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Abstract: This paper proposes a fast moving window algorithm for QR and Cholesky
decompositions by simultaneously applying data updating and downdating. The developed
procedure is based on inner products and entails a similar downdating to that of the Chambers’
approach. For adding and deleting one row of data from the original matrix, a detailed
analysis shows that the proposed algorithm outperforms existing ones in terms or computational
efficiency, if the number of columns exceeds 7. For a large number of columns, the proposed
algorithm is numerically superior compared to the traditional sequential technique.
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1. INTRODUCTION

Matrix decomposition methods have had a significant im-
pact upon linear algebra over the past decades. Stewart
(2000) summarised a total of six most widely used decom-
positions, which are LU, Cholesky, QR, spectral decom-
position, Schur decomposition, and singular value decom-
position. This paper focuses on QR decomposition, which
decomposes an m× n matrix into a product of an orthog-
onal matrix and an upper triangular matrix. The analysis
in this paper also includes Cholesky decomposition which
has a close relationship with QR decomposition in that it
also produces a triangular matrix. Both decompositions
have been found to play an important role in modern
control theory (Landau, et al., 1998), signal processing
(Diniz, 2002), and system identification (Overschee and
Moor, 1996) for example.

For the QR decomposition of a matrix of n column and
m ≤ n row vectors, the complexity of a complete QR de-
composition is of O(mn2), whereas the cost for a Cholesky
decomposition of a squared matrix of dimension n is O(n3)
(Golub and Loan, 1996). This high computational effort
renders an on-line adaptation for large matrices a difficult
task (Liu, 1995). It is therefore desirable to develop fast
adaptation algorithms that are of O(n2). Existing algo-
rithms include (i) exponentially decreasing data weighting
(usually referred to the recursive method) (Borow and
Murray, 1993) and (ii) a sliding window of data (often
defined as moving window) (Baykal and Constantinides,
1998). The main difference between these techniques lies

1 †Correspondence author: Tel.: +971-2-607-5150, Fax.: +971-2-607-
5200

in the length of data window and how old data are treated.
The former one augments the data window each time a
new data point becomes available. Old data are degraded
in order to place more emphasis on newer information.
In contrast, moving window approach discards the oldest
sample each time a new one is added to the data window.
The advantage of a moving window approach is that a
constant speed of adaptation can be achieved, since the
length of the data window remains constant. For recursive
techniques, however, the data window constantly grows
and it is often difficult to determine the most suitable
exponential forgetting factor.

A recursive QR decomposition has been proposed in ref-
erence (Borow and Murray, 1993). Adding the impact
of an additional data point to the original matrix pro-
duces an upper Hessenberg matrix, from which the up-
per triangular structure could be restored using a Givens
transformation. Such a procedure is defined as “updat-
ing”. Three techniques have been developed for removing
the effect of an older sample from the original matrix,
defined as “downdating”. The hyperbolic transformation
method (Golub, 1969) regards the elimination of one row
as augmenting the triangular matrix by an additional row
which is to be multiplied by i =

√
−1. The Chambers

method (Chambers, 1971) that relies on rearranging the
calculation orders of hyperbolic method improves the sta-
bility of the existing hyperbolic transformation method.
The LINPACK method (P. E. Gill and Saunders, 1974)
treats the downdating problem as a construction of an
orthogonal transformation matrix which is obtained by
solving a triangular system, and solves the problem in the
same way as updating problem. Pan (1990) interlinked two

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10106 10.3182/20080706-5-KR-1001.3189



different phases of the LINPACK method to produce a
faster algorithm.

More recently, the LINPACK method was extended to
produce a moving window algorithm for the QR decompo-
sition (Strobach and Goryn, 1993). Based on the fact that
the R-matrix of a QR decomposition can be updated in a
similar fashion to the L-matrix of a Cholesky decomposi-
tion (P. E. Gill and Saunders, 1974), this paper develops
of a moving window method that is applicable to both
QR and Cholesky decompositions. Rather than updating
and downdating sequentially in separate steps as presented
in paper (Strobach and Goryn, 1993), this paper combines
these two steps together and achieves a simultaneous adap-
tation for both decompositions, which, to the best of the
authors’ knowledge, has not been addressed in the existing
research literature.

The QR and Cholesky decompositions will be briefly
introduced in Section 2, along with existing methods
on updating and downdating routines. Based on these
methods, an improved fast moving window method for QR
and Cholesky decompositions is proposed in Section 3. It
is then compared with an alternative method in Section 4
in terms of complexity. Section 5 provides two simulation
studies to test these methods, which experimentally checks
the accuracy of the proposed method. The paper finally
presents concluding remarks in Section 6.

