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Abstract: A new observer design method is proposed for Takagi-Sugeno systems with
immeasurable premise variables. Since the state estimation error can be written as a perturbed
system, then the proposed method is based on the L2 techniques to minimize the effect of
the perturbations on the state estimation error. The convergence conditions of the observer are
established by using the second method of Lyapunov and a quadratic function. These conditions
are expressed in terms of Linear Matrix Inequalities (LMI). Finally, the performances of the
proposed observer are improved by eigenvalues clustering in LMI region.
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1. INTRODUCTION

The problem of nonlinear state estimation is a very vast
field of research, having many applications, among them
one can cite the use of the observers to estimate the im-
measurable states of a system or to replace sensors which
are expensive and difficult to maintain; these observers
are also used for the state feedback control or for system
diagnosis.

The diagnosis methods of linear systems currently have
a certain maturity, however assuming that the system to
supervise can be correctly represented by a linear system
is highly restrictive. Moreover, the direct extension of the
methods developed in the linear case, to the nonlinear
case is delicate. Nevertheless, interesting results have been
obtained if the nonlinear systems are represented by a
multiple model. This structure consists in a set of local
linear models, each local model describing the behavior of
the system in a particular region of the state-space.

In the context of the linear models, fault detection can
be carried out by methods using state observers (Maquin
and Ragot, 2000) and residual generation. In general,
fault isolation methods use banks of observers where
each observer is driven by a subset of the inputs. The
preceding technique cannot be immediately extended to
the multiple model because of the couplings introduced
into the structure. Generally, the design of an observer for
a multiple model begins with the design of local observers,
then a weighted interpolation is performed to obtain
the estimated state. This design allows the extension of
the analysis and synthesis tools developed for the linear
systems, to the nonlinear systems.

(Tanaka et al., 1998) proposed a study concerning the
stability and the synthesis of regulators and observers
for multiple models. In (Chadli et al., 2002), (Tanaka et
al., 1998) and (Guerra et al., 2006) tools directly inspired
of the study of the linear systems are adapted for the
stability study and stabilization of nonlinear systems.
The authors of (Patton et al., 1998) proposed a multiple
observer based on the use of Luenberger observers, which
was then used for the diagnosis. In (Akhenak, 2004) and
(Akhenak et al., 2007) sliding mode observers developed
for the linear systems, were transposed to the systems
described by multiple model. The principal interest of
this type of observers is the robustness with respect
to modeling uncertainties. Moreover, the unknown input
observers designed for linear systems, were transposed,
in the same way, into the case of nonlinear systems and
application to fault diagnosis is envisaged in (Marx et
al., 2007).

However, in all these works, the authors supposed that
the weighting functions depend on measurable premise
variables. In the field of diagnosis, this assumption forces
to design observers with weighting functions depending on
the input u(t), for the detection of the sensors faults, and
on the output y(t), for the detection of actuator faults.
Indeed, if the decision variables are the inputs, for example
in a bank of observers, even if the ith observer is not
controlled by the input ui, this input appears indirectly
in the weighting function and it cannot be eliminated.
For this reason, it is interesting to consider the case of
weighting functions depending on immeasurable premise
variables, like the state of the system. This assumption
makes it possible to represent a large class of nonlinear
systems. Only few works are based on this approach,
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nevertheless, one can cite (Bergsten and Palm, 2000),
(Palm and Driankov, 1999), (Bergsten et al., 2001) and
(Bergsten et al., 2002), in which a Luenberger observer
is proposed, by using Lipschitz weighting functions. The
stability conditions of the observer are formulated in terms
of linear matrix inequalities (LMI) (Boyd et al., 1994).
Unfortunately, the existence condition of the solution for
the obtained set of LMI depends on the magnitude of
the Lipschitz constants. In (Palm and Bergsten, 2000)
and (Bergsten and Palm, 2000), the sliding mode observer
compensates the unknown terms of the system.

In this paper, observer error dynamics is written as a
perturbed system. So, with the use of L2 design (which
is an extension of the H∞ design to nonlinear systems),
the influence of the immeasurable terms on the state
estimation error is minimized. According to this objective,
we propose a new observer design for multiple model with
immeasurable premise variables. The observer synthesis is
carried out using the second method of Lyapunov with
a quadratic function and L2 optimization. The paper is
organized as follows: section 2 introduces some previous
results about state estimation of multiple model with im-
measurable premise variables. In section 3, the proposed
observer is presented, convergence conditions of the pro-
posed multiple observer are established. A design proce-
dure to satisfy pole clustering constraints is also given.
Simulation results are presented in section 4 and some
conclusions and perspectives are given in section 5.

