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Abstract: This paper is concerned with the optimal filtering problem for discrete-time stochastic linear 
system with multiple random measurement delays. Without the state augmentation, the system is 
transferred to an equivalent system without measurement delays and with random MV (moving average) 
colored measurement noise. An unbiased optimal filter is developed in the least mean square sense. Its 
solution depends on the recursion of a Riccati equation and a Lyapunov equation. A simulation shows the 
effectiveness of the proposed algorithm. 

 

1. INTRODUCTION 

In recent years, the research on networked systems has 
gained lots of interest (Basin et al., 2004; Halevi & Ray, 1988; 
Nilsson et al., 1998; Yang, 2006). In networked systems, the 
random delays and packet dropouts are unavoidable in data 
transmission by unreliable communication networks from 
sensors to a processing center and from the processing center 
to end users. The data available in control and estimation 
may not be up-to-date due to stochastic delays or packet 
dropouts. So estimation, signal processing and control in the 
networked systems are very challenging (Zhang & Xie, 2007). 

In wireless networks, the systems with stochastic sensor 
delays, packet dropouts and uncertain observations can be 
described by a stochastic parameter system (Nahi, 1969; 
Hadidi et al, 1979; Wang et al, 2003; Yaz et al, 1996, 1998; 
Ray et al, 1993). The optimal estimation problem for systems 
with uncertain measurements is investigated in Nahi (1969) 
and Hadidi et al. (1979), where sensor data that are simply 
the measurement noises at some samples are used for 
updating the estimate, resulting in undesirable estimation 
performance. In fact, previous measurements rather than 
noises should be used in the absence of valid current sensor 
data. Wang et al., (2003) consider the variance-constrained 
filtering problem for systems with measurement and 
parameter uncertainties. 

Yaz et al. (1996, 1998) discuss the least mean square filtering 
problem for systems with one random sampling delay. The 
filters derived, however, are not optimal since a non-white 
noise due to augmentation is treated as a white noise. Ray et 
al. (1993) gives a modification of the minimum variance state 
estimator to accommodate the effects of random delays in 
sensor data arrival at the controller terminal. In Yaz et al. 
(1998), the state estimation problem for discrete-time linear 
systems with stochastic parameters is treated based on a 
linear matrix inequality approach and the results are applied 
to the problem of state estimation with random sensor delays 
or packet dropouts. An extended Kalman filter is given for 
interconnected networks with delayed measurements in Su & 
Lu (2001) whereas Nakamori et al. (2003, 2005) deal with 
the recursive least-squares linear estimation for signals with 

random delays by using a covariance information approach. 
Robust estimation problems for systems with random delays 
and uncertain measurements are also investigated in Wang et 
al. (2004, 2006). Recently, the optimal H2 filtering for 
systems with random sensor delays, multiple packet dropouts 
and uncertain observations is presented in Sahebsara et al. 
(2007) where a unified stochastic parameter model is used. 
Franck et al. (2007) design the filter for system with multiple 
sensor having different delays. Furthermore, multiple random 
sampling delays models are also discussed. We also note that 
the mean square stochastic stability for some kind of systems 
with stochastic delays has been investigated (Koning, 1984;  
Kolmanovskii et al., 2003; Sinopoli et al., 2004). 

So far, to the best of the author’s knowledge, the research of 
estimation problem for systems with random measurement 
delays is mainly focused on one sampling delay; however, 
the estimation problem for systems with the bounded 
multiple random delays is seldom studied. In this paper, we 
investigate the filtering problem for systems with multiple 
random measurement delays, where the largest random delay 
is limited within a bound. It is transferred to an equivalent 
system without delays and with random MV (moving average) 
coloured measurement noise. An unbiased optimal filter is 
designed in the least mean square sense. Its solution depends 
on a Riccati equation and a Lyaponov equation.  

2. PROBLEM FORMULATION 

Consider the discrete time-invariant linear stochastic system 
with multiple packet dropouts 

( 1) ( ) ( )x t x t w tΦ Γ+ = +                     (1a) 
                            ( ) ( ) ( )z t Hx t v t= +                        (1b) 

0 0 1( ) ( ) ( ) (1 ( )) ( ) ( 1)y t t z t t t z tξ ξ ξ= + − − + +  

0 1 1(1 ( ))(1 ( )) (1 ( )) ( )Nt t t z t Nξ ξ ξ −− − − − , 1≥N    (1c) 

where nRtx ∈)(  is the state, mRtz ∈)(  is the output, 
mRty ∈)(  is the received measurement, rRtw ∈)(  and 
mRtv ∈)(  are white noises, and , , HΦ Γ  are constant 

matrices with suitable dimensions, and ( )i tξ , 0 1i N≤ ≤ −  
are mutually independent scalar binary distributed random
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variables, i.e., P{ ( ) 1}i itξ α= =  and P{ ( ) 0} 1i itξ α= = −  and 
is uncorrelated with other random variables. Furthermore, we 
only know the probability iα  but don’t know the values of 

( )i tξ  at each time instant. 