2. PRELIMINARIES

This section gives a brief overview of QR and Cholesky de-
compositions and introduces the updating and downdating
problems.

2.1 QR and Cholesky Decompositions

QR decomposition handles a given matrix Y ∈ R
m×n

(m ≥ n) of full column rank. There exists an orthogonal
matrix Q ∈ R

m×m and an upper triangular matrix R ∈
R

n×n with positive diagonal elements, such that Y can be
decomposed as follows.

Y = Q

[

R
0

]

(1)

where 0 ∈ R
(m−n)×n. It is equivalent to triangularize

the matrix by reducing the elements below diagonal to
zero step by step with orthogonal transformations such
as Givens rotation or Householder reflection. Suppose
diagonal elements of R are positive, the decomposition
is unique.

Cholesky decomposition works on a given symmetric and
positive definite matrix X ∈ R

n×n, so that

X = LLT = RT R (2)

where L ∈ R
n×n is a lower triangular matrix with strictly

positive diagonal entries, and the upper triangular matrix
R is the transpose of L, denoted as LT . Both L and
R are unique under the assumption of positive diagonal
elements.

It should be noted that there are similar upper triangular
factors in the Cholesky and QR decompositions. More
precisely, defining X = YT Y = RT R, where the positive

definiteness of X is guaranteed by the full column rank of
Y , and assuming that the diagonal elements are positive,
the upper triangular matrix from QR decomposition on Y
is identical to that of the Cholesky decomposition of X .
For simplicity, both upper triangular matrices are denoted
by R throughout this article. Moreover, the combined
adaptation algorithm is applicable to both, the QR and
Cholesky decompositions.

To adapt a matrix decomposition based on the moving
window approach, each factor matrix needs to be updated
with new data and downdated by discarding the oldest
data. If the Q factor of QR decomposition is not required
to be stored and updated, the adaptation task for the
Cholesky and QR decompositions are based on the R
factor matrix (Lawson and Hanson, 1974).

2.2 QR and Cholesky Updating Problem

The updating problem refers to the construction of the
new factor based on the old one and a new sample. With
Cholesky decomposition, the upper triangular matrix T ∈
R

n×n is to be determined based on the former upper
triangular matrix R ∈ R

n×n and a vector x ∈ R
n, so

that
T T T = RT R + xxT (3)

Let Z = X + xxT following the denotations in Equation
(2), which is a rank-1 modification to X . The symmetry
and positive definiteness of Z still hold. This verifies
the existence and uniqueness of factor T from Cholesky
decomposition of Z.

To show the updating procedure more explicitly, the
influence of new data is studied based on Equation (1).
Without loss of generality, xT is assumed to be appended
at the bottom of Y , resulting in matrix Y∗ that can be
partitioned as below.

Y∗ =

[

Y

xT

]

=

[

Q 0

0T 1

]





R
0

xT



 =

[

Q 0

0T 1

]

(PT P)





R
0

xT





=

([

Q 0

0T 1

]

PT

)



P





R
0

xT







 = Q∗∗





R
0

xT



 (4)

where P ∈ R
(m+1)×(m+1) is permutation matrix to switch

xT to the bottom of R. Obviously, PT P = Im+1,
where Im+1 is identity matrix of dimension m + 1. Then
Q∗∗ is still orthogonal. Continue to conduct the QR
decomposition as follows,

Y∗ = Q∗∗

(

[

Qa 0
0 I

]T [
Qa 0
0 I

]

)





R

xT

0



 = Q∗

[

T

0T

]

(5)

where T is finally achieved, an orthogonal matrix Qa

is introduced in Equation (5) which fulfills the following

requirements: (i) QT
a Qa = In+1; (ii) Q∗ = Q∗∗

[

Qa 0
0 I

]T

maintains the orthogonality; and (iii)

Qa

[

R

xT

]

=

[

T

0T

]

(6)

Since the elements of T and x are known, Qa can be
constructed by Givens rotation which aims to eliminate
the added data x step by step. The derivatives here are
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different with traditional method (Strobach and Goryn,
1993) by placing xT on the bottom of the original matrix
not on the top of the original matrix R. For ease of
expression, eT

j M is used to denote the jth row of any
matrix M where ej is a vector with 1 in position j
and zeros elsewhere. Superscripts represent the times of
transformation. Specially, x(0) = x. Then

G(i)
a

[

eT
i R

(x(i−1))T

]

=

[

eT
i T

(x(i))T

]

(7)

where

G(i)
a =

[

c(i)
a −s(i)

a

s(i)
a c(i)

a

]

(8)

c(i)
a = rii/l(i)a (9)

−s(i)
a = x

(i−1)
i /l(i)a (10)

l(i)a = [r2
ii + x

(i−1)
i ]1/2 (11)

Then Q(i)
a ∈ R

(n+1)×(n+1) can be constructed as

Q(i)
a =











Ii−1 0 · · · 0

0 c(i)
a · · · −s(i)

a
...

