
On Hybrid Hw/Sw Components for
Embedded System Design

Hugo Marcondes and Antônio Augusto Fröhlich

Federal University of Santa Catarina
Laboratory for Hardware and Software Integration
PO Box 476, Florianopolis, SC, 88049-900 Brazil

{hugom,guto}@lisha.ufsc.br

Abstract: Embedded Systems are increasing in complexity, requiring the use of an adequate
design methodology in their conception. These methodologies must deal with several metrics
associated with the design of embedded systems. In order to attend these metrics, several
software engineering techniques are being applied in embedded system design, as component-
based design. Moreover, a design based on higher-level abstraction enable a better design space
exploration between several hardware and software compositions. We define hybrid components
as a development artifact that can be deployed by different combinations of hardware and
software elements. Nevertheless, devising the proper interface for such component is certainly
not a straightforward task. This paper presents a strategy to handle the construction of those
hybrid components that delivers architectural transparency to clients, enabling the achievement
of desired design metrics, through an effective design space exploration.

1. INTRODUCTION

Embedded systems are pervasive in our daily lives, from
brake control systems in our vehicles to smart appliances
in our homes. Hardware production technology advances
and manufacturing costs reductions have promoted the de-
velopment and popularization of very complex embedded
applications. In this sense, the Application-Oriented Sys-
tem Design (AOSD) methodology (Fröhlich [2001]) guides
the development of embedded systems through a domain
engineering process that aims at yielding components that
can be promptly reused in a variety of application-specific
systems. The portability of such components—and thus of
applications using them—across distinct hardware plat-
forms is achieved by means of a construct named hard-
ware mediator, which defines a hardware/software inter-
face contract between higher-level components and the
hardware (Polpeta and Fröhlich [2004]).

Hardware mediators are meant to be implemented using
Generative Programming techniques (Czarnecki and Eise-
necker [2000]) and, instead of building an ordinary Hard-
ware Abstraction Layer (HAL), implicitly adapt existing
hardware components to match the required interface by
adding software to client components. For example, the
hardware mediator for a hardware component that already
presents the desired interface would be totally eliminated
during the system generation process; while the hardware
mediator for a hardware component that does not provide
all the desired functionality could exceed the role of in-
terface and include software elements to complement the
hardware functionality.

Indirectly, the concept of hardware mediator defines a kind
of hybrid hardware/software component, since different me-
diator implementations can exist for the same hardware
component, each designed around a particular set of goals

such as performance and energy efficiency. If the hardware
platform can be itself synthesised—as is the case with IP-
based platforms—then the notion of a hybrid component
becomes even more appealing, since some hardware medi-
ators could exist in different pre-validated combinations of
hardware and software.

The idea of hybrid hardware/software component behind
AOSD hardware mediators also constitutes an important
tool for design of embedded systems. The fact that hy-
brid components in this sense exist in advance enables a
scenery in which components can be tagged with infor-
mation about required silicon area and features, energy
consumption, performance, reliability, cost (e.g. associated
royalties), and whatever other metric becomes convenient,
thus sustaining an effective exploration of design space.

Nonetheless, devising the proper interface for a hybrid
component—specially the more complex ones, such as
CODECs, storage systems, and interconnects—and de-
signing it in a way that is flexible enough to support
implementations that freely combine hardware and soft-
ware elements is certainly not a straightforward task.
This paper presents a strategy to handle these issues
through a well-defined hybrid hardware/software compo-
nent architecture. This architecture emerged during the
implementation of several hybrid components, such as
the scheduling algorithm used in the case study of the
proposed architecture. Those components were developed
in the scope of the Embedded Systems Development En-
vironment Project (PDSCE) 1 .

The forthcoming sections are dedicated to explain the
hardware mediator construct and its connotation of hybrid
component in depth, to present the case studies that

1 The PDSCE Project is funded by FINEP grant no. 01.04.0903.00.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 9290 10.3182/20080706-5-KR-1001.3199

yielded the proposed hybrid component architecture, and
to discuss the architecture itself.