Model (1c) means that the random measurement delays can 
be encountered in data transmission of network control 
systems. We assume that the largest random delay is limited 
by N, N>0 is a certain integer. 

Assumption 1. )(tw  and )(tv  are independent white noises 
with zeros mean and variances wQ  and vQ . 
Assumption 2. The initial state (0)x  with mean zero and 
covariance 0P  is independent of )(tw , )(tv  and )(tξ . 
Assumption 3. The matrix Φ  is non-singular. 

The assumptions 1 and 2 are general for time-delay systems 
(1a)-(1b). Assumption 3 is acceptable since system (1a)-(1b) 
can be a direct consequence of discretization of a continuous-
time system. 

Our aim is to design the following filter based on the 
measurements ))0(,),1(),(( ytyty − : 

ˆ ˆ( 1) ( ) ( ) ( ) ( 1)x t F t x t K t y t+ = + +                  (2) 

with the initial value 0ˆ(0)x μ= . We will determine the gain 
matrices ( )F t  and ( )K t  such that it satisfies the 
unbiasedness and the least mean square criterion. 

Remark 1. From distribution of ( )i tξ , we have the properties 
E[ ( )]i itξ α= , Cov[ ( )] (1 )i i itξ α α= − , 2E[ ( )]i itξ α= , 

2E[(1- ( )) ]i tξ 1 iα= − , E[ ( )(1- ( ))] 0i it tξ ξ = , E[ ( )(1- ( ))]i ik tξ ξ  
(1 )i iα α= − , tk ≠ , and E[ ( ) ( )]i j i jk tξ ξ α α= , tk ≠  or i j≠ . 

3. OPTIMAL FILTER DESIGN 

Before designing the optimal filter of system (1), we first 
transfer (1) to an equivalent system and introduce some 
lemmas. 

Substituting (1b) into (1c), we have 

0 0

( ) ( ) ( ) ( ) ( )
N N

i i
i i

y t a t Hx t i a t v t i
= =

= − + −∑ ∑ , 1≥N      (3) 

where 0 0( ) ( )a t tξ= , 
1

0

( ) (1 ( )) ( )
i

i k i
k

a t t tξ ξ
−

=

= −∏ , Ni <<0 , 

and 
1

0

( ) (1 ( ))
N

N k
k

a t tξ
−

=

= −∏ . 

Further, using (1a) by iteration and Assumption 3, we have 
relation 

1

1

( ) ( ) ( )
i

i k i

k

x t i x t w t kΦ Φ Γ− − −

=

− = − −∑               (4) 

Substituting (4) into (3), then (3) can be rewritten as 

1

0 1 1

( ) ( ) ( ) ( ) ( )
N N i

i k i
i i

i i k

y t a t H x t a t H w t kΦ Φ Γ− − −

= = =

= − −∑ ∑∑  

0

( ) ( )
N

i
i

a t v t i
=

+ −∑                                (5) 

Now, we obtain the equivalent model (1a) and (5) that 
describe the system with N-order random MA (moving 
average) colored measurement noise.   
The following lemmas will be used in the later sections. 
Lemma 1. Random variable )(tai  has the following 
properties 

0 0 0E[ ( )]a a t α= = ; 
1

0

E[ ( )] (1 )
i

i i k i
k

a a t α α
−

=

= = −∏ , Ni <<0 ; 

1

0

E[ ( )] (1 )
N

N N k
k

a a t α
−

=

= = −∏ ; E[ ( ) ( )]i j i ja t a k a a= , tk ≠    (6) 

(1 ) ,
E[( ( ) )( ( ) )]

,
i i

ij i i j j
i j

a a i j
A a t a a t a

a a i j
− =⎧⎪= − − = ⎨ − ≠⎪⎩

      (7) 

Proof. We can readily obtain (6) and (7) from Remark 1. The 
detailed is omitted.                 □ 

Lemma 2. For system (1a), we have the correlation function 
T( ) E[ ( ) ( )]q t x t x t=  satisfying 

T T( 1) ( ) wq t q t QΦ Φ Γ Γ+ = +                      (8) 
with the initial value T

0 0 0(0)q P μ μ= + . 
Proof. These directly follow from (1a).         □ 

For system (1a)-(3), we can design the optimal estimator by 
augmented approach. However, the augmented approach will 
bring expensive computational cost and large memory space 
due to the high-dimension state. In the following, we will 
design the optimal filter (2). 

