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Abstract: Inventory control in a Supply chain is crucial for companies who wish to satisfy their customer 
demands on time as well as controlling costs. A common approach is to use the MRP techniques. 
However, these techniques are based on the supposition that lead times are known. In a Supply chain the 
lead times are often random variables. Therefore, an efficient exact approach to aid in MRP 
parameterization under lead time uncertainties was developed; more precisely the approach has as 
objective to calculate planned lead times when the component procurement times are random. The aim is 
to find the values of planned lead times which minimize the sum of the average component holding cost 
and the average backlogging cost. The developed approach is based on a mathematical model of this 
problem with discrete decision variables and on a Branch and Cut algorithm. 

 
 

1. INTRODUCTION 
 
Efficient replenishment planning is a very important 
problem for industry. A poor inventory control policy leads 
to overstocking or stockout situations. In the former, the 
generated inventories are expensive and in the later there are 
shortages and penalties due to unsatisfied customer 
demands. 
 
Material Requirements Planning (MRP) is a commonly 
accepted approach for replenishment planning in major 
companies and for Supply Chain Management (Axsäter, 
2006). However, MRP is based on the supposition that the 
demand and lead times are known. Replenishment order 
dates (release dates) are calculated for a series of discrete 
time intervals (time buckets) based on the demand and 
taking into account the fixed lead time: the release date is 
equal to the due date (demand) minus the lead time. 
 
This premise of deterministic environment seems somewhat 
off base since most production occurs stochastically and 
product lead times and finished product demands rarely are 
forecasted reliably (due to machine breakdown, transport 
delay, customer demand variations…). Therefore, in real 
life, the deterministic assumptions embedded in MRP are 
often too limited. 
 
Fortunately, the MRP approach can be adapted for 
replenishment planning under uncertainties by searching the 

optimal values of its parameters. For the case of random 
lead times, the planned lead time will be equal to the 
forecasted lead time plus the safety lead time (safety stock). 
These planned lead time values are a trade-off between 
overstocking and stockout while minimizing the total cost. 
This problem is called MRP parameterization. 
 
In literature, the majority of publications are devoted to the 
MRP parameterization under customer demand 
uncertainties. As to random lead times, the number of 
publications is modest in spite of their significant 
importance. The motivation of this paper is contributing the 
development of new efficient methods for MRP 
parameterization under lead time uncertainties. 
 
The supply planning problems under lead time uncertainties 
are not sufficiently studied especially in the context of 
assembly systems (Porteus, 1990).  
 
In this paper, for this task of MRP parameterization for 
assembly systems, an abstract inventory/ production model 
with several types of components and one type of finished 
product is proposed. In this mathematical model the finished 
product demand is constant and assembly capacity is 
considered infinite. The lead times for orders made at 
different periods (time buckets) for the same type of 
component are independent and identically distributed 
discrete random variables. This abstraction allows us to 
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concentrate on the problem at hand and obtain relevant 
results for planned lead time optimization. 
 
The body of the paper is organized as follows. Section 2 
presents related works. Section 3 deals with the problem 
description. Section 4 leads to the mathematical model of 
the problem. Section 5 develops an optimization algorithm. 
Experimental results are reported in Section 6, and finally, 
some concluding remarks are given in Section 7. 
 
 

2. RELATED WORKS 
 
The problem of MRP parameterization under lead time 
uncertainties has been often studied via simulation. Gupta 
and Brennan (1995) show that lead time uncertainty has a 
large influence on the total inventory management cost. Ho 
and Ireland (1998) illustrate that lead time uncertainty 
affects stability of a MRP system no matter what lot-sizing 
method used or demand forecast error obtained. Molinder 
(1997) study the problem of planned lead time (safety lead 
time/safety stock) calculation via simulation and proposes a 
simulated annealing algorithm to find appropriate safety 
stock and/or safety lead time. The simulations show that the 
overestimated planned lead times conduct to excessive 
inventory, and underestimated planned lead times introduce 
shortages and delays.  
 
