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Abstract: Current process control algorithms are complex software systems that need regular
maintenance in order to keep a high uptime. Experience shows that the process of understanding
an algorithm by tracking signal dependencies throughout the system and recognizing a problem
is a major challenge for the maintenance personnel while actually performing the needed
modifications to the algorithm is relatively simple. This problem is addressed by a computer
science approach to automate the tracking of signals and supply tools for monitoring running
control systems, identifying failing parts of the control algorithm and alleviating the task of
exploring complex control systems.
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1. INTRODUCTION

Current process control systems need regular maintenance
in order to keep a constant, high performance. Although
the control system alone may be time invariant, the
controlled process is subject to changes such as wear
of machinery, variations in raw materials, modifications
to the plant or altered working points due to changed
operation mode or market demands.

Thus, a control system designed and tuned for optimal
performance at install time will need modifications to cope
with the changing tasks.

Performance may be defined using metrics such as up time,
process throughput, quality of end product and power
consumption but also aspects related to the interaction
with the operator such as usability and alarm count.

System identification (Ljung [1986]) ideally fits an ac-
curate model to the process, thus allowing changes in
the process to be recognized. Adaptive control (Åström
and Wittenmark [1994]) and auto tuning (Åström and
Hägglund [1984]) tune the control algorithm to match
parametric changes in the process such as drifting gains
and time constants.

Fault detection and fault tolerant control (Blanke et al.
[2003]) detects structural changes and faulty sensors etc.
in the process and continue working possibly with reduced
performance.

However, some changes remain that requires nonparame-
tric modifications of the control algorithm such as the ad-
dition of a suddenly needed feature to a running algorithm
or simply fixing a bug.

Since the time is not ripe for large scale, self main-
taining software/algorithms, these modifications must be
conducted by expert maintenance personnel. During this
process it has turned out that conducting the actual mod-

ification is relatively simple while recognizing the mal-
function, understanding, and locating the exact part of
the algorithm that needs modification is the most time
consuming task. Therefore, maintenance personnel would
benefit from a system that could somehow:

• Monitor the control system and raise an alarm in case
of abnormal behavior.

• Locate the part(s) of the algorithm being responsible
for the behavior.

• Track cause-effect dependencies within the algorithm
to aid the personnel in investigating only relevant
parts of the algorithm.

In this paper we will present a novel concept for such a
system and introduce the term assisted maintenance in
the context of process control to meet the above needs.
The concept is based on Dynamic Program Slicing (Weiser
[1982], Korel and Laski [1988]), a well-established research
topic in computer science. Dynamic program slicing allows
the backtracking of dependencies among signals in the al-
gorithm and monitoring of how the algorithm is executing.

The use of program slicing means that the algorithm is not
required to be designed within a dedicated language nor is
it needed to model the plant or the algorithm. This makes
the concept attractive for industrial applications since
design- and implementation procedures are not affected
and the concept can be applied to existing, implemented
algorithms without modifications to their source code.

Thus, the aim is to let the human expert do what he is
good at, being to conduct the actual modifications to the
algorithm and leave everything else to the computer.
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2. BACKGROUND

In this paper we will only consider ordinary sequential
algorithms consisting of statements, conditional branches,
loops and methods, etc. i.e. implementable in any C-like
programming language.

A number of high level control algorithms commissioned
for chemical process facilities have been available to study
for the caurse of this paper. It has turned out that each
consists of an assembly of 1000-10000 source code lines
customizing the algorithm for the particular facility.

This assembly may employ sub-algorithms and external
utilities such as the solver for a Model Predictive Control
problem comprising hundreds of thousands of source code
lines. However, these are normally considered black boxes,
and all maintenance work is focused on the assembly.
Ultimately, a workaround may be included in the assembly
to compensate for unintended behavior in such a black
box.

One of these algorithms that is considered to be a typical
high level controller, has been installed on a large chemical
processing facility and some of its characteristics are
presented in this section.

Since many chemical engineering processes are nonlinear
by nature and most common control techniques only
operate on linear approximations of these, switching of
control strategy is often time needed when operating in
the areas where the nonlinearities are dominant (Berber
and Kravaris [1998]).