2. BACKGROUND RESULTS AND NOTATION

In this section, we summarize some results on observer
design for Takagi-Sugeno systems of the form:

ẋ(t) =

N
∑

i=1

µi(x(t)) (Aix(t) + Biu(t)) (1)

y(t) = Cx(t) (2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the
input of the system, y(t) ∈ R

p is the output of the system.
Ai ∈ R

n×n, Bi ∈ R
n×m and C ∈ R

p×n are real known
constant matrices. The weighting functions µi depend on
immeasurable premise variables (state of the system), and
verify:











N
∑

i=1

µi(x(t)) = 1

0 6 µi(x(t)) 6 1 ∀i ∈ {1, ..., N}
(3)

Few works can be found concerning this class of systems
with the assumption of immeasurable premise variables.
(Bergsten and Palm, 2000), propose a Luenberger-like
observer, namely:

˙̂x(t) =
N

∑

i=1

µi(x̂(t))(Aix̂(t) + Biu(t)

+ Gi(y(t) − ŷ(t))) (4)

ŷ(t) = Cx̂(t) (5)

The observer error is given by:

e(t) = x(t) − x̂(t) (6)

and its dynamics is described by:

ė =
N

∑

i=1

µi(x̂)(Ai − GiC)e + ∆(x, x̂, u) (7)

with:

∆(x, x̂, u) =
N

∑

i=1

(µi(x) − µi(x̂))(Aix + Biu) (8)

where (8) satisfies the following condition:

‖∆(x, x̂, u)‖ 6 α ‖x − x̂‖ (9)

Lemma 1. (Bergsten and Palm, 2000) The state estima-
tion error between the multiple model (1) and the multi-
ple observer (4) converges globally asymptotically toward
zero, if there exists matrices P = PT > 0 and Q = QT > 0
such that the following conditions hold for i = 1, . . . , N :

AT
i P + PAi − CT KT

i − KiC <−Q (10)
[

−Q + α2I P
P −I

]

< 0 (11)

The observer gains are given by Gi = P−1Ki.

Lemma 1 recalls the design of the Thau-Luenberger ob-
server introduced in (Bergsten and Palm, 2000). Unfortu-
nately, the considered perturbed term depend on the input
u(t) and the state x(t), so for a large value of the bound of
the input lead to a large value of the constant α, solving the
set of LMI (10-11) may be unfeasible. Another method for
state estimation of the system (1) is proposed in (Ichalal
et al., 2007). The contribution of that paper is to obtain
less restrictive existence conditions for the observer. In this
approach, the matrices Ai are decomposed into:

Ai = A0 + Ai (12)

where A0 is defined by:

A0 =
1

N

N
∑

i=1

Ai (13)

By substituting (12) in the equation of the multiple model
(1) we obtain:

ẋ(t) = A0x(t)+

N
∑

i=1

µi(x(t))(Aix(t)+Biu(t)) (14)

y(t) = Cx(t) (15)

Based on this model, the following multiple observer is
proposed:

˙̂x(t) = A0x̂(t) +

N
∑

i=1

µi(x̂(t))(Aix̂(t) + Biu(t)

+ Gi(y(t) − ŷ(t))) (16)

ŷ(t) = Cx̂(t) (17)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2769



Lemma 2. (Ichalal et al., 2007) The state estimation error
between the multiple model (1) and the multiple observer
(16) converges globally asymptotically toward zero, if there
exists matrices P = PT > 0, Q = QT > 0 and positive
scalars λ1, λ2 and γ such that the following conditions
hold for i = 1, . . . , N :

AT
0 P + PA0 − KT

i P − PKi < −Q (18)








−Q + λ1M
2
i I PAi PBi NiγI

A
T

i P −λ1I 0 0
BT

i P 0 −λ2 0
NiγI 0 0 −λ2I









< 0 (19)

γ − β1λ2 > 0 (20)

where β1 is the bound on the input u(t) and Ni are the
Lipschitz constants of the weighting functions µi(x). The
gains of the observer are computed by Gi = P−1Ki.

The conditions expressed in the lemma 2 are less restrictive
than that of lemma 1, i.e, the set of LMI (18-20) admits a
solution even for great values of the constant α and of the
bound on the input β1. The drawback of this method is
that, if the bound β1 increases, then the band-width of the
observer increases and thus the observer also reconstructs
the measurement noise.

The contribution of this paper is to obtain a minimal
influence of the unknown premise variables on the esti-
mation quality, and moreover to satisfy pole clustering
in prescribed regions of the complex plane. In order to
quantify the influence of an input signal on the output of
a system, the L2-norm of a system, based on the L2-norm
of a signal, is introduced.