Theorem 1. For system (1a)-(5) satisfying Assumptions 1-3, 
the gain matrices of the optimal filter (2) are computed by 

( ) ( )F t K t MΦ= −                              (9) 

( 1)

0

N
i

i
i

M a HΦ − −

=

= ∑                          (10) 

T T T T 1
0( ) [ ( ) ( )] ( )w xK t P t M Q H P t tηΦ α Γ Γ Φ Λ−= + −     (11) 

T T T
0( ) ( ) ( ) wt MP t M P t H Q HηΛ α Γ Γ= + + −  

T T( ) ( )x xMP t P t Mη η−                         (12) 

( 1) ( 1) T T

0 0

( ) ( )( )
N N

i j
ij

i j

P t A H q t Hη Φ Φ− − − −

= =

= +∑∑  

1
T T T

2 1 0

( )
N i N

k i k i
i w i v

i k i

a H Q H a QΦ Γ Γ Φ
−

− −

= = =

+ −∑∑ ∑  

1
T T T

0 2 1
( )

jN N
k i k j

ij w
i j k

A H Q HΦ Γ Γ Φ
−

− −

= = =

−∑∑∑  

1
T T T

2 0 1
( )

N N i
k i k j

ij w
i j k

A H Q HΦ Γ Γ Φ
−

− −

= = =
∑∑∑             (13) 

T T T

1 1
( ) ( ) ( , 1) ( ) ( , 1)

N N
l l

x
l l

P t P K t l F t t l P t F t t lη η ηζ
= =

= − − + + − +∑ ∑  

                                             (14) 
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1
T T T

1 1 1
( )

N N N N
l k i k j l

i j w i i l v
k l i k j k l i l

P a a H Q H a a Qη Φ Γ Γ Φ
−

− − −
−

= + = + = − + =

= +∑ ∑ ∑ ∑  

                                          (15) 
T

1
( )

N
l l i

i w
i l

P t a H Qηζ Φ Γ Γ−

= +

= −∑  

T T T
0

1
( )

N
l i

i w
i l

a H Q H K t lα Φ Γ Γ−

= +

−∑                (16) 

The filtering error variance is computed by 
T T T( 1) ( ) ( ) ( ) ( )wP t P t Q K t t K tΦ Φ Γ Γ Λ+ = + −      (17) 

where we define 
1

( , ) ( )
l

i

F t t l F t i
=

− = −∏  with ( , ) nF i i I= . ijA  

is computed by Lemma 1. ( )q t  is computed by Lemma 2. 
The initial values are 0(0)P P=  and T

0 0 0(0)q P μ μ= + . 

Proof. From (5), we have  
( 1)

0
( 1) ( 1) ( )

N
i

i
i

y t a t H x tΦ − −

=

+ = + −∑  
1

2 1
( 1) ( )

N i
k i

i
i k

a t H w t kΦ Γ
−

−

= =

+ −∑∑  

0
0

( 1) ( 1 ) ( 1) ( )
N

i
i

a t v t i a t H w tΓ
=

+ + + − + +∑             (18) 

From (1a), (9) and (18), we have the filtering error equation 

( 1)

0
( 1) [ ( ) ( ) ( 1) ] ( )

N
i

i
i

x t F t K t a t H x tΦ Φ − −

=

+ = − − + +∑  

0( ) ( ) [ ( 1) ( ) ] ( )F t x t a t K t H w tΓ Γ+ − + +  
1

2 1 0
( ) ( 1) ( ) ( ) ( 1) ( 1 )

N i N
k i

i i
i k i

K t a t H w t k K t a t v t iΦ Γ
−

−

= = =

+ − − + + −∑∑ ∑
                                                  (19) 

where ˆ( ) ( ) ( )x t x t x t= − . To guarantee the unbiasedness, we 
require (0) 0x =  and  

( 1)