... In−i

...

0 s(i)
a · · · c(i)

a











(12)

The Givens transformation matrix can be constructed row
by row and finally Qa = Q(n)

a · · ·Q(2)
a Q(1)

a . The calculated
T is exactly the Cholesky factor in Equation (3).

2.3 QR and Cholesky Downdating Problem

The Cholesky downdating problem is the inverse of the
updating problem: to find R from T and x by rearranging
xxT to the left side of Equation (3). For ease of description,
here U and y are introduced to represent the unknown
matrix and the sample to be deleted respectively. If x = y,
then U = R. The downdating problem is formulated as
follows.

UT U = T T T − yyT (13)

Among the three downdating methods mentioned in Sec-
tion 1, the Chambers method (Chambers, 1971) is applied
here because it is suitable to parallel processing with better
numerical stability comparing with LINPACK method and
hyperbolic transformation method (A. W. Bojanczyk and
Hoog, 1987).

Inspired by the concept used for Cholesky updating prob-
lem, Qd is introduced to form the following relation similar
to Equation (6).

Qd

[

U

yT

]

=

[

T

0T

]

(14)

The target is to discover relationships to formulate the

elements in U . Similar with G1
a, G

(1)
d transform

[

eT
1 U

(y(0))T

]

to

[

eT
1 T

(y(1))T

]

. Noticing that y
(1)
1 = 0, the following rela-

tionship holds.

(l
(1)
d )2 = u2

11 + (y
(0)
1 )2 = t211 (15)

from which u11 can be obtained as follows.

u11 = [t211 − (y
(0)
1 )2]1/2 = [(t11 + y

(0)
1 )(t11 − y

(0)
1 )]1/2 (16)

By applying

c
(1)
d u1j − s

(1)
d y

(0)
j = t1j (17)

the remaining elements of the first row (2 ≤ j ≤ n) can be
calculated as follows.

u1j = [t1j − (−s
(1)
d )y

(0)
j ]/c

(1)
d (18)

And the relationship between y(0) and y(1) is obtained
from the second row of augmented matrix.

y
(1)
j = c

(1)
d y

(0)
j − (−s

(1)
d )u1j (19)

In general, at the ith step,

uii = [(tii + y
(i−1)
i )(tii − y

(i−1)
i )]1/2 (20)

uij = [tij − (−s
(i)
d )y

(i−1)
j ]/c

(i)
d i + 1 ≤ j ≤ n (21)

y
(i)
j = c

(i)
d y

(i−1)
j − (−s

(i)
d )uij (22)

(23)

where

c
(i)
d = uii/l

(i)
d (24)

−s
(i)
d = y

(i−1)
i /l

(i)
d (25)

l
(i)
d = tii (26)

Once all the n steps are taken, U can be finally completed.

3. PROPOSED MOVING WINDOW ALGORITHM

This section introduces the combined moving window ap-
proach. Commencing with a problem formulation, Subsec-
tion 3.2 gives details of the combined algorithm.

3.1 Problem Formulation

Since techniques are available for both updating and down-
dating steps, as outlined in Section 2, it is straightforward
to carry out the two steps sequentially. This paper develops
a faster moving window algorithm by combining these two
steps together. Thus, the procedure of a two-step rank-1
modification is changed to a single step rank-2 modifica-
tion. This means from triangular matrix R ∈ R

n×n and
vectors x,y ∈ R

n, the triangular matrix U ∈ R
n×n is

obtained directly.

UT U = RT R + xxT − yyT (27)

3.2 Moving Window QR and Cholesky Decompositions

Lemma 1 below shows that a solution for Equation (27)
can be obtained, that is further refined to be the combined
up- and downdating algorithm.

