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Abstract: This paper is devoted to the asymptotic stability region estimation for nonlinear
discrete polynomial systems. An algebraic method is derived for the enlargement of a guaranteed
stability region in which the asymptotic stability is ensured. The advantages of the proposed
method are the accuracy of determination of the largest stability boundary, its numerical and
theoretical robustness and its applicability to wide classes of dynamical discrete systems. A
numerical example illustrates the proposed method.
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1. INTRODUCTION

The problem of estimating the stability domain of an
equilibrium point is well known in the area of nonlinear
system analysis and control (Liberzon and Morse [1999],
Loccufier and Noldus [2000]). In fact a given initial state
lies within such a region is a question of practical impor-
tance in many engineering application as the synthesis of
preferment nonlinear feedback control (Chiang and Thorp
[1989], Noldus and Loccufier [1995]).

The majority of studies concerned with this object are
setting in Lyapunov theory of stability and so they are
called Lyapunov methods which are essentially applied to
continuous power systems (Peleties and De Carlo [1991],
Tesi et al. [1996], Peterfreund and Baram [1998]). Other
works present an interesting ”non Lyapunov techniques
based on the reversing trajectory method which lead
to satisfactory results by reaching the global asymptotic
stability domain for the continuous nonlinear dynamical
systems (Genesio et al. [1985], Bacha et al. [1997]).

In spite of the fact that more than few methods and
studies are made and developed to estimate the regions of
asymptotic stability for continuous dynamical nonlinear
systems, one may notice that much less attention has
been paid to the possibility of estimating the regions of
asymptotic stability for nonlinear discrete time system (Ye
et al. [1996]).

In our previous works we have developed several tech-
niques allowing estimating the Region of Asymptotic Sta-
bility (RAS) of polynomial discrete time systems (Benhadj
braiek [1996b], Bacha et al. [2006a], Bacha et al. [2006b],
Bacha et al. [2007a], Bacha et al. [2007b]). The main lim-
itation of the proposed techniques consists on the validity

of the numerical inversion of the discrete state equation
and so that the exactness of the obtained RAS.

In this paper we consider a new approach of estimating
a large asymptotic stability domain for discrete time
nonlinear polynomial system. Based on the Kronecker
product (Benhadj braiek [1996a], Benhadj braiek [1996b])
and the Grownwell-bellman lemma for the estimation of
a guaranteed region of stability, the proposed method
permits to improve previous results in this field of research.

This paper is organized as follows: after the description
of the studied systems in the second section, a guaranteed
stability region (GSR) is characterized in the third section.
Then in the next section a technique of enlargement of this
region is developed. A simulation example illustrating the
proposed approach is presented in the fifth section.

2. DESCRIPTION OF THE STUDIED SYSTEMS

We consider in this paper the discrete nonlinear polyno-
mial systems described by a state equation of the following
form

X(k + 1) = F (X(k)) =

q
∑

i=1

AiX
[i](k). (1)

where k is the discrete time variable, X(k) ∈ <n is the
state vector, X [i](k) designates the i− th Kronecker power
of the vector X(k) and Ai, i = 1, ..., q are (n×ni) matrices.

The system (1) can also be written in the following form:

X(k + 1) = M(X(k)).X(k) (2)

where:
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M(X(k)) = A1 +

q
∑

j=2

Aj(In ⊗ X [j−1])(X(k))

⊗ designates the Kronecker product (Benhadj braiek
[1996b], Bacha et al. [2006a]).

Assumption 1: the linear part of the discrete system (1) is
asymptotically stable i.e. all the eigenvalues of the matrix
are of module little than 1.

3. GUARANTEED STABILITY REGION

Our purpose is to determine a sufficient domain Ω0 of
the initial conditions variation, in which the asymptotic
stability of the equilibrium point X = 0 of the system (1)
is guaranteed, according to the following definition:

∀X0 ∈ Ω0, ∀k ∈ ℵ, X(k, k0, X0) ∈ R

and lim
k→∞

X(k, k0, X0) = 0 (3)

where X(k, k0, X0) designates the solution of the nonlinear
recurrent equation (1) with the initial condition X(k0) =
X0.

The stability domain that we propose is considered as a
ball of radius R0 and of center the origin X = 0 i.e.,

Ω0 = {X0 ∈ <n; ‖X0‖ < R0} (4)

the radius R0 is called the stability radius of the sys-
tem (1).

A simple domain ensuring the stability of the system (1) is
defined by the following theorem (Benhadj braiek [1996a]).