2. APPLICATION-ORIENTED SYSTEM DESIGN

Application-Oriented System Design (AOSD) is a domain
engineering methodology that elaborates on the well-
known domain decomposition strategies behind Family-
Based Design (FBD) and Object-Orientation (OO), i.e.
commonality and variability analysis, to add the concept of
aspect identification and separation yet at the early stages
of design (Fröhlich [2001]). In this way, AOSD guides a
domain engineering towards families of components, of
which execution scenario dependencies are factored out
as ”aspects” and external relationships are captured in a
component framework. This domain engineering strategy
consistently addresses some of the most relevant issues in
component-based development:

Reusability: components tend to be highly reusable, for
they are modeled as abstractions of real elements of
a given domain and not as parts of a target system.
Moreover, by factoring out execution scenario dependen-
cies as aspects, components can be reused unmodified
in a variety of scenarios simply by defining new aspect
programs.

Complexity management: the identification and sep-
aration of execution scenario dependencies implicitly
reduces the number of components in each family, since
those components that would have been modeled to
express a variation in the domain that originates from
a scenario dependency are suppressed whenever the de-
pendency can be modelled as an aspect. Simply stated,
a set of 100 components could be modeled as a set of 10
components plus a set of 10 aspects and a mechanism
to apply aspects to components. The overall complexity
(and functionality) in the new set of 100 generated
components is the same, but it is now confined in fewer
constructs. This directly improves on maintainability.

Composability: by capturing component relationships
in a component framework, AOSD enables components
to be more easily combined while generating a system
instance. It also put some limits to the misbehaviors
that can arise from applying aspect programs to pre-
validated components. Feature-based models are of great
value at this point to capture configuration knowledge
and thus make system generation a more predictable
procedure.

Figure 1 illustrates the main elements of an AOSD domain
decomposition, with domain entities being captured as
abstractions that are organized in families and exported
to users through comprehensive interfaces. Abstractions
designate scenario independent components, since scenario
dependencies are captured as aspects during design. Subse-
quent factorization captures configurable features as con-
structs that can be reused thorough the family. Relation-
ships between families of abstractions delineate a compo-
nent framework. Each of these elements are subsequently
modelled according with the guidelines of Object-Oriented
Design (OOD).

Domain
Problem

adapter

adapter

adapter

Scenario

aspect

aspect

Family

MemberMember Member

Member

aspect
feature
config.

Abstractions
Families of Frameworks

Interface

Fig. 1. Overview of domain decomposition guided by
AOSD.

3. HYBRID HARDWARE/SOFTWARE
COMPONENTS

As described in the introduction of this article, hard-
ware mediator is the concept of AOSD responsible for
preserving the architectural independence of high-level
system components. Although the portability aspect of
hardware mediators was consistently discussed in a pre-
vious paper (Marcondes et al. [2006]), illustrating the
role of a hardware mediator with a real case study will
be of great use while trying to demonstrate how hybrid
hardware/software components emerge from it. Therefore,
the mediators involved in the management of processes in
Eposwill be revisited here. The Epossystem is currently
the main laboratory for AOSD experiments, and consists
of the AOSD methodology applied in the domain of oper-
ating systems, thus, yielding a customized runtime support
system for embedded applications that use it.

In Epos, processes management is delegated to the Thread
and Task abstractions. Task abstractions corresponds to
the activities specified in the application program, while
Threads are the entities that perform such activities. Some
of the main requisites and dependencies of these system
abstractions are deeply related with the architecture of the
target processor, which is mediated by the CPU hardware
mediator. For example, the execution context of a process
comprises the values stored in user-visible registers of
the processor, and the stack structure is determined by
the Application Binary Interface (ABI) of the processor.
Details like these are encapsulated in CPU and hidden from
Thread and Task.

Figure 2 depicts some interface elements of the CPU me-
diator. The class Context defines all the internal data
structures that must be stored for any given execution
flow. As part of the CPU mediator, this class is redefined
for every new architecture the system is intended to run
on. Thread and Task simply use it as a black-box. The
context of a thread is thus represented by an object that
is dynamically stored on the thread’s stack. A pointer
to the location where the context is currently stored is

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9291

+ fdec(value: bool): void

+ finc(value: bool): void

+ tsl(value: bool): void

+ init_stack(...): Context

+ switch_context(old: **Context, new: *Context): void

+ enable_interrupts(): void

+ disable_interrupts(): void

+ halt(): void
. . .

<<interface>>

CPU

CPU::Context

+ load(): void

+ save(): void

IA32

PPC32 SPARC32

AVR8

1

1

execute

Fig. 2. Overview of the CPU hardware mediator.

maintained as an attribute of Thread that is implicitly
updated by the method CPU::switch context().