The above-mentioned algorithm uses not just approx. 30
analog inputs but as many boolean inputs like status
flags that must be included in the control decisions.
Finally, the industry’s demand for high uptime pushes the
control algorithms to handle not just normal operation
but also interlocks and upset situations such as a failing
or saturating actuator etc.

These demands require the control algorithm to incorpo-
rate not just traditional control theory, but also a large
number of conditional branches and other functionality
not directly related to control theory. Consequently, the
implementation of control theory will account for only a
small amount of the total number of code lines.

A statistical analysis of the assembly of the above-
mentioned algorithm (see Table 1) has shown that less
than 10% of the lines contains an equation, indicating
that only a small fraction of an implementation is re-
lated to traditional control theory by means of difference
equations, matrix operations etc. The remaining majority
of code lines handles initialization, upset recovery, signal
validation etc. related to the above mentioned demands.

These parts of the algorithm require maintenance as much
as the implementation of actual control theory, and more-
over there is a lack of formalism and scientific methods to
classify and handle this bulk of the algorithm. Addition-
ally, the number of conditional branches relative to the
total lines of source code (Table 1, row 2) indicates a high
level of complexity.

2.1 Example

Fig. 1 shows a moving average of the uptime from the
mentioned high level control algorithm. When a set of cri-
teria are satisfied to ensure that the operational conditions
are within the design limits of the control algorithm, the
operators may engage the algorithm to control the process
fully autonomously.

Should the process fail to satisfy the criteria once the algo-
rithm is engaged, an alarm is sounded and the algorithm
disables itself, leaving the operators to handle situations
the algorithm was not designed for. Once the criteria are
fulfilled again, the operators may reengage the algorithm
manually.

The light shading shows when the criteria are met allowing
the algorithm to be enabled, and the dark shading when
the algorithm was actually enabled. The black line is the
ratio between the two, i.e. the real uptime which will be
100% if the algorithm is running all the time it could run.

The relatively high uptime immediately after installation
indicates not only high performance but also the opera-
tor’s high motivation to enable the algorithm whenever
possible.

However, this tendency is decreasing slowly until the
algorithm is no longer used, and the process is controlled
manually 100% of the time only approx. 200 days after
installation. The slow declining of the uptime after 125
days indicates a gradual increase in the number of general
problems associated with the use of the algorithm.

Eventually, the problem turned out to be caused by
glitches starting to appear in an input signal months after

Table 1. Content of a typical control system as-
sembly. Subsystems handle encapsulated pro-

cedures such as a single control loop.

Count Example

Lines, total 3487

Conditional branches 889 if a then

Equations 300 a← b + c

Assignments, no equation 985 a← b

Assignments to 0 or 1 377 a← 0

Subsystems 82 “Control core pressure”
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Fig. 1. Average uptime of a high level control system on a
process plant since install-time.
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installation. A condition the control algorithm was not
intended to handle although it is harmless for the overall
process control.

Locating the cause of this malfunction was very time
consuming for the expert control engineer, while the actual
correction needed in the algorithm to make it robust
toward such glitches is very simple.

3. INTER-VARIABLE DEPENDENCY TRACKING

Generally, control algorithms are signal processing sys-
tems. Measurements are fed as inputs, their values are
filtered and validated along with status information, and
control actions are decided and written to the output.

The algorithm may be hierarchically structured from well-
defined subsystems with explicit inputs and outputs and
containing lower level subsystems within higher level sys-
tems as illustrated in Fig. 2. In practice, depending on
the programming language, subsystems may be realized
by classes, methods or other means of encapsulation.

For the sake of modularity each subsystem has its own
name space in order to hide internal variables and only
expose inputs and outputs. This means that a single signal
when being routed through an input of a subsystem into
a new name space or through an output to another name
space will alter its identifier.

This has shown to cause a major challenge for maintenance
personnel when backtracking signals trough the system for
the purpose of finding the inputs that affect a certain signal
e.g., locating the part of the algorithm that modifies a
signal, or simply understanding the implementation of an
unfamiliar algorithm.