0
E[ ( ) ( ) ( 1) ] 0

N
i

i
i

F t K t a t HΦ Φ − −

=

− − + =∑            (20)  

which yields (9) and (10) by using Lemma 1. Then, (19) can 
be rewritten as 

( 1) ( ) ( ) ( ) ( ) ( )x t F t x t K t t tη ζ+ = + +                (21) 

where ( )tζ  and ( )tη  are defined as 

0( ) [ ( 1) ( ) ] ( )t a t K t H w tζ Γ Γ= − + , 

( )= ( ) ( ) ( )t Z t W t V tη + −                        (22) 

with 

( 1)

0
( ) ( ( 1)) ( )

N
i

i i
i

Z t a a t H x tΦ − −

=

= − +∑ , 

1

2 1
( ) ( 1) ( )

N i
k i

i
i k

W t a t H w t kΦ Γ
−

−

= =

= + −∑∑ , 

0
( ) ( 1) ( 1 )

N

i
i

V t a t v t i
=

= + + −∑                      (23) 

So, the filtering error covariance matrix is derived as follows 
T T( 1) ( ) ( ) ( ) ( ) ( ) ( )P t F t P t F t K t P t K tη+ = + +  

T T( ) ( ) ( ) ( ) ( ) ( ) ( )x xQ t K t P t F t F t P t K tζ η η+ +           (24) 

where we define T( ) E[ ( ) ( )]P t x t x t= , T( ) E[ ( ) ( )]P t t tη η η=  

and T( ) E[ ( ) ( )]xP t t x tη η=  with T( ) ( )x xP t P tη η= . ( )Q tζ =  
TE[ ( ) ( )]t tζ ζ  is computed by 

T T T T T
0 0( ) ( ) ( )w w wQ t Q Q H K t K t H Qζ Γ Γ α Γ Γ α Γ Γ= − −  

T T T
0 ( ) ( )wK t H Q H K tα Γ Γ+                       (25) 

From the definition of ( )tη  in (22), we have 

T T T( ) E[ ( ) ( )] E[ ( ) ( )] E[ ( ) ( )]P t t t Z t Z t W t W tη η η= = + +  

T T TE[ ( ) ( )] E[ ( ) ( )] E[ ( ) ( )]V t V t Z t W t W t Z t+ +         (26) 

where 

TE[ ( ) ( )]Z t Z t = ( 1)

0
E ( ( 1)) ( )

N
i

i i
i

a a t H x tΦ − −

=

⎧⎡ ⎤⎪ − + ×⎨⎢ ⎥⎪⎣ ⎦⎩
∑  

T

( 1)

0
( ( 1)) ( )

N
j

j j
j

a a t H x tΦ − −

=

⎫⎡ ⎤ ⎪− + ⎬⎢ ⎥
⎣ ⎦ ⎪⎭
∑  

( 1) ( 1) T T

0 0
( )( )

N N
i j

ij
i j

A H q t HΦ Φ− − − −

= =

= ∑∑              (27) 

1
T

2 1
E[ ( ) ( )] E ( 1) ( )

N i
k i

i
i k

W t W t a t H w t kΦ Γ
−

−

= =

⎧⎡ ⎤⎪= + − ×⎨⎢ ⎥⎪⎣ ⎦⎩
∑∑  

T1

2 1
( 1) ( )

jN
k j

j
j k

a t H w t kΦ Γ
−

−

= =

⎫⎡ ⎤ ⎪+ − ⎬⎢ ⎥
⎣ ⎦ ⎪⎭
∑∑  

1
T T T

2 1
( )

N i
k i k i

i w
i k

a H Q HΦ Γ Γ Φ
−

− −

= =

= ∑∑                (28) 

TE[ ( ) ( )]V t V t =
0

E ( 1) ( 1 )
N

i
i

a t v t i
=

⎧⎡ ⎤⎪ + + − ×⎨⎢ ⎥⎪⎣ ⎦⎩
∑  

T

0
( 1) ( 1 )

N

j
j

a t v t j
=

⎫⎡ ⎤ ⎪+ + − ⎬⎢ ⎥
⎣ ⎦ ⎪⎭
∑

0

N

i v
i

a Q
=

= ∑              (29) 

TE[ ( ) ( )]Z t W t =
1

( 1) 1 1

0 1
E ( ( 1)) ( ( 1) ( ))

jN
i j k

i i
i k

a a t H x t j w t kΦ Φ Φ Γ
−

− − − −

= =

⎧⎡ ⎤⎪ − + − + + −⎨⎢ ⎥
⎪⎣ ⎦⎩

∑ ∑  

T1

2 1
( 1) ( )

jN
k j

j
j k

a t H w t kΦ Γ
−

−

= =

⎫⎡ ⎤ ⎪× + − ⎬⎢ ⎥
⎣ ⎦ ⎪⎭
∑∑  

1
T T T

0 2 1
( )

jN N
k i k j

ij w
i j k

A H Q HΦ Γ Γ Φ
−

− −

= = =

= −∑∑∑           (30) 