Another architecture dependency in process management
is related to stack initialization. In Epos, a thread can be
created to execute any ordinary function in the program
(i.e., Task), regardless of the number of parameters it
has and also regardless of the fact is encodes an explicit
call to Thread::exit(). In order to sustain this program-
ming model, the stack of a thread must be pre-initialized
with the corresponding function parameters, as well as
a return address that will properly guide the execution
flow throughout Thread::exit(). However, compilers for
different architectures use different function calling con-
ventions, and having the Thread abstraction to manipulate
the stack by its own would render undesirable architectural
dependencies. The solution is to have a meta-program
that is able to properly initialize the stack inside the CPU
mediator. This interaction between Thread and CPU is
illustrated by figure 3, which depicts the steps involved in
creating (steps 1.*) and scheduling (steps 2.*) threads 2 .

1.3: {preemptive==true} switch_context

2.2: {ready > 0} switch_context

Alarm

Scheduler

Thread

CPU

Application

1.1: init_stack

1.2: insert

2.1: reschedule

1: create

TimerHardware

2: interrupt

Fig. 3. Thread creation and scheduling.

The CPU hardware mediator also implements some func-
tionality for other system abstractions, such as bus-locked
read-and-write transactions (i.e., Test and Set Lock),
which is required by the Synchronizer family of abstrac-
2 If the preemptive feature is enabled then step 1.3 is also considered
during thread creation (e.g., higher priority thread).

tions, and endianness conversion (e.g. host to network and
CPU to Little Endian) used by Communicator. The pro-
cess scheduling algorithm is itself implemented by another
abstraction that also uses CPU: the Scheduler.

With this example in mind, it is now easier to elaborate on
the idea of hybrid hardware/software components emanat-
ing from hardware mediators. Consider, for instance, that
a soft-core processor has bus-locked read-and-write mem-
ory transactions implemented as a configurable feature.
Two members of the corresponding hardware mediator
family could deliver the process synchronization mecha-
nism alternatively in software or hardware and yet preserve
the interface contract. These two mediators could thus be
viewed by client components as a single hybrid component.

More sophisticated combinations could be devised for the
Scheduler component, which could exist in a variety of
shapes, including, for instance, a hardware-mostly imple-
mentation that features timers and queues; a software-
mostly implementation that uses an external timer (Alarm
in figure 3); a hardware/software implementation with
caches, timers and policies in hardware, and queues in
software.

HybridComponent

<<interface>>

Abstraction Family

Member A1 Member A2 Member A3

<<interface>>

A2 Mediator Family

<<software>>
Member M1

<<hardware>>
Member M2

<<hardware>>
Member M3

Fig. 4. Hybrid hardware/software component organiza-
tion.

The general form of such hybrid components is depicted
in figure 4. Each hybrid component aggregates a hardware
mediator that interfaces several software and hardware
implementations. These implementations can be selected
by the system developer in order to achieve the best com-
promise between performance, cost, energy consumption,
silicon area, etc. The main challenge in the use of hardware
mediators to construct a repository of hybrid hw/sw com-
ponents is to design them in such a way that the interface
with other components is preserved independently of the
fact that sometimes the component will be implemented
in hardware and other times in software.

4. HYBRID COMPONENTS IN PDSCE

During the PDSCE Project, some hybrid components were
developed for Epos as an answer to very distinct applica-
tion requirements for a same hardware component. For
instance, some digital television applications developed
in the project, in particular the H.222 MPEG multiplex,
called for strict real-time support and guided us toward
the design of hardware-based scheduling and synchroniz-
ing components. Another application, the encoder, had

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9292

far more trouble with high-performance algorithms and
demanded advanced math support in hardware. Both ap-
plications coexisted on the same base architecture, the
VirtexII-Pro, and used hybrid components selected and
configured by Epos system tools. The design and im-
plementation of Semaphore and Scheduler hybrid com-
ponents will be described next aiming at sustaining the
reasoning about the systematization of the development
of hybrid components presented in the next section.

4.1 Semaphore

A semaphore is a synchronization tool represented by a
integer variable that can be accessed only by two atomic
operations: p (from the Dutch proberen, to test) and
v (from Dutch verhogen, to increment). In Epos , this
abstraction is realized by the Semaphore member of the
Synchronizer family of components, which is outlined in
figure 5.

HybridComponent

+ p(): void

+ v(): void

+ lock(): void

+ unlock(): void

+ wait(): void

+ signal(): void

+ broadcast(): void

Synchronizer
<<interface>>

+ p(): void

+ v(): void

Semaphore

+ wait(): void

+ signal(): void

+ broadcast(): void

Condition

+ lock(): void

+ unlock(): void

Mutex

Sw_Semaphore Hw_Semaphore

Fig. 5. Epos family of synchronization components.