In assembly systems there are several suppliers at each 
stage, and so, there is dependence among the different 
component inventories at the same stage. Yano (1987) 
considers a particular problem for two-level assembly 
systems with only two types of components at stage 2 and 
one type of components at stage 1. The delivery times for 
the three components are stochastic continuous variables. 
The problem is to find the planned lead times for MRP 
minimizing the sum of holding and tardiness costs.  
 
A single period model and an optimization algorithm were 
developed. Tang and Grubbström (2003) consider a two 
component assembly system with stochastic lead times (for 
components) and fixed finished product demand. This study 
is similar to (Yano, 1987). However, here, the process time 
at level 1 is also assumed to be stochastic, the due date is 
known and the optimal planned lead times are smaller than 
the due date.  The objective is to minimize the total stockout 
and inventory holding costs. The Laplace transform 
procedure is used to capture the stochastic properties of lead 
times. The optimal safety lead times, which are the 
difference between planned and expected lead time are 
derived. Another interesting single period model was 
proposed in (Chu et al., 1993) which deals with a punctual 
fixed demand for one finished product. The model gives 
optimal values of the component planned lead times for 
one-level assembly systems with random component 
procurement times.  
 
Wilhelm and Som (1998) studied a two-component 
assembly system using queuening models and showed that a 

renewal process can be used to describe the end-item 
inventory level evolution. The optimization of several 
component stocks is replaced by the optimization of 
finished product stock. To perform this replacement, a 
simplified supply policy for component ordering was 
introduced. Another multi-period model is proposed in 
(Gurnani et al., 1996) for assembly systems with two types 
of components and the lead time probability distributions 
are limited to two periods. 
 
For comprehensive reviews of the literature on the other 
models which can be used for MRP parameterization under 
uncertainties see (Yeung et al., 1998; Dolgui et al., 2005; 
Mula et al., 2006). 
 
In this paper, the definition of planned lead times in an MRP 
environment for assembly systems under component lead 
times uncertainties is considered. A solution of this problem 
gives for each component type used an optimal value of 
planned lead time. To solve this multi-component and multi-
period (for all time buckets) inventory control problem a 
specially developed mathematical model is proposed. To 
our knowledge, there isn’t any other multi-period model in 
literature that gives an optimal solution in the case of MRP 
controlled assembly systems with several types of 
components and random lead times.  
 
This article is the sequel to our earlier paper (Louly and 
Dolgui, 2002). In this paper, a more universal case is 
presented, when the unit holding costs aren’t the same for 
all components and the component lead times are not iid 
random variables. No restrictive hypothesis is made on such 
random variables; we only suppose that the distribution 
probabilities are known in advance. 
 
 

3. OPTIMISATION MODEL 
 
In the MRP approach, replenishment order dates (release 
date) for each component are calculated for a series of 
discrete time intervals (time buckets) based on the demand 
and taking into account a fixed lead time: the release date is 
equal to the due date (demand) minus the lead time. For the 
case of random lead times, in industry, a supply reliability 
coefficient (� 1) is assigned to each supplier.  The planned 
lead times for MRP are calculated by multiplying the 
contractual lead time by the corresponding supplier 
reliability coefficient. The choice of these coefficients 
(which give safety lead times) is based on past experience. 
However, this approach is subjective and can be non 
optimal if we need to minimize the total cost for MRP 
systems. The supplier reliability coefficients (safety lead 
times and so planned lead times) can be calculated more 
precisely taking into account inventory holding and 
backlogging costs, if it is possible to formulate a 
corresponding inventory control model and to solve it 
optimally. Such an inventory control model must be simple 
(to be solvable) but representative, integrating all major 
factors influencing the planned lead time calculation. 
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For component planned lead time calculation in an MRP 
environment for assembly systems with several types of 
components and random component lead times, in this 
paper a model is introduced. This model will help us to 
solve the considered problem of MRP parameterization, i.e. 
to find optimal planned lead times for components when the 
actual lead times are random variables.  
 