Lemma 1. Given that the old matrix R, the new sample
x and the old sample y are available, the new upper
triangular matrix U can be determined as follows:

uii =

[

〈ai,ai〉 − y2
i −

i−1
∑

k=1

u2
ki

]1/2

(28)

uij =
1

uii

(

〈ai,aj〉 − yiyj −
i−1
∑

k=1

ukiukj

)

(29)
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Here, 〈·, ·〉 represents the inner product of two vectors. A
proof of Lemma 1 is given in Appendix A.

Based on Lemma 1, the up- and downdating steps can
be combined to produce a numerically more efficient algo-
rithm for the Cholesky and QR decompositions. The com-
bined algorithm is summarised by the following theorem,
which is proven in Appendix B.

Theorem 2. Elements of U can be expressed as follows.

uii = [r2
ii + (x

(i−1)
i )2 − (y

(i−1)
i )2]1/2

= [(l(i)a + y
(i−1)
i )(l(i)a − y

(i−1)
i )]1/2 (30)

uij =
1

uii
[riirij + x

(i−1)
i x

(i−1)
j − y

(i−1)
i y

(i−1)
j ]

=
rii

uii
rij +

x
(i−1)
i

uii
x

(i−1)
j − y

(i−1)
i

uii
y
(i−1)
j (31)

x
(i)
j = c(i)

a x
(i−1)
j − (−s(i)

a )rij (32)

y
(i)
j = c

(i)
d y

(i−1)
j − (−s

(i)
d )uij (33)

where 1 ≤ i ≤ n, i + 1 ≤ j ≤ n and

l(i)a = [r2
ii + (x

(i−1)
i )2]1/2 (34)

c(i)
a = rii/l(i)a (35)

−s(i)
a = x

(i−1)
j /l(i)a (36)

l
(i)
d = [u2

ii + (y
(i−1)
i )2]1/2 = l(i)a (37)

c
(i)
d = uii/l

(i)
d (38)

−s
(i)
d = y

(i−1)
i /l

(i)
d (39)

4. COMPLEXITY ANALYSIS

The computational aspect of the combination algorithm is
investigated in this section. The numbers of flops involved
during the procedure of the proposed algorithm are shown
in Table 1. It follows from Table 1 that the total number
of flops is equal to 5.5n2 + 9.5n. And the total flops of
sequential algorithm is 6n2 + 6n (referred to Section 2,
the flops of ith step of sequential algorithm is 12(n −
i) + 12). This, however, implies that the combined up-
and downdating steps compare favourably, that is 6n2 +
6n > 5.5n2 + 9.5n, for n > 7. In practice, it is numerically
more efficient to employ the combined steps for large scale
applications, whilst the sequential updating is superior for
smaller matrices ≤ 7 variables.

In the other extreme case for very large matrices, that is
n → ∞ the theoretical savings can amount to over 8%,

since 1 − lim
n→∞

5.5n2+9.5n
6n2+6n ≈ 0.083.

5. NUMERICAL ACCURACY OF THE PROPOSED
MOVING WINDOW ALGORITHM

This section summarises an application study of the mov-
ing window technique detailed in Section 3. The aim of this
investigation is to evaluate its numerical accuracy. This is
of importance since it can often be observed that an in-
crease in computational efficiency compromises accuracy.
Next, details of the simulation example are given prior to
the analysis for one shift of the moving window followed
by multiple shifts.

Procedure Determine Equation to be used flops

1 l
(i)
a (34) 4

c
(i)
a (35) 1

−s
(i)
a (36) 1

2 uii (30) 4

3 l
(i)
d

(37) 0

c
(i)
d

(38) 1

−s
(i)
d

(39) 1

4 rii/uii - 1

x
(i−1)
i

/uii - 1

y
(i−1)
i

/uii - 1

5 uij (31) 5(n − i)

6 x
(i) (32) 3(n − i)

y
(i) (33) 3(n − i)

Total - - 11(n − i) + 15

Table 1. Procedure of algorithm proposed and
flops required

5.1 Tests Design

The elements of analysed matrices were generated ran-
domly and Monte Carlo experiments were carried out
to evaluate general trends. For simplicity the number of
columns was set to n = 100 and a date set of m = 2200
random entries Ymn ∈ N (0, 1) was generated. An initial
QR decomposition was carried out on the first 200 samples.
The conventional sequential and the proposed combined
moving window approaches were then applied for samples
201 to 2200. To circumvent that random deviations arise,
a total of 1000 Monte Carlo experiments were carried out,
that is a total of 1000 data sets of n = 100 and m = 2200
were generated.