Figure 6 illustrates the organization of the hardware
semaphore IP. Basically, the IP has an internal memory
that stores the semaphore’s values and pointers to the
blocked threads queues. The size of the internal mem-
ory is proportional to the maximum number of available
semaphores, the maximum number of blocked threads and
the number of bits that represent each semaphore value
(e.g., 32-bits). The IP was integrated with the PLB bus
using the IPIF interface provided by the Xilinx.

When a semaphore is created, the IP performs a search
within the internal memory to find out a free slot. If this
operation succeeds, then the semaphore is set as valid
and its id is returned to be referenced on subsequent
commands (i.e., p, v, and destroy). For a p operation,
the client must supply, in addition to the semaphore’s
id in the Command Register, a pointer to the running
thread in the Thread Pointer register. These information
is made available to the semaphore IP respectively via
the ID and DATA IN ports. If the operation causes the
semaphore’s value to become negative, then the running
thread reference is inserted in the corresponding queue and

a flag in the Status Register is set. The associated soft-
ware routine can then invoke the scheduler. A v operation
that causes a thread to be resumed reports the thread
pointer via the same register and signalizes a flag on the
Status Register.

DATA_IN

COMMAND

CLOCK

ID

STATUS

DATA_OUT

RESET

id

queuevaluevbit

QUEUES

. . .

IRQ

HW_SEMAPHORE_IP

B
U

S
 S

IG
N

A
L
S

COMMAND_REGISTER

STATUS_REGISTER

THREAD_POINTER

IPIF_GLUE_LOGIC

BUS_WRAPPER

Fig. 6. Overview of the hardware semaphore organization.

The final component was synthesised on the Virtex-4 ML
403 development board, using the Xilinx tools design
flow. The table 1 present the FPGA area used by this
component configured to allow the instantiation of 8
semaphores, each one holding a queue of 4 elements.

4.2 Thread Scheduler

For the PDSCE Project, an Priority-based scheduler was
developed in the Epos and gave rise to a hybrid com-
ponent. Figure 7 illustrates the family of schedulers in
Epos. The CPU Scheduler abstraction interacts with the
Threads and CPU mediator described in section 3 to pro-
vide the mechanisms necessary to suspend and resume the
execution of threads.

HybridComponent

Policy

StaticPriorityRoundRobin

FCFS RateMonotonic

DynamicPriority SoRTS HaRTS

CPU_Scheduler

EDF

Fig. 7. Epos family of scheduler components.

The hardware scheduler IP is depicted in figure 8. It has
four main modules: scheduler, queue control, time control
and interface (IPIF). The scheduler module consists of two
VHDL processes: alloc and main. The alloc processes is
strictly related with the allocation table of scheduler as
this process allocs new threads that are created in the
system. In order to communicate with external compo-
nents, i.e. threads, the scheduler must hold an word-size
pointer to the instantiated ”object” in system memory.
If these pointers was stored as the data on the scheduler
queues, several word-size comparators will be needed to
implement the scheduling and sorting logic of the queue.
Insted of, a translator table is implemented to translate
the word-size pointer address to a smaller pointer based
on the maximum number of concurrent threads that the
system will run. The main process is responsible for the
management of threads on the queue, inserting them when
ready, and removing when suspended. The time control

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9293

module implements a hardware timer that generates ticks
for the scheduler. The queue control module implements
the scheduler’s process list as a joint list of ready and
suspended processes, thus saving FPGA area.

B
U

S
 S

IG
N

A
L
S

COMMAND_REGISTER

STATUS_REGISTER

Interrupt

Control

THREAD_POINTER

IPIF_GLUE_LOGIC QUEUE

CONTROL

MODULE

MODULE

CONTROL

TIME

READY PROCESS

RUNNING PROCESS

FAIL PROCESS

SCHEDULER

MODULE

HaRTS_SCHEDULER_IPBUS_WRAPPER

Fig. 8. Overview of the hardware scheduler organization.

As the semaphore, the scheduler hardware component was
synthesised on the Virtex-4 ML403 development board,
using the Xilinx tools design flow. The table 1 presents the
FPGA area used by the scheduler configured to handle at
most 15 threads with 8 levels of Priority.