Theorem 1. Consider the discrete system (1) satisfying
the assumption 1, and let c and α the positive numbers
verifying α ∈]0, 1[,

‖Ak−k0

1 ‖ ≤ cαk−k0∀k ≥ k0 (5)

Then this system is asymptotically stable on the domain
Ω0 defined in (4) with R0 the unique positive solution of
the following equation:

q
∑

k=2

γkRk−1
0 −

1 − α

c
(6)

where γk, k = 2, ..., q denote:

γk = ck−1‖Ak‖ (7)

Furthermore the stability is exponentially.

Proof. The equation (1) can be written as:

X(k + 1) = A1X(k) + h(X(k))X(k) (8)

with

h(X(k + 1)) =

q
∑

j=2

Aj(In ⊗ X [j−1](k)) (9)

Let us consider that:

∀k ≥ k0, ‖X(k)‖ ≤ R (10)

then, we have using the matrix norm property of the
kronecker product.

‖h(X(k))‖ ≤ λ(R) (11)

with:

λ(R) =

q
∑

j=2

‖Aj‖R
j−1 (12)

By using the lemma 1 (see the appendix), we have:

‖X(k)‖ ≤ c(α + cλ(R))k−k0‖X(k0)‖ (13)

with g(X) = h(X)X , we have ‖g(X)‖ ≤ λ(R)‖X‖.

Then, if:

λ(R) <
1 − α

c
(14)

the system is exponentially stable.
Now, to ensure the hypothesis (10) it is sufficient to have
(from (6)):

c‖X(k0)‖ ≤ R1or‖X(k0)‖ ≤ R0 =
R1

c
(15)

R1 satisfies the equation (14) implies that R0 satisfies the
equation (6) of the theorem 1.

4. ENLARGEMENT OF THE GUARANTEED
STABILITY REGION (GSR)

Our object in this section is to enlarge the Guaranteed
Stability Region Ω0 characterized in the section 3. For this
goal, we consider the boundary Γ0 of the obtained GSR
of radius R0. Let X i

0 be a point belonging in Γ0, and X i
k

the image of X i
0 by the F (.) function characterizing the

considered system, k times.

X i
k = F k(X i

0) (16)

X i
k is then a point belonging in the stability domain Ω0

‖X i
k‖ < R0, ‖F

k(X i
0)‖ < R0 (17)

To enlarge the GSR, we will look for a radius r0,i such that
for any initial state X0 verifying

‖X0 − X i
0‖ ≤ r0,i

one has

Xk = F k(X0) ∈ Ω0 (18)

and the fact that after k iterations the state of the system
attends the domain Ω0 ensures that X0 is a state belonging
in the stability domain.

Let us note:

δX0 = X0 − X i
0 (19)

and for k ≥ 1

δXk = Xk − X i
k = F k(X0) − F k(X i

0) (20)

δXk can be expressed in terms of δX0 as a polynomial
function of degree s = qk where q is the degree of the F (.)
polynomial characterizing the system:

δXk = E1.δX0 + E2.δX
[2]
0 + ... + Es.δX

[s]
0 ; s = qk (21)

E1, E2, ..., Es are matrices depending on k and X i
0 and

they can easily expressed in terms of Ai and X i
0.
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In the particular case where q = 3 and k = 1 one has:

δXk = X1 − X i
1 = F (X0) − F (X i

0)

= D1.δX0 + D2.δX
[2]
0 + D3.δX

[3]
0

(22)

where



















































D1 =







A1 + A2

(

X i
0 ⊗ In + In ⊗ X i

0

)

+
A3

((

X i
0 ⊗ In

)

⊗ X i
0 +

(

In ⊗ X i
0

)

⊗ X i
0

)

+

A3

(

X
i[2]
0 ⊗ In

)







D2 =

[

A2 + A3

((

X i
0 ⊗ In

)

⊗ In +
(

In ⊗ X i
0

)

⊗ In

)

+A3

(

I [2]
n ⊗ X i

0

)

]

D3 = A3

From the relation:

Xk = δXk + F k(X i
0) (23)

one has:

‖Xk‖ ≤ ‖δXk‖ + ‖F k(X i
0)‖ (24)

From (21) we have:

‖δxk‖ ≤ e1.‖δX0‖ + e2.‖δX
[2]
0 ‖ + ... + es.‖δX

[s]
0 ‖ (25)

with:

ej = ‖Ej‖, j = 1, 2, ..., s

Hence, we have:

‖xk‖ ≤

s
∑

j=1

ej .‖δX
[j]
0 ‖ + ‖F (X i

0)‖

≤

s
∑

j=1

ej .r
j
0,i + ‖F (X i

0)‖

(26)

Since it is desired that:

‖Xk‖ ≤ R0; (Xk ∈ Ω0) (27)

it will be sufficient to have:
s
∑

j=1

ej .r
j
0,i = R0 − ‖F k(X i

0)‖

e1.r0,i + e2.r
2
0,i + ... + es.r

s
0,i = R0 − ‖F k(X i

0)‖ > 0

(28)

which yields:

‖δX0‖ = ‖X0 − X i
0‖ ≤ r0,i (29)

where r0,i is the unique positive solution of the polynomial
equation:

e1.r0,i + e2.r
2
0,i + ... + es.r

s
0,i = R0 − ‖F k(X i

0)‖ (30)

and this result can be stated in the following theorem.