Fig. 3 shows a simplified example. Consider the output
identified by x of the entire control system defining the
name space A in Fig. 2. Backtracking the signal leads to
the output y and input f in B to input b back in name
space A as illustrated in Fig. 3. That is to say the process
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Fig. 2. Example of signal flow through a control algorithm,
with inputs a,b,c and outputs x,y,z. It consists of
subsystems B and C. C is further comprising two
lower level subsystems.

xAyBfBbA
Fig. 3. Backtracking output x in Fig. 2.

of realizing that x is merely an untouched copy of the input
b is complex.

The example given here is over-simplified. In case of a
real control algorithm a signal may pass through ten or
more name spaces, signal processing is performed on the
way and generates new signals. Forks may lead a signal
in multiple directions and frequently the value of a signal
determines executional branches in the algorithm choosing
which sub-algorithms to execute.

The mental process of back- and forward tracking such
dependencies may be similar to the one performed during
general debugging of software, but is particularly complex
in the case of control algorithms due to their special
structure.

3.1 Dependency Graphs

Tracking of a signal including the operations performed
on the signal can be formalized by means of a dependency
graph. Consider Algorithm 1. After execution, c will be
depending on a and b via the operator “+” which in turn is
depending on the constants 1 and 2. This can be presented
by a graph as shown in Fig. 4.

Conditional branches in the algorithm affect the depen-
dency graph since statements executed in one branch may
produce graphs different from those produced in another
branch. Hence, a statement is control-dependent on the
condition responsible for its execution. Observing variable
y in Algorithm 2 and executing the algorithm with den 6= 0
yields the dependency graph in Fig. 5. The assignment of
x in line 2 is control-dependent on the condition in line 1.

A change in the branching i.e. den = 0, yields a different
dependency graph for y. Formally, for any variable y, there
exist a fixed set of possible dependency graphs limited by
the number of branching combinations implicitly affecting
y by control-dependency.

3.2 Dynamic vs. Static Dependency Graphs

Executing the algorithm multiple times with different
input and/or internal state e.g. in a sampled system may
produce different dependency graphs from the fixed set of
possible graphs, only representing the active dependencies
during the particular execution. Thus, the dependencies
are denoted dynamic.

Algorithm 1

1: a← 1
2: b← 2
3: c← a + b

1

2

a

b
+ c

Fig. 4. Dependency graph for variable c after execution of
Algorithm 1.
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Algorithm 2

1: if den 6= 0 then
2: x← num

den
3: else
4: x← 0
5: end if
6: y ← x + 1

1

x
+ y

num

den
/

0
≠

den

den ≠ 0 is true

den ≠ 0

Fig. 5. Dependency graph for variable y in Algorithm 2 for
den 6= 0. Shaded area denotes control-dependency on
the condition den 6= 0.

Vice versa, a graph including all dependencies that may
possibly affect a variable via all possible branching combi-
nations in the algorithm is denoted static and equals the
sum of the set of possible dynamic dependency graphs.

Dynamic dependency graphs tend to be smaller than the
static counterpart and can serve to minimize the amount
of data. Additionally, by containing information about
the particular execution, dynamic graphs can be used for
comparison of executions.

3.3 Program Slicing

A framework has been developed to generate dynamic
dependency graphs for variables in existing algorithms
based on a computer science technique known as Program
Slicing. Static program slicing was introduced by Weiser
[1982, 1984] in order to identify all possible sources that
may affect a variable. Korel and Laski [1988] introduced
dynamic program slicing to produce dependency informa-
tion only relevant for the actual execution of the algorithm.

In addition to a dependency graph for all variables at
every execution, the framework records the execution path
being the sequence of statements executed. Algorithm 3
shows the execution path produced from Algorithm 2
when executed with den 6= 0. It contains each executed
statement together with the line number of its location in
Algorithm 2.

Algorithm 3

1: den 6= 0
2: x← num

den

6: y ← x + 1

4. ASSISTED MAINTENANCE

It is our intent that the introduction of dependency graphs
in the maintenance of process control algorithms should

help personnel to locate the failing part of the algorithm
and eventually semi-automate the maintenance task.