Definition (L2-norm) The L2-norm of a signal z(t), de-
noted ‖z(t)‖2 is defined by

‖z(t)‖2
2 =

∞
∫

0

zT (t)z(t)dt (21)

It is supposed that all the signals studied in this paper
are measurable functions (or square integrable) that is to
say: of finite energy. The space of measurable functions is
denoted L2.

Definition (L2-gain) Consider a system with input u(t) ∈
L2 and output y(t) ∈ L2. The L2-gain of the system is
defined by:

γ = sup
u(t)∈L2

‖y(t)‖2

‖u(t)‖2

(22)

It is well known that the L2-norm is a extension to the
nonlinear systems of the H∞-norm of the linear systems
(for a linear system G(s), the L2-norm and the H∞-norm
defined by ‖G(s)‖

∞
= supω∈R

σmax(G(jω)), where σmax

denotes the maximal singular value, are equal).

3. MAIN RESULT

Consider the structure of a multiple model presented in
(14) and the following Luenberger observer is proposed:

˙̂x(t) = A0x̂(t) +

N
∑

i=1

µi(x̂(t))(Aix̂(t) + Biu(t)

+ Gi(y(t) − ŷ(t))) (23)

ŷ(t) = Cx̂(t) (24)

Our aim is to find the observer gains Gi which minimize
the influence of the perturbation terms on the estimation
error.

The observer error dynamics is given by:

ė =

N
∑

i=1

(

µi(x̂)Φie + Aiδi + ∆iBiu
)

(25)

where:
{

δi(t) = µi(x(t))x(t) − µi(x̂(t))x̂(t)
∆i(t) = µi(x(t)) − µi(x̂(t))
Φi = A0 − GiC

(26)

This error dynamics can be written as:

ė(t) =

N
∑

i=1

(µi(x̂(t))Φie(t) + Hiω(t)) (27)

where:
Hi =

[

Ai Bi

]

and:

ω(t) =

[

δi(t)
∆i(t)u(t)

]

In the remaining, the proposed observer is said to be
optimal, if the L2-gain from ω(t) to e(t) is minimal.

3.1 Observer design

Theorem 3. The optimal observer (23)-(24) for the system
(14) is obtained by minimizing γ̃ > 0 under the constraints

P = PT > 0






Si

N
PHj

HT
j P − γ̃

N






< 0, ∀i, j = 1, ..., N

where

Si = AT
0 P + PA0 − KiC − CT KT

i + I

The observer gains are given by Gi = P−1Ki and the
L2-gain from ω(t) to e(t) is γ =

√
γ̃.

Proof. To prove the convergence of the estimation error
toward zero, let us consider the following quadratic Lya-
punov function:

V (t) = e(t)T Pe(t), P = PT > 0 (28)

The observer converges and the L2-gain from ω(t) to e(t)
is bounded by γ if the following holds:

V̇ (t) + e(t)T e(t) − γ2ω(t)T ω(t) < 0 (29)

Then, using (27), it follows:

V̇ (t) =
N

∑

i=1

(ωT HT
i Pe + eT PHiω

+ µi(x̂)(eT ΦT
i Pe + eT PΦie)) (30)

Inequality (29) can then be written in the following way:
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N
∑

i=1

(ωT HT
i Pe + eT PHiω + µi(x̂)(eT ΦT

i Pe + eT PΦie))

+eT e − γ2ωT ω < 0

(31)

That can be expressed under the following form:

N
∑

i=1

µi(x̂)

[

e
ω

]T [

PΦi + ΦT
i P + I 0

0 −γ2

] [

e
ω

]

+

N
∑

j=1

[

e
ω

]T [

0 PHj

HT
j P 0

] [

e
ω

]

< 0

(32)

Using the properties (3) of the weighing functions, it
follows:

N
∑

i=1

µi(x̂)

[

e
ω

]T [

PΦi + ΦT
i P + I 0

0 −γ2

] [

e
ω

]

+

N
∑

i=1

N
∑

j=1

µi(x̂)

[

e
ω

]

T
[

0 PHj

HT
j P 0

] [

e
ω

]

< 0

(33)

or, in a compact form:

N
∑

i=1

N
∑

j=1

µi(x̂)

[

e
ω

]

T

Mij

[

e
ω

]

< 0 (34)

where:

Mij =







1

N
(PΦi + ΦT

i P + I) PHj

HT
j P −γ2

N






(35)

Thus, the negativity of (34) is assured if:

Mij < 0, ∀i, j = 1, ..., N (36)

Inequalities (36) are not linear because of the products
PGi and γ2. This problem can be solved by using the
change of variables Ki = PGi and γ̃ = γ2. After the
minimization of γ̃ under the constraint (36), the ob-
server gains are computed by Gi = P−1Ki and the
L2-gain from ω(t) to e(t) is computed by γ =

√
γ̃.