For this model, the finished product demand per period 
(multi-period model) is assumed to be known and constant 
and the assembly capacity is infinite. Several types of 
components are needed to assembly one finished product. 
The unit holding cost per period for each type of component 
(hi) and the unit backlogging cost (b) for the finished 
product are known. The lead times (Li) for orders made at 
different periods for the same type of component i, are 
independent and identically distributed discrete random 
variables. The distribution probabilities for the different 
types of components can be not identical. These 
distributions are known, and their upper values are finite.  
 
The finished products are delivered at the end of each 
period and unsatisfied demands are backordered and have to 
be treated later (when sufficient numbers of components of 
each type are in stock). The supply policy for components is 
lot for lot: one lot of each type of component is ordered at 
the beginning of each period.  
 
Because the supply policy is the Lot for Lot and the demand 
is constant, the same quantities of components are ordered 
at the beginning of each period. Thus, only planned lead 
times are unknown parameters for this model. They are the 
decision variables in our optimization approach. The model 
considers random component lead times and also the 
dependence among inventories of the different components 
suitable for assembly systems (when there is a stockout of 
only one component, consequently, there is no possibility to 
assemble the finished product). 
 
To simplify the equations of this paper, without lost of 
generality, it is assumed that the finished product demand is 
equal to one unit per period, and that one finished product is 
assembled from on unit of each type of component.  
 
Let’s use the following model notations: 
1f  function equal to 1 if f is true, and 0 otherwise,  
n the number of types of components used for the 

assembly of the product,  
E[.] the mathematical expectation operator, 
hi unit holding cost of the component i per period, 
b unit backlogging cost of the finished product per period, 
k reference of a period (period index), 
Li lead time of the components i (discrete random 

variable), 
k
iL  lead time of the components i ordered at period k 

(discrete random variable), 

ui upper value of the lead time for components i 
( ii uL ≤≤1 ; i=1,2,…,n); u=max(ui), 

k
iN number of orders for the component i that have not yet 
arrived at the end of the period k, 

iN  steady state number of orders for the component i that 
have not yet arrived at the end of a period, 

yi planned lead time of the components i (integer decision 
variable, ii uy ≤≤1 ), 

X the vector of the decision variables for the multi-period 
case )...,,( 1 nxx , where xi=yi-1 

Z+  function equal to the maximum of Z and 0: max (Z,0). 
iN  steady state number of orders for the component i that 
have not yet arrived at the end of a period, 

yi planned lead time of the components i (integer decision 
variable,  ), 

X the vector of the decision variables for the multi-period 
case, where xi=yi-1 

Z+ function equal to the maximum of Z and 0: max (Z,0). 
 
 

4. OPTIMIZATION MODEL 
 
For the multi-period problem, the cost of a period k is given 
by the following expression (Louly and Dolgui, 2002):  

),( k
k NXC  =  

∑ −
=

n

i

k
iii Nxh

1
)(  + +

=
− )(max

,,1
i

k
ini

xNH
L

, (1) 

 
where  
X = (x1, x2, …, xn) are decision variables, 
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i
N  is a random variable giving the 

number of orders for the component i that have not yet 
arrived at the end of the period k (discrete random variable), 

),,( 1
k
n

kk NNN L= . 

 
To define k

iN , i = 1,2, …, let’s consider a period k ≥ u-1. 

Let jk
iL −+1 ,  j = 1, 2, …, ui-1, be the lead times (random 

variables) for orders made respectively at the beginning of 
the periods k, k-1,…, k- u + 2, for the components i. Thus, 

jL jk
i >−+11  is a random variable which is equal to 1 if the 

order for components i made at the period k - j + 1 is 
delivered after the end of the period k, otherwise this 
variable is equal to 0. By definition 

jL jk
i >+− 11 =0, if k –

 j + 1 ≤ 0, because these orders are already in the initial 
inventory (this represents the orders made before the initial 
date). 
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So, the random variables k
iN  are defined as follows: 

∑=
−

= >+−
1

1
11

u

j jL
k
i jk

i
N ni ,,1L= . 

The maximal value of component i lead time is equal to ui, 
so only the previous ui-1 orders may not yet be received. 
The earlier orders have already arrived, therefore: 

10 −≤≤ i
k
i uN . 