4.1 Monitoring and Detection

Any algorithm will have a limited although potentially
large set of possible execution paths. Now assume the
algorithm to be executed periodically and consider each
execution path, i.e. branching combination producing a
unique sequence of executed line numbers, to be a state
in a state machine. During normal operation with high
performance the algorithm will stay in a single state or
cycle through a limited subset of states illustrated in Fig. 6
by states n1...i. In case of an unintended situation the
algorithm will likely diverge from this behavior, e.g. move
to rarely used states f1−2.

Thus, normal behavior can be identified statistically by
means of sequences of states, time used in each state, etc.
An alarm can be raised in case of deviation from normal
behavior of the algorithm by continuously monitoring the
state machine and comparing the behavior to the identified
normal behavior.

In the following maintenance scenario, the single condi-
tional branch in the algorithm responsible for producing
the abnormal execution path is a natural point of interest,
and is easily located by comparing the execution path to
the ones classified as normal. Once located, the depen-
dency graph for the condition can be generated.

The root cause and/or the single statement in the algo-
rithm causing said conditional branch to change will be
present within this dependency graph. Finally, a com-
parison of this graph and one obtained during normal
operation will pinpoint a single or few specific statements
in the algorithm to be of interest by the maintenance crew.

Thus, the entire process from monitoring, detection, and
identifying the relevant conditional branch to locating the
statements of interest is automated leaving the mainte-
nance crew only to verify the found location of the problem
and conduct the proper modifications to the algorithm.

4.2 Dependency Graphs and General Assistance

The presented dynamic dependency graph represents a
new way of exploring and visualizing existing control
algorithms. The dependency graph in Fig. 3, if generated
automatically, may be used to highlight the corresponding
signal path in Fig. 2 instantly visualizing the signal flow
after a particular execution.

n1

n2

ni

n

f1

f2

Fig. 6. State machine representation of execution paths for
algorithm during normal operation n1...i and abnor-
mal situation f1−2.
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The raw dependency graph may be utilized with any level
of detail, e.g. the graph of Fig. 5 may be reduced to show
only that y depends on the inputs num and den. Being
able to instantly identify inputs that affect a variable is
particularly useful with control systems having tens or
hundreds of inputs. Having recognized a variable behaving
unintended, only the affecting inputs/measurements have
to be suspected and investigated.

Similarly, entire subsystems may be considered black boxes
and incorporated in the dependency graph as such.

If the subsystems of an algorithm are classified according
to their purpose, e.g. “normal operation”, “initialization”,
“upset recovery” etc. various long term statistics on de-
pendency together with execution paths will yield useful
information about the health of the algorithm. E.g. if
output y is predominantly affected by subsystems classified
as “upset recovery” and rarely by “normal operation”
subsystems alone, this will indicate improper tuning of
the algorithm and serve as an early warning of reduced
performance.

Statistics on dependency graphs for all outputs of a system
will yield other useful information such as the most active
signal paths and rarely used signals and inputs, indicating
dead code.

4.3 Comparing Dependency Graphs

Comparing dependency graphs from two or more execu-
tions may help to pinpoint statements in the algorithm
being responsible for certain actions. Suppose that a dis-
continuity in the history of an output value m has caught
attention during a routine inspection of the trend plots
produced the last two weeks by a running algorithm, see
Fig. 7. The cause of such an event can be investigated by
inspecting and comparing the dependency graphs for m at
the two executions at sample k− 1 and k before and after
the event. In this example, m is intended to be the mean
of 3 input signals.

Suppose the comparison yields the graphs illustrated in
Fig. 8. It is evident that while m is calculated on the basis
of a,b and c at sample k − 1, only c is used at k.

From the two dependency graphs the associated snippet
of the algorithm responsible for producing the graphs can
be located and is shown in Algorithm 4. For instance the
difference between the two graphs, being the statements
executed at k − 1 but not k, can be highlighted. It is now
clear that the discontinuity in Fig. 7 was caused by input
a and b becoming invalid, changing m from being a mean
of 3 inputs to a direct copy of input c.

The sequence of tasks from recognizing an interesting
feature in the history of a signal in Fig. 7, generating the
dependency graph comparison in Fig. 8 and displaying the
algorithm snippet with highlights or other information like
Algorithm 4, can be automated.