Semaphore Scheduler

w/ IPIF w/o IPIF w/ IPIF w/o IPIF

Slices 1455 1327 1652 1520

FlipFlops 1455 1327 1652 1520

4-input LUTs 1455 1327 1652 1520

Table 1. Hybrid Components FPGA usage

5. AN ARCHITECTURE FOR HYBRID
COMPONENTS

The development of hybrid components for the PDSCE
Project described in the previous section called our at-
tention to several issues that seems to be inherent to the
design of this kind of component. As mentioned earlier
in this paper, the main issue is certainly architectural
transparency for client components, which expect an hy-
brid component to behave identically whether a hardware,
software, or mixed implementation is taken.

Analyzing how client components interact with their
providers, we observed three distinct interaction patterns:

Synchronous: observed in components with sequential
objects that only perform tasks when their methods are
explicitly invoked; client components are blocked on the
method call until service is completed.

Asynchronous: observed in components around active
objects that perform tasks when their methods are
explicitly invoked, but do not block the execution of
the client component; some sort of call-back mechanism
is used to notify the client about service completion.

Autonomous: components implemented as active ob-
jects that performs tasks independently of clients; the
services provided by the component are either ubiqui-
tous or generate events for clients.

The Semaphore component described in section 4 is an
example of synchronous component, for any action derived
from it originates on the calls to p or v. On the context of
hybrid components, synchronous components can be easily
shifted from software to hardware or vice-versa. When one
such component is moved from software to hardware, the

corresponding hardware mediator must block the clients
until the hardware finish the requested service. This can be
implemented on the hardware mediator either by polling a
status register (a busy waiting mechanism) or by deploying
a semaphore (an idle waiting alternative). For the oppo-
site direction, that is, moving a synchronous component
from hardware to software, the synchronicity is usually
implicitly preserved by the method call mechanism on the
processors.

Asynchronous components receive service requests via
method calls just like synchronous ones, but differently
from them, they do not block the calling client until the
service is finished, allowing client and provider components
to progress in parallel. Typical examples for this class
of hybrid components are I/O related subsystems, such
as file systems and communication systems. In order to
get notifications about service completion, clients must
register call-back functions or event handlers (e.g. Unix
signals). The moving of a asynchronous component from
software to hardware is done by interrupts that activate
the corresponding hardware mediator in order to trigger
the original call-back mechanism. The opposite direction
can be achieved with the use of concurrent programming
techniques such as multithreading, with the call-back
mechanism being triggered by software when the service
is finished (i.e. thread exit).

Autonomous components execute their services indepen-
dently of explicit client requests. The Scheduler compo-
nent described in section 4, along with components such
as garbage collectors and energy managers, is an example
of autonomous component. The activity of this kind of
component is usually driven by events. For instance, a
scheduler is usually driven by a timer, a garbage collector
is driven either by a timer or by the realization that the
system is running out of memory, an energy manager is
usually driven by activity counters in combination with
power supply status. In this scenario, moving a hybrid
component from software to hardware is feasible as long
as the triggering events can be forward to the hardware
component. The other way around is usually accomplished
by having the hardware to generate interrupts to notify
other components about general system status changes
that might result from autonomous activities.

Hybrid components can act as client to other system com-
ponents. When a hybrid component resides in software do-
main, the client communication is done through a method
call to the desired component interface. When the hybrid
component resides in hardware domain, the hardware gen-
erates an interrupt to request the desired service to the
other component. This situation implies in the execution
of the requested service within an CPU interrupt state,
or the instantiation of a thread to execute the requested
service. Both scenarios bring synchronization problems in
the system execution, and this must be taken in account
when selecting these components.

While dealing with these three categories of components in
the PDSCE Project we realized that the hardware media-
tor concept of AOSD is indeed an underlying architecture
for hybrid components. Components modeled according
with AOSD guidelines were successfully transformed in
hybrid components without major redesigns and based on

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9294

well-know implementation techniques (i.e. status register
polling, interrupts, and event handling). Furthermore, the
interface contract inherent to hardware mediators is a
major architectural transparency means when making a
component hybrid.

6. RELATED WORK

Several works in the field of hardware/software co-
design have addressed issues pertaining architectural
transparency and integration of components in heteroge-
neous environments.

Jerraya and Wolf [2005] analyses the evolution of Hw/Sw
interface codesign techniques and defines a long-term
roadmap for future success. This work highlight several
aspects presented by hardware mediator, as architectural
transparency without incurring in excessive overhead.