 
The expected steady state cost per period is given as 
follows. 
 
Proposition 1: The expected cost ),( NXEC  per period on 
the infinite horizon is as follows: 

),( NXEC  =  

∑ ),(lim
1

1
∞→

T

k

k
kTT

NXC
=

 = )],([ k
k NXCE  (2) 

As shown in (Louly and Dolgui, 2002), using calculation of 
the expected value for (2), the resulting multi-period 
optimization problem can be rewritten as follows: 

),( NXEC = 

∑ −
=

n

i
iii NExh

1
)( )( ∑ ∏ +−+

≥ =0 1
)( )(1

j

n

i
iN jxFH i ,   (3) 

subject to: 10 −≤≤ ii ux ni ,,2,1, K= . (4) 
 
where )Pr()( jNjF iNi ≤= , the value 0=ix  signifies that 
the component i is ordered at the beginning of the target 
period (i.e. when assembly must be made). 
 
 

5. OPTIMIZATION ALGORITHM 
 
A Branch and Cut algorithm to solve the optimization 
problem (3) – (4) was developed. It is based on our previous 
works. 
 
In (Louly and Dolgui, 2006), in which only holding costs 
with the service level constraint were studied, it was proved 
that for the increment functions: 
a) )(XGi

+  is increasing on xi, and decreasing on xj for all j 
≠ i,  

b) )(XGi
−  is decreasing on xi and increasing on xj for all j ≠ 

i.  
 
It is easy to see, that if the same functions )(XGi

+  and 

)(XGi
−  are introduced for the model (3)-(4), the above 

properties a) –b) remain valid for this paper (i.e. where the 
objective is the sum of the holding and backlogging costs). 
 
The following additional property was proved: 
Proposition 2: )(XGi

+  and )(XGi
−  verify the following 

inequalities: 

ii
ij

j hXGhb ≤≤∑−− +

≠
)( , (5) 

∑+≤≤−
≠

−

ij
jii hbXGh )( . (6) 

Considering the above properties of the functions )(XGi
+  

and )(XGi
− , two Lower Bounds for the objective function 

on the space [A, B] are. 
 

1LB = )(AEC +

∑ −
=

−
+n

i
niiiii aabbGab

1
11 )( 0),,...,,,...,(min)(  (7) 

2LB = )(BEC +

∑ −
=

−
−n

i
niiiii bbaaGab

1
11 )( 0),,...,,,...,(min)(  (8) 

 
So the lower bound is equal to: 
LB= max (LB1, LB2) (9) 
 
Dominance properties. First, two dominance properties are 
suggested: 
(i) If 0)( <+ AGi , then each solution X of [A, B] with xi = ai 

is dominated.  
(ii) If 0)( <− BGi , then each solution X of [A, B] with xi = bi 

is dominated.  
Then, for each i satisfying 0)( <+ AGi , can be deleted all 
solutions with ai = xi. Then, the solutions space [A, B] can 
be reduced by replacing ai with ai+1. Furthermore, if 

0)( <+ AGi  and ai = bi, then all the solutions of  [A, B]  are 
then dominated. At the same time, for each i satisfying 

0)( <− BGi , it is possible to delete all solutions with bi = xi. 
The search space [A, B] is then reduced by replacing bi with 
bi-1. In addition, if 0)( <− BGi  and ai = bi, then all the 
solutions of [A, B] are dominated. 
 
These dominance properties can be used to develop efficient 
cut procedures for the Branch and Cut algorithm. Indeed, 
after the division of a node, in a Branch and Cut algorithm, 
two son-nodes (descendants) are created. For each son-
node, some cuts are used to reduce the corresponding search 
spaces before the next branching.  
 