Although this example is artificial, the ability to browse
dynamic dependency graphs for any variable and compare
graphs recorded during previous executions presents a new
way of navigating control algorithms and quickly locate the
source code responsible for chosen control actions.

k — 1

k

Time

V
al

ue
 o

f m

Fig. 7. Discontinuity in the output m between two execu-
tions of the algorithm at sample k − 1 and k.
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Execution

Fig. 8. Comparison of dependency graphs of m for execu-
tions k− 1 and k. Operators are omitted for the sake
of readability.

Algorithm 4 Algorithm-snippet associated with the de-
pendency graphs in Fig. 8. Difference between k − 1 and
k is highlighted.

1: s← 0
2: n← 0
3: if a is valid then
4: s← a

5: n← 1
6: end if
7: if b is valid then
8: s← s + b

9: n← n + 1
10: end if
11: if c is valid then
12: s← s + c
13: n← n + 1
14: end if
15: if n 6= 0 then
16: m← s/n
17: else
18: m← m
19: end if
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Thus, investigation of cause-effect relations that was oth-
erwise to be performed manually can now be semi-
automated.

5. CONTROL ALGORITHMS AS SOFTWARE
SYSTEMS

The concept proposed in this paper is based on the ap-
proach that control algorithms are recognized as software
systems. Consequently, it must be assumed that general
tools known from common software development such as
certain design guide lines and validation procedures have
a positive influence on control system maintainability.
However, the special properties of control algorithms as
presented in Sections 2-4 represent unique challenges that
are to be targeted by tools specialized for maintenance of
control algorithms.

Many control system related issues may be addressed by
dedicated solutions. E.g. consider an algorithm containing
a P-controller:

1: . . .
2: u← Kp · (r − y)
3: . . .

with reference r, gain Kp, control signal u and controlled
variable y. Under certain circumstances the maintenance
issue of tuning Kp can be resolved by the addition of
an adaptive tuning algorithm ensuring that Kp is always
within an interval of acceptable controller performance. In
comparison, the assisted maintenance concept proposed in
this paper would merely lead the attention to line 2 in the
above algorithm and leave the control expert to manually
adjust the parameter after Kp has left the acceptable
interval.

However, the source code of the adaptive control algorithm
itself may be subject to maintenance too, in which case
assisted maintenance will supply the same help in locating
the responsible code lines. Thus, the proposed assisted
maintenance concept is to be applied orthogonally to
the algorithm, disregarding the kind of control theory
implemented.

6. FUTURE WORK

A dynamic program slicing system has been developed and
can generate dynamic dependency graphs and execution
paths from running algorithms. In order to develop and
verify the statistical analysis of the state machine to
detect abnormal behavior, data by means of execution
paths must be collected from a realistic, running control
algorithm, during both normal and abnormal situations.
Furthermore, realistic data is needed in order to evaluate
methods for comparison of dependency graphs for the
location of statements of interest. Therefore, the developed
system must be expanded to handle entire, realistic control
algorithms.

Continuous logging of execution paths generate poten-
tially large amounts of data, and dynamic program slicing
increases the execution time and memory consumption
of the control algorithm. The overall performance cost
and/or methods for reducing the amount of data are to
be investigated.

Finally, the actual benefit by means of reduced man hours
used for maintenance must be confirmed.

7. CONCLUSION

It has been realized that process control algorithms need
regular maintenance by means of modifications in the
source code, and that more than 90% of the body of
these algorithms cannot be classified as classical control
theory. Since the time is not ripe for fully automating such
operations, the maintenance task is to be conducted by
human experts.

While performing the actual modification of the algorithm
is usually simple, understanding the algorithm, realizing
the problem, tracking inter-variable dependencies and the
flow of signals through the algorithm and locating the
interesting statements that are to be modified is far the
most time consuming and demanding task.

A novel approach for computer-assisted maintenance
based on program slicing has been presented to alleviate
this task. By automating the locating of the statements to
be modified, the expert is left only to perform the actual
modification. Additionally, a method for monitoring the
control algorithm during runtime has been proposed. In
case of abnormal behavior an alarm is raised, and the
system makes a qualified guess on the responsible part
of the algorithm.

Finally, a number of proposals involving the use of de-
pendency graphs to enhance navigation and exploration
of running algorithms have been presented.
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