Substituting (27)-(30) into (26) yields (13). 
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From (21)-(22), ( )xP tη  is derived as follows 

T T( ) E[ ( ) ( 1)] ( 1)xP t t x t F tη η= − − +  

T T TE[ ( ) ( 1)] ( 1) E[ ( ) ( 1)]t t K t t tη η η ζ− − + −           (31) 

(31) by iteration yields 
T T( ) E[ ( ) ( )] ( , )xP t t x t N F t t Nη η= − − +  

T T T

1
E[ ( ) ( )] ( ) ( , 1)

N

l
t t l K t l F t t lη η

=

− − − + +∑  

T T

1
E[ ( ) ( )] ( , 1)

N

l
t t l F t t lη ζ

=

− − +∑                 (32) 

Noting (21)-(23), we have TE[ ( ) ( )] 0t x t Nη − = . (14) can be 
obtained from (32) by defining T( ) E[ ( ) ( )]lP t t t lη η η= −  and  

T( )=E[ ( ) ( )]lP t t t lηζ η ζ − . Next, we will derive (15)-(16).  
From the definition of ( )tη  in (22), we also have 

T T T( ) E[ ( ) ( )] E[ ( ) ( )] E[ ( ) ( )]lP t t t l Z t Z t l W t W t lη η η= − = − + −  

T T TE[ ( ) ( )] E[ ( ) ( )] E[ ( ) ( )]V t V t l Z t W t l W t Z t l+ − + − + −   (33) 

From (23) and Lemma 1, we have TE[ ( ) ( )] 0Z t Z t l− = , 
TE[ ( ) ( )] 0Z t W t l− =  and TE[ ( ) ( )] 0W t Z t l− =  for 1l ≥ . 

1
T

2 1
E[ ( ) ( )] E ( 1) ( )

N i
k i

i
i k

W t W t l a t H w t kΦ Γ
−

−

= =

⎧⎡ ⎤⎪− = + − ×⎨⎢ ⎥⎪⎣ ⎦⎩
∑∑  

T1

2 1
( 1 ) ( )

jN
k j

j
j k

a t l H w t k lΦ Γ
−

−

= =

⎫⎡ ⎤ ⎪+ − − − ⎬⎢ ⎥
⎣ ⎦ ⎪⎭
∑∑  

1

1 1
E ( 1) ( )

N N
k i

i
k i k

a t H w t kΦ Γ
−

−

= = +

⎧⎡ ⎤⎪= + − ×⎨⎢ ⎥⎪⎣ ⎦⎩
∑ ∑  

T
1

1 1
( 1 ) ( )

N l N
k j l

j
k l j k l

a t l H w t kΦ Γ
+ −

− −

= + = − +

⎫⎡ ⎤ ⎪+ − − ⎬⎢ ⎥
⎣ ⎦ ⎪⎭
∑ ∑  

1
T T T

1 1 1
( )

N N N
k i k j l

i j w
k l i k j k l

a a H Q HΦ Γ Γ Φ
−

− − −

= + = + = − +

= ∑ ∑ ∑      (34) 

TE[ ( ) ( )]V t V t l− =
0

E ( 1) ( 1 )
N

i
i

a t v t i
=

⎧⎡ ⎤⎪ + + − ×⎨⎢ ⎥⎪⎣ ⎦⎩
∑  

T

0
( 1) ( 1 )

N

j
j

a t l v t l j
=

⎫⎡ ⎤ ⎪− + − + − ⎬⎢ ⎥
⎣ ⎦ ⎪⎭
∑

N

i i l v
i l

a a Q−
=

= ∑        (35) 

Substituting (34) and (35) into (33) and noting that ( )lP tη  is 

not relative to time t, we have (15) by letting ( )l lP t Pη η= . 
From (22), we have 

T( )=E[ ( ) ( )]lP t t t lηζ η ζ − T TE[ ( ) ( )] E[ ( ) ( )]Z t t l W t t lζ ζ= − + −  
                                               (36) 