The numerical accuracy of both moving window tech-
niques has been compared as follows. A QR decomposition
using Givens rotations was obtained for the data within
a window that was moved forward by one step. This R
matrix computed was then compared to that obtained by
both moving window techniques and the relative error, e,
was evaluated as follows:

e =
‖U − R‖F

‖R‖F

(40)

where F refers to the Frobenius norm of a matrix. It
should be noted that since the accuracy analysis is based
on 1000 Monte Carlo experiments, the mean relative error,
e = 1

1000

∑1000
κ=1 eκ is considered below.

5.2 Matrix Adaptation using One Step

In this study, the window of dimension m = 200 is only
moved forward by one step. Applying both moving window
approaches generated one updated R matrix each and the
application of the traditional QR decomposition produced
the benchmark R matrix. Utilising Equation (40) gave rise
to an error value of 6.527×10−16 and 6.514×10−16 for the
sequential and the combined moving window algorithms,
respectively. Altering the number of column vectors to 50,
150, and 500 produced a similar outcome. This suggests
that the combined approach is numerically more accu-
rate than the conventional sequential one. Although these
observations are based on simulation examples only, this
outcome is expected since the combined algorithm requires
fewer floating point operations to be carried out, which, in
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turn, can reduce numerical errors introduced by floating
point operations. For future work, a detailed error analysis
for example backward error analysis (Wilkinson, 1965)
needs to be conducted to verify these findings.

5.3 Multi-Step Test

Comparing with the one step test in Subsection 5.2, the
multi-step test here took into account of error accumula-
tion. As shown in Figure 1, the final error of new algorithm
is smaller than that of the conventional one. It should be
noted that the new algorithm shows not only computa-
tionally more efficient but also more accurate.

6. CONCLUSION

This paper has introduced a fast moving window algo-
rithm for Cholesky and QR decompositions. Compared to
conventional up- and downdating methods, discussed in
the research literature, the proposed algorithm combines
these steps. The analysis in this paper has shown that the
proposed combined technique is computationally superior,
as it requires fewer floating point operation. As the moving
window slides one step forward, it can save in the region of
O(0.5n2) floating point operations, which, in turn, results
in an 8 % decrease in computational effort if the number
of columns exceeds 7.

The numerical accuracy of the new approach has been
compared with the conventional sequential application
of up- and downdating in a simulation example. This
application has found that the new approach provides
computational improvement without compromising the
numerical accuracy. Moreover, the analysis has indicated
that the combined algorithm produces a smaller numerical
error. The numerical accuracy issue, however, needs to be
verified by a detailed error analysis in the future.

Appendix A. PROOF OF LEMMA 1

Proof: Let A =

[

R

xT

]

= [a1,a2, · · · ,an], B =

[

U

yT

]

=

[b1,b2, · · · ,bn], and C =

[

T

0T

]

= [c1, c2, · · · , cn], where

T ∈ R
n×n is intermediate matrix and ai, bi, and ci are

column vectors of A, B, and C respectively. According
to analysis in Section 2, during updating and downdat-

ing, the orthogonal matrices Q(i)
a and Q

(i)
d can always

be constructed. The final orthogonal matrices are Qa =

Q(n)Q(n−1)
a · · ·Q(1) and Qd = Q

(n)
d Q

(n−1)
d · · ·Q(1)

d re-
spectively, which is equivalent to carrying out n orthogonal
transform operations to reduce the augmented matrices to
triangular structure step by step. Since QaA = C and
QdB = C, it can be derived that

B = QT
d C = QT

d (QaA) = (QT
d Qa)A = QA (A.1)

Because of the orthogonality of Q, the inner product of
the columns in A and B has the following relationship.

〈ai,aj〉 = 〈bi,bj〉 1 ≤ i ≤ j ≤ n (A.2)

There are exactly C2
n equations and C2

n unknowns. By
expanding the equations and noticing the special structure
of A and B, the elements of U can be solved row by and
row and expressed as follows.

uii =

[

〈ai,ai〉 − y2
i −

i−1
∑

k=1

u2
ki

]1/2

(A.3)

uij =
1

uii

(

〈ai,aj〉 − yiyj −
i−1
∑

k=1

ukiukj

)

(A.4)

where 1 ≤ i ≤ n for Equation (A.3) and 1 ≤ i ≤ n; i +
1 ≤ j ≤ n for Equation (A.4). 2.