Mooney and Blough [2002] proposed a framework to gener-
ate a partitioned hardware/software RTOS. Independent
of task requirements, this approach generates only one OS
that is replicated on every processor. The designer does
not have the flexibility to choose which components are
implemented in software or hardware. Additionally, the
designer cannot control the task mapping onto the target
processors.

Nakano et al. [1995] implemented a partitioned OS, called
STRON (Silicon TRON). Nevertheless, the system does
not allow choosing which components are going to be
implemented in hardware and which ones are going to be
developed in software.

Cesario et al. [2002] presents a high-level component-based
design methodology that lets MPSoC designers handle
hardware-software interfaces at a high abstraction level.
This approach integrates tools for hardware, software,
and cosimulation wrapper generation that aids in the
high-level modeling and generation of efficient hardware-
software interfaces, helping on the development of hybrid
components.

Anderson et al. [2006] presents the hthreads, a uniform
programming model for specifying application threads
running within a hybrid CPU/FPGA system. Hthreads
provides system service libraries that encapsulate platform
specific operations under pthreads compatible API’s, thus
enabling the systematic migration of application functions
through the software/hardware barrier providing an in-
teresting way to implement asynchronous hybrid compo-
nents.

7. CONCLUSIONS

This paper discusses a Hybrid Hw/Sw Components ar-
chitecture based on the hardware mediator concept of
Application-Oriented System Design. The concept was
initially proposed by AOSD as a portability artifact, and
was approached in this paper as a means to support design
space exploration. A hybrid component defined around
an AOSD hardware mediator can hide a series of imple-
mentations, some pure hardware, some pure software and
some that are a combination of software and hardware. By
tagging hybrid components with design constraints such

as silicon area, energy consumption, and performance,
effective exploration can be sustained.

The development of complex embedded applications in the
PDSCE project corroborated such architecture, as compo-
nents modeled within this project were successfully trans-
formed in hybrid components without major redesigns and
based on well-know implementation techniques. Moreover,
this hybrid architecture can deliver architectural trans-
parency for the client components, a key issue when deal-
ing with design space exploration. This work is aiming now
on the development of new hybrid components in order
to achieve a consistent repository for further research on
design space exploration tools and methods.

ACKNOWLEDGEMENTS

The work in this article is partially supported by FINEP
- Financiadora de Estudos e Projetos under grant no.
01.04.0903.00.

REFERENCES

E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot,
E. Komp, R. Sass, and D. Andrews. Enabling a uni-
form programming model across the software/hardware
boundary. In Field-Programmable Custom Computing
Machines, 2006. FCCM ’06. 14th Annual IEEE Sympo-
sium on, pages 89–98, 2006.

W.O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot,
Sungjoo Yoo, A.A. Jerraya, L. Gauthier, and M. Diaz-
Nava. Multiprocessor soc platforms: a component-based
design approach. Design & Test of Computers, IEEE,
19(6):52–63, 2002. ISSN 0740-7475.

Krysztof Czarnecki and Ulrich Eisenecker. Generative Pro-
gramming: Methods, Tools, and Applications. Addison-
Wesley, 2000.

Antônio Augusto Medeiros Fröhlich. Application-Oriented
Operating Systems. GMD - Forschungszentrum Infor-
mationstechnik, 1 edition, 2001.

Ahmed Amine Jerraya and Wayne Wolf. Hard-
ware/software interface codesign for embedded systems.
IEEE Computer, 38(2):63–69, 2005.

Hugo Marcondes, Arliones Stevert Hoeller Junior, Lu-
cas Francisco Wanner, and Antônio Augusto Fröhlich.
Operating systems portability: 8 bits and beyond. In
11th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, pages 124–130, 2006.

III Mooney, V.J. and D.M. Blough. A hardware-software
real-time operating system framework for socs. Design
& Test of Computers, IEEE, 19(6):44–51, 2002. ISSN
0740-7475.

T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and
M. Imai. Hardware implementation of a real-time op-
erating system. In TRON Project International Sympo-
sium, 1995., Proceedings of the 12th, pages 34–42, 1995.

Fauze Valério Polpeta and Antônio Augusto Fröhlich.
Hardware mediators: A portability artifact for
component-based systems. In Laurence Tianruo
Yang, Minyi Guo, Guang R. Gao, and Niraj K.
Jha, editors, EUC, volume 3207 of Lecture Notes in
Computer Science, pages 271–280. Springer, 2004.
ISBN 3-540-22906-X.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9295