�

3.2 Eigenvalue assignment

From the results obtained in simulation one notes that, if
the value of γ decreases, the eigenvalues of the matrices
(A0 − GiC) increase in absolute value which is not a
desirable effect. However, eigenvalue assignment makes it
possible to solve this problem. It is proposed to assign the
eigenvalues of the multiple observer in particular regions.
In this section, we propose an extension of the previous
method of synthesis by placing the eigenvalues of the
observer in LMI region S (Fig. 1) defined by:

S(α, β) = { z ∈ C| Re(z) < −α, |z| < β} (37)

Fig. 1. LMI region

Theorem 4. The optimal observer (23)-(24) for the mul-
tiple model (14), satisfying the pole clustering in S(α, β)
(37), is obtained by minimizing γ̃ > 0 under the following
constraints:

P = PT > 0
[

βP P (A0 − GiC)
(A0 − GiC)T P βP

]

> 0 (38)

AT
0 P + PA0 − CT KT

i − KiC + 2αP < 0 (39)






Si

N
PHj

HT
j P − γ̃

N






< 0, ∀i, j = 1, ..., N (40)

where:
Si = PA0 + AT

0 P − KiC − CT Ki + I

The observer gains are given by Gi = P−1Ki, and the
L2-gain is γ =

√
γ̃.

Proof. Using the concept of D-stability presented in
(Chilali and Gahinet, 1996) and (Bong-Jae and Sangchul,
2006), the constraints allowing to assign the eigenvalues of
the matrix (A0 − GiC) in S (Fig.1) can be expressed in
terms of LMIs as:

[

βP P (A0 − GiC)
(A0 − GiC)T P βP

]

> 0 (41)

(A0 − GiC)T P + P (A0 − GiC) + 2αP < 0 (42)

The constraint (40) has been demonstrated in the previous
section. �

4. SIMULATION RESULTS

We consider the following example to show the advantages
of using the proposed L2 observer. The system is defined
by (1) with:

A1 =

[−2 1 1
1 −3 0
2 1 −6

]

, A2 =

[−3 2 −2
5 −3 0

0.5 0.5 −4

]

B1 =

[

1
0.5
0.5

]

, B2 =

[

0.5
1

0.25

]

, C =

[

1 1 1
1 0 1

]
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The weighting functions are










µ1(x) =
1 − tanh(x1)

2

µ2(x) = 1 − µ1(x) =
1 + tanh(x1)

2

(43)

A stable observer with L2 attenuation of the perturbation

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

x1 and his estimate

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

x2 and his estimate

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

x3 and his estimate

States

estimates

x1 and its estimate

x2 and its estimate

x3 and its estimate

Fig. 2. State estimation

terms for the above system can be designed using Theorem
4. For this example, the minimal value of the attenuation
of the perturbation terms is γ = 0.46. The eigenvalues
are clustered in the region S(α, β) defined by β = 15 and
α = 5. Conditions in Theorem 4 are satisfied with:

P =

[

0.10 0.04 0.12
0.04 0.18 0.15
0.12 0.15 0.40

]

,

G1 =

[

9.04 5.08
10.24 −7.58
−5.60 1.63

]

, G2 =

[

8.41 5.68
10.87 −8.06
−5.30 0.73

]

Given the initial conditions x(0) = [2 − 2 − 1]T and
x̂(0) = [0 0 0]T , the simulation results are illustrated in
(Fig.2).

The advantages of this method compared to those using
lemma 1 and 2 are, on the one hand, the elimination of
the Lipschitz assumption (9) of the weighting functions,
needed by the previous method, and on the other hand,
the method described in this paper does not require the
knowledge of the input bound of the system like in lemma
2. As a result this method can be employed with a wider
class of nonlinear systems.

5. CONCLUSION

In this paper, a new method is proposed to design an ob-
server for the Takagi-Sugeno systems with immeasurable
premise variables. The structure of the observer is inspired
by the linear Luenberger observer. Estimation error is
written like a perturbed system and conditions for con-
vergence of the observer are studied by using a quadratic
Lyapunov candidate function and L2 design to attenuate
the effect of this perturbation on the state estimation error.
These conditions are expressed in LMI terms. This method

makes it possible to synthesize an observer for Takagi-
Sugeno systems without Lipschitz weighing functions, and
the knowledge of the input bound of the system is not
required to find the gains of the observer. Until in previous
works on this subject.
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