Appendix B. PROOF OF THEOREM 2

Proof: This proof follows the rule of induction which starts
from the first element U . Applying Equation (A.2) to the
first columns of A and B gives 〈a1,a1〉 = 〈b1,b1〉. A
more detailed equation expression reveals the following
relationship concerning the only two elements in vectors
a1 and b1.

r2
11 + (x

(0)
1 )2 = u2

11 + (y
(0)
1 )2 (B.1)

Hence, u11 can be calculated as follows, which matches
Equation (30) in the case of i = 1.

u11 = [r2
11+(x

(0)
1 )2−(y

(0)
1 )2]1/2 = [(l(1)a +y

(0)
1 )(l(1)a −y

(0)
1 )]1/2

(B.2)

where (l
(1)
a )2 = r2

11 + (x
(0)
1 )2. By applying 〈a1,aj〉 =

〈b1,bj〉 (2 ≤ j ≤ n) repeatedly, the remaining elements
in the first row of U can be obtained as follows, which
validates Equation (31) in the case of i = 1.

u1j =
1

u11
(r11r1j + x

(0)
1 x

(0)
j − y

(0)
1 y

(0)
j )

=
r11

u11
r1j +

x
(0)
1

u11
x

(0)
j − y

(0)
1

u11
y
(0)
j (B.3)

Using the compact matrix representation of Equation
(A.1) as follows.
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G(1)
a

[

eT
1 R

(x(0))T

]

=

[

eT
1 T

(x(1))T

]

(B.4)

G
(1)
d

[

eT
1 U

(y(0))T

]

=

[

eT
1 T

(y(1))T

]

(B.5)

where G(1)
a =

[

c(1)
a −s(1)

a

s(1)
a c(1)

a

]

and G
(1)
d =

[

c
(1)
d −s

(1)
d

s
(1)
d c

(1)
d

]

, which

can transform A and B to intermediate matrix C. Then,
the data vectors x and y after orthogonal transformation
can be given as follows.

x
(1)
j = c(1)

a x
(0)
j − (−s(1)

a )r1j (B.6)

y
(1)
j = c

(1)
d y

(0)
j − (−s

(1)
d )u1j (B.7)

where 2 ≤ j ≤ n. The elements of these Givens matrices
can be constructed as standard method.

l(1)a = [r2
11 + (x

(0)
1 )2]1/2 (B.8)

c(1)
a = r11/l(1)a (B.9)

−s(1)
a = x

(0)
1 /l(1)a (B.10)

l
(1)
d = [u2

11 + (y
(0)
1 )2]1/2 (B.11)

c
(1)
d = u11/l

(1)
d (B.12)

−s
(1)
d = y

(0)
1 /l

(1)
d (B.13)

These proves that Equations (34) to (39) are valid. By
now, the theorem has been proved for the case of i = 1.

Now suppose that the theorem holds for i = k, which
means that the first k rows of following matrices are the
same.

eT
i (Q(i)

a . . .Q(1)
a A) = eT

i (Q
(i)
d . . .Q

(1)
d B) 1 ≤ i ≤ k

(B.14)

For i = k + 1, uk+1,k+1 can still be derived from the

inner product of 〈a(k)
k+1,a

(k)
k+1〉 = 〈b(k)

k+1,b
(k)
k+1〉. It can be

expanded the equation to the following expression.

k
∑

l=1

t2l,k+1 + r2
k+1,k+1 + (x

(k)
k+1)

2

=
k
∑

l=1

t2l,k+1 + u2
k+1,k+1 + (y

(k)
k+1)

2 (B.15)

which can be simplified to

uk+1,k+1 = [r2
k+1,k+1 + (x

(k)
k+1)

2 − (y
(k)
k+1)

2]1/2

= [(l(k+1)
a + y

(k)
k+1)(l

(k+1)
a − y

(k)
k+1)]

1/2 (B.16)

where (l
(k+1)
a )2 = r2

k+1,k+1 + (x
(k)
k+1)

2. By following the
same procedure as in the case of i = 1, the remaining
unknown elements in the (k + 1)th row can be calculated
as

uk+1,j =
1

uk+1,k+1
(rk+1,k+1rk+1,j + x

(k)
k+1x

(k)
j − y

(k)
k+1y

(k)
j )

=
rk+1,k+1

uk+1,k+1
rk+1,j +

x
(k)
k+1

uk+1,k+1
x

(k)
j − y

(k)
k+1

uk+1,k+1
y
(k)
j

(B.17)

where k + 2 ≤ j ≤ n. Similarly, the rest of equations in
Theorem can be all validated for i = k + 1. Therefore, the
proof is complete for 1 ≤ i ≤ n. 2
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