From Lemma 1, we have TE[ ( ) ( )] 0Z t t lζ − =  for 1l ≥ , and 
1

T

2 1
E[ ( ) ( )] E ( 1) ( )

N i
k i

i
i k

W t t l a t H w t kζ Φ Γ
−

−

= =

⎧⎡ ⎤⎪− = + − ×⎨⎢ ⎥⎪⎣ ⎦⎩
∑∑  

[ ] }T
0( ( 1 ) ( ) ) ( )a t l K t l H w t lΓ Γ− + − − −  

T T T T
0

1 1

( )
N N

l i l i
i w i w

i l i l
a H Q a H Q H K t lΦ Γ Γ α Φ Γ Γ− −

= + = +

= − −∑ ∑  

                                                   (37) 
Substituting (37) into (36) yields (16). 
        Substituting (9) and (25) into (24) and completing the 
square, we have 

T T( 1) ( ) wP t P t QΦ Φ Γ Γ+ = + +  

{ }T T T T 1
0( ) [ ( ) ( )] ( ) ( )w xK t P t M H Q H P t t tηΦ α Γ Γ Φ Λ Λ−− + −  

{ }TT T T T 1
0( ) [ ( ) ( )] ( )w xK t P t M H Q H P t tηΦ α Γ Γ Φ Λ−× − + − −  

T T T T 1
0[ ( ) ( )] ( )w xP t M Q H P t tηΦ α Γ Γ Φ Λ−+ − ×   

T T T T T
0[ ( ) ( )]w xP t M Q H P tηΦ α Γ Γ Φ+ −              (38) 

where ( )tΛ  is defined by (12). To minimize the filtering 
error variance, we only require the gain matrix ( )K t  to 
satisfy (11). Further, we can obtain (17) from (38).         □ 

Remark 2. Noting (6), the optimal filter (9)-(17) is just the 
standard Kalman filter when there are no packet dropouts, i.e., 

0 1α = . Also, its multiplication and division has the quantity 
grade of 2 3N n  less than 3 3N n  of the augmentation approach. 

4. SIMULATION EXAMPLE 

Consider a numerical example 

0.8 0 0.6
( 1) ( ) ( )

0.9 0.2 0.5
x t x t w t

⎡ ⎤ ⎡ ⎤
+ = +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
                (39) 

( ) [1 1] ( ) ( )z t x t v t= +                             (40) 

0 0 1( ) ( ) ( ) (1 ( )) ( ) ( 1)y t t z t t t z tξ ξ ξ= + − − +  

0 1(1 ( ))(1 ( )) ( 2)t t z tξ ξ− − −                         (41) 

where )(tv  is the measurement noise with mean zero and 

variance 2
vσ , and is independent with Gaussian white noise 

)(tw  with mean zero and variance 2
wσ . ( )i tξ , 0,1i =  are 

scalar binary distributed random variables with probability 
P{ ( ) 1}i itξ α= =  and P{ ( ) 0} 1i itξ α= = − , 0,1i = .  

In the simulation, setting noise variances 12 =wσ , 12 =vσ , 
0.5iα α= = , 0,1i = , the initial value T(0) [2, 2]x =  and 

20 1.0 IP = , where 2I  is the identity matrix, and we take 300 
sampling data. Applying Theorems 1, we have the optimal 
filter ˆ( )x t  shown in Fig.1 where solid curves denote true 
values and dotted curves denote estimates. We can compute 
the steady-state filtering error variance matrix of the optimal 

filter as 
0.3864 0.3840
0.3840 0.4222

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. Fig.2 shows the steady-state 

filtering error variances of the optimal filter when 0 1α≤ ≤ . 
From Fig.2, we see that the optimal filter has better accuracy 
as α  increases. Furthermore, we can verify that the obtained 
result is just the optimal Kalman filter when there is no 
random measurement delays, i.e., 1=α . 
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Fig.2 The optimal filtering error variances for different random delay rate 0 1α≤ ≤  

α α 
(a) Filtering error variances for the first state component  )(1 tx (b) Filtering error variances for the second state component  2 ( )x t
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6. CONCLUSIONS 

For the problem of multiple random delays in networked 
systems, we have derived the optimal filter in the unbiased 
least mean square sense. It is obtained based on an equivalent 
system without delays and with bounded random MV 
(moving average) colored measurement noise, while the state 
augmentation is avoided. Its solution depends on the 
recursion of a Riccati equation and a Lyapunov equation. 
Furthermore, the proposed optimal filter is reduced to the 
standard Kalman filter when there are no random 
measurement delays. 
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