Theorem 2. Let the following polynomial discrete system
described by:

Xk+1 = F (Xk) = A1.Xk + A2.X
[2]
k + ... + Aq .X

[q]
k (31)

and let Ω0 the GSR of radiusR0 given by theorem 1, and
Γ0 the boundary of the GSR, then:
For any point X i

0 ∈ Γ0, the ball Ωi centred on X i
0 and of

radius r0,i the unique positive solution of the equation (30)
is also a domain of stability of the considered system.

Γ0

Fig. 1. Illustration of the proposed method principle.

In the particular case where k = 1, one has the following
corollary.

Corollary1 The ball Ωi of radius r0,i solution of the
equation:

‖D1‖.r0,i + ‖D2‖.r
2
0,i + ... + ‖Dq‖.r

q
0,i =

R0 − ‖F (X i
0)‖ (32)

is a domain of asymptotic stability of the considered
system.

After considering all the points X i
0 ∈ Γ0 (varying i), a new

domain of stability is obtained by collecting all the little
balls Ωi to Ω0:

Ω =
⋃

i

Ωi (33)

This idea is illustrated in Fig

5. SIMULATION RESULTS:APPLICATION TO VAN
DER POOL MODEL

Let us consider the following discrete polynomial Van Der
Pool model obtained from the Newton-Raphson approxi-
mation: (Jenning and McKeown [1992])

Xk+1 = A1.Xk + A3.X
[3]
k (34)

where Xk =

[

x1k

x2k

]

A1 =

(

0.9988 −0.0488
0.0488 0.950

)

A3 =

(

0 −0.0012
02×6

0 0.0488

)

Equation (34) has a linear asymptotically stable matrix
A1, which verifies the inequality (5) with c = 1.7 and
α = 0.65. Then, we may conclude that the origin is
exponentially stable for each initial state X0 included in
the disc Ω0 centered in the origin and of radius R0 = 0.33.

The Fig. 2 shows the guaranteed stability domain Ω0

obtained by the application of the theorem1, and the en-
larged region resulting from the application of the theorem
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Fig. 2. Enlargement of a guaranteed RAS estimate of Van
Der Pool discrete model.

2 for one iteration (k = 1), and for 22 points X i
0 on the

boundary Γ0. It comes out that the new result stated in
the theorem 2 leads to an important enlargement of the
guaranteed stability domain.

6. CONCLUSION

An advanced discrete algebraic method has been devel-
oped to determine and enlarge the region of asymptotic
stability for autonomous nonlinear polynomial discrete
time systems.

The exactness of the obtained RAS in this case constitutes
the main advantage of the proposed approach.

The proposed method is proved theoretically and tested
via numerical simulation on the discrete polynomial Van
Der Pool model. This original technique can be considered
as the equivalent discrete version of the reversing trajec-
tory method which is used to estimate the RAS for the
continuous systems.

Further research will be focused on the development and
the implementation of an optimal numerical tool which
allows to reach the larger region of asymptotic stability
for discrete nonlinear systems.
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Appendix A. LEMMA1

Let a discrete nonlinear system defined by the state
equation :
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X(k + 1) = A1.X(k) + g(k, X(k)) (A.1)

where the linear part satisfies the assumption 1, and the
nonlinear part g(k, X(k)) verifies the following inequality:

g(k, X(k)) ≤ β‖X(k)‖ (A.2)

where β is a positive constant.
Let Φ(k, k0) denotes the transition matrix of the linear
part of the discrete system (A.1):

Φ(k, k0) = Ak−k0

1 (A.3)

and let c and α the positive numbers verifying α ∈]01[,

‖Φ(k, k0)‖ ≤ cαk−k0∀k ≥ k0 (A.4)

Then the solution X(k) of the system (A.1) verifies the
following inequality:

‖X(k)‖ ≤ c(α + cβ)k−k0‖X(k0)‖ (A.5)

So if β < 1 − α
c
, the system (A.1) is exponentially stable.
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