-integrable
a±ne transformations of the measurements fyº(¿ ); 0 ·
¿ · t · tfg, which consists of the projection of X º onto

Ln+mº
t (yº):cX º(t) = ¦

£X º(t)jLn+mº
t (yº)

¤
(39)

(formally the projection onto Ln+mº
t (yº) is a random vari-

able such that the di®erence X º(t)¡¦£X º(t)jLn+mº
t (yº)

¤
is orthogonal to Ln+mº

t (yº), i.e. is uncorrelated with all
random variables in Ln+mº

t (yº)).

Theorem 3. Consider the stochastic system (20) with

u(t) = uo(t) = Lo(t)cX º(t) + ®(t), Lo(t), ®(t) as in (28),

and cX º(t) as in (39). Then cX º(t) satis¯es the equation:

dcX º(t)=
³¡Aº(~z)+HºLo(t)

¢cX º(t)+Hº®(t)+Dº(~z)
´
dt

+K(t)
³
dyº(t)¡CºcX º(t)dt́ ; (40)

with cX º(0) = IEfX º(0)g and K(t) = P (t)CºT (GGT )¡1,
where P (t) is the error covariance matrix evolving accord-
ing to the equation:

_P (t) = Aº(~z)P (t) + P (t)AºT (~z) +
b+hX
j=1

¡Bºjªº(t)BºTj ¢
+

b+hX
j=1

¡Bºj ¹º(t) + Fºj ¢¡Bºj ¹º(t) + Fºj ¢T
¡P (t)CºT (GGT )¡1CºP (t); (41)

with P (0) = CovfX º(0)g and ¹º(t) = IEfX º(t)g, ªº(t) =
CovfX º(t)g obeying the following equations:

_¹º(t) =
¡Aº(~z) +HºLo(t)

¢
¹º(t) +Hº®(t) +Dº(~z);

_ªº(t)=
¡Aº(~z) +HºLo(t)

¢
ªº(t)

+ªº(t)
¡Aº(~z) +HºLo(t)

¢T
+

b+hX
j=b+1

¡Bºjªº(t)BºTj ¢
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+
b+hX
j=1

¡Bºj ¹º(t) + Fºj ¢¡Bºj ¹º(t) + Fºj ¢T : (42)

Proof. The proof is a straightforward consequence of
Theorem 4.2 in Carravetta et al. (2007).

Note that, according to the optimal initialization of the
¯ltering algorithm associated to the proposed control law,
the second order moments of the initial extended state
X º(0) have to be ¯nite and available, that means ¯nite
and available moments up to order 2 for x0 and up to
order 2º for z0.

Remark 4. The ¯lter proposed in Theorem 3, provides
the optimal linear estimate of X º as a function of the
observations yº . However, the available measurements are
given by the output y (instead of yº), therefore the
di®erential dyº in (40) should be replaced by dy.

Remark 5. The computational burden for real-time imple-
mentation can be reduced by eliminating the redundancies
in the extended vector Zº (see Germani et al. (2007) for
further details).

5. SIMULATION RESULTS

Numerical simulations have been performed to show the
e®ectiveness of the proposed algorithm. The ones here
reported refers to a ¯nite horizon of [0 10]. The linear
system under investigation is a third order system, whose
matrices are below reported, according to the formalism
of (1):

A=

"¡1 0 1
1 ¡1 0
1 0 ¡2

#
; H=

"
1
0:2
¡1:5

#
; M=

"
1 1
0 ¡1
2 ¡1

#
;

N =

"
1
1
1

#
; C =

·
1 0 1
2 1 ¡1

¸
; G =

·
10 0
0 10

¸
:

The state transition map Á(¢) : IR2 7! IR2 and matrix F
of the nonlinear exosystem (2) are:

Á
¡
z(t)

¢
=

µ ¡z1(t) + z1(t)z2(t)
z1(t)¡ 2z2(t)¡ z1(t)z2(t)

¶
; F =

·
1
1

¸
:

The initial states x0 and z0 are Gaussian standard random
vectors (zero mean and identity covariance matrix). The
origin (0; 0) has been chosen as the point ~z around which
the nonlinear exosystem is approximated by means of the
Carleman approximation approach. The weight matrices
S, Q, R of the index J in (3) are S = Q = 10 ¢ I3, R = 0:1.
A second order regulator (that is º = 2) is implemented,
whose performances have been compared to the ¯rst
order regulator, consisting of the optimal linear control
law applied to the original linear system (1) endowed
with the standard linear approximation of the exosystem.
Comparisons with the free-evolution without control have
also been obtained (formally denoted by º = 0).

Simulations have been performed according to the Euler-
Maruyama method (see Higham (2001)) with integration
step ¢ = 10¡3.

Below are reported the values of the index J as the
averages of 100 di®erent simulations (with di®erent noise
realizations):

J0 = 1:6226 ¢ 103; J1 = 1:5088 ¢ 103; J0 = 1:4052 ¢ 103:

Note that, by applying the second order regulator, we
obtain apparent improvements.
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