Node extension procedure 
A Branch and Bound (B&B) algorithm is based on the 
design of an enumeration tree. In our algorithm, each node 
of the enumeration tree represents a set of feasible solutions. 
Let [A, B] be a node of this tree. The descendants of this 
node are obtained by dividing (partitioning) the 
corresponding space [A, B] into two smaller subspaces [A, 
B1] and [A1, B] as follows: we choose i such that i = arg max 
(bi-ai), then the descendent [A, B1] (respectively [A1, B]) is 
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the subspace given by the vectors A and B1 (resp. A1 and B) 
for whom the i-th component satisfies 

2
ii

ii
ba

xa
+

≤≤  (resp. ii
ii bx

ba
≤≤+

+
1

2
). After 

applying this node extension procedure for the node [A, B] 
we obtain two son-nodes [A, B1] and [A1, B], each with 
smaller space of the feasible solutions. 
 
Lower Cut and Upper Cut procedures. A Branch and Cut 
algorithm is B&B where for each node before applying a 
node extension procedure, some cuts are executed. The aim 
is to reduce the space of feasible solutions which is 
associated with the node to be divided. For our algorithm, 
the principle is simple, as mentioned above a node 
corresponds to a search space [A, B]. The cut procedure 
reduces the solution space [A, B] replacing A (respectively 
B) by a larger (respectively smaller) vector. This is 
equivalent to cutting a part of the search space [A, B]. We 
introduce two procedures: one for cutting small values 
(Lower Cut procedure) and second for cutting large values 
(Upper Cut procedure) of the corresponding decision 
variables. The reduction scheme is the same for these two 

procedures and they return "true" when the subset [A, B] is 
entirely dominated (i.e. by applying the cuts we completely 
eliminated the node [A, B]). 
 
 

6. NUMERICAL TESTS 
 
To test the algorithm’s performance, 1000 examples 
grouped into 100 families were generated, each family 
gathers 10 examples with the same number of components 
(n) and the same value for u=max(ui). The maximum time 
of calculation for B&C algorithm was fixed at 30 seconds. 
The unit holding costs hi are randomly generated in the 
interval [1, n]. The unit backlogging cost b is generated in 
[100, 100n].  
 
Table 1 gives the average computing times in seconds for 
100 families of tests. Only three problems out of thousand 
were not solved within the limit of allocated computing 
time.  
 

 

 
n 

u 
10 20 30 40 50 60 70 80 90 100 

10 0.001 0.005 0.012 0.012 0.041 0.059 0.084 0.105 0.205 0.246 
20 0.0031 0.017 0.048 0.0725 0.151 0.219 0.2971 0.368 0.457 0.766 
30 0.01 0.039 0.1 0.1875 0.308 0.446 0.6461 0.7961 1.374 1.548 
40 0.016 0.064 0.163 0.3278 0.522 0.762 1.044 1.305 2.269 2.605 
50 0.024 0.1 0.245 0.547 0.807 1.153 1.591 2.02 3.397 3.808 
60 0.034 0.142 0.343 0.763 1.136 1.64 2.27 2.854 4.005 5.26 
70 0.045 0.187 0.462 0.996 1.464 2.177 3.005 3.768 5.047 7.102 
80 0.059 0.238 0.582 1.286 1.867 2.747 3.792 4.836 6.696 8.982 
90 0.075 0.3 0.731 1.516 2.309 3.405 4.684 6.03 8.612 11.175 
100 0.09 0.365 0.887 1.924 2.799 4.095 5.679 7.222 10.132 13.577 

 
Table 1. Computing time in second 

 
7. CONCLUSIONS 

 
An MRP parameterization problem was studied for 
assembly systems under component lead time uncertainties. 
A model was proposed. For this model two lower bounds 
have been obtained for the objective function. In addition, 
two dominance properties were suggested to construct 
efficient cut procedures reducing the search space at each 
step of the optimisation algorithm. Based on these results, a 
Branch and Cut (B&C) algorithm was developed and tested.  

 
The proposed model and B&C algorithm, give the optimal 
value of planned lead time (safety lead times) for each 
component. They are calculated taking into account the 
distributions of probabilities of the component lead times, 
holding and backlogging costs. Use of the proposed 
algorithm minimizes the total cost for MRP controlled 
assembly systems under lead time uncertainties. 
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