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Abstract: The identification of the dynamic parameters of robot is based on the use of the inverse dynamic 
model which is linear with respect to the parameters. This model is sampled while the robot is tracking 
trajectories which excite the system dynamics in order to get an over determined linear system. The linear least 
squares solution of this system calculates the estimated parameters. The efficiency of this method has been 
proved through the experimental identification of a lot of prototypes and industrial robots. However, this 
method needs joint torque and position measurements and the estimation of the joint velocities and 
accelerations through the pass band filtering of the joint position at high sample rate. The new method 
needs only torque data at a low sample rate. It is based on a closed loop simulation which integrates the 
direct dynamic model. The optimal parameters minimize the 2 norm of the error between the actual torque 
and the simulated torque assuming the same control law and the same tracking trajectory. This non linear 
least squares problem is dramatically simplified using the inverse model to calculate the derivatives of the 
cost function. 

 

1. INTRODUCTION 

The usual identification method based on the inverse 
dynamic model (IDM) and LS technique has been 
successfully applied to identify inertial and friction 
parameters of a lot prototypes and industrial robots (Gautier 
et al., 1995), (Gautier, 1997) and (Khalil et al., 2007) among 
others. Recently, it was also used to identify the inertial 
parameters of slave and master arms developed by the CEA 
(Janot et al., 2007 a), (Bidard et al., 2005), inertial 
parameters of a compactor (Lemaire et al., 2006) and the 
parameters of a car (Venture et al., 2006). The obtained 
results were interesting and consistent. At any case, a 
derivative pass band data filtering is required to calculate the 
joint velocities and accelerations. 

Another method is to minimize a quadratic error between an 
actual output and a simulated output of the system, assuming 
both the actual and simulated systems have the same input. It 
is known as an output error (OE) identification method or as 
the model’s method (Richalet and Fiani, 1995). This method 
was used to identify electrical parameters of a synchronous 
machine (Khatounian et al., 2006) and it was compared to the 
LS and inverse model method. The results are very close. The 
optimal values of the parameters are calculated using non 
linear programming algorithms to solve the nonlinear least 
squares problem. Usually, the output is a state model output 
such as the joint position for mechanical systems. Difficulties 
arise due to bad initial conditions which leads to multiple and 
local solutions. 

These methods require both the joint position and the joint 
torque measurements. 

The new identification method is based on a closed loop 
simulation using the direct dynamic model (DDM) while the 
optimal parameters minimize the 2 norms of the error 
between the actual torque and the simulated torque assuming 
the same control law and the same tracking trajectory. This 
non linear least squares problem dramatically simplifies using 
the inverse dynamic model (IDM) to calculate the gradient 
vector and the Hessian matrix of the cost function. 

The paper is organized as follows: section 2 recalls the 
Inverse Dynamic Model and LS usual method in robotics; 
section 3 presents the output error identification method; 
section 4 presents the new identification method; section 5 
gives an experimental validation performed on a 2 DOF 
planar robot; finally, section 5 concludes the paper. 

2. INVERSE DYNAMIC IDENTIFICATION MODEL 
METHOD 

The inverse dynamic model (IDM) of a rigid robot composed 
of n moving links calculates the motor torque vector τ (the 
control input) as a function of the generalized coordinates 
(the state vector and it is derivative). It can be written as the 
following relation which explicitly depends on the joint 
acceleration: 

) ,( +  )(= qqNqqMτ  (1) 
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Where q, q and q  are respectively the (nx1) vectors of 
generalized joint positions, velocities and accelerations, M(q) 
is the (nxn) robot inertia matrix and ) ,( qqN  is the (nx1) 
vector of centrifugal, Coriolis, gravitational and friction 
torques. 

The choice of the modified Denavit and Hartenberg frames 
attached to each link allows to obtain a dynamic model linear 
in relation to a set of standard dynamic parameters χS 
(Gautier, 1997) and (Khalil and Kleinfinger, 1986) : 

( ) Sχq,qq,IDτ S=  (2) 

Where ( )q,qq,IDS  is the regressor and χS is the vector of the 
standard parameters which are the coefficients XXj, XYj, 
XZj, YYj, YZj, ZZj of the inertia tensor of link j denoted jJj, 
the mass of the link j called mj, the first moments vector of 
link j around the origin of frame j denoted jMj = [MXj MYj 
MZj]T, the friction coefficients fVj, fCj and the actuator inertia 
called Iaj and the offset of current measurement denoted 
offset.  

The base parameters are the minimum number of mechanical 
parameters from which the dynamic model can be calculated. 
They are obtained from the standard inertial parameters. The 
minimal inverse dynamic model can be written as:  

( )χq,qq,IDτ =  (3) 

Where ( )q,qq,ID is the minimal regressor and χ is is the 
vector of the base parameters. The inverse dynamic model (3) 
is sampled while the robot is tracking a trajectory to get an 
over-determined linear system such that (Gautier, 1997): 

( ) ( ) ρχq,qq,WτY +=  (4)  

With: 

• Y(τ) is the measurements vector, 
• W is the observation matrix, 
• ρ is the vector of errors. 

The L.S. solution χ̂  minimizes the 2-norm of the vector of 
errors ρ. W is a r×b full rank and well conditioned matrix 
where r=Nexn, Ne being the number of samples, obtained by 
tracking “exciting” trajectories and by considering the base 
parameters. The LS solution χ̂ is given by: 

( ) YWYWWWχ T1T +−
=⎟

⎠
⎞⎜

⎝
⎛=ˆ  (5) 

It is calculated using the QR factorization of W. Standard 
deviations 

iχ̂σ  are estimated using classical and simple 
results from statistics. The matrix W is supposed 
deterministic, and ρ, a zero-mean additive independent noise, 
with a standard deviation such as: 

Cρρ=E(ρΤρ)= 2
ρσ Ir (6) 

where E is the expectation operator and Ir, the r×r identity 
matrix. An unbiased estimation of ρσ  is: 

2
ρσ̂ =||Y-W χ̂ ||/(r-b) (7) 

The covariance matrix of the standard deviation is calculated 
as follows: 

χχC ˆˆ =E[(χ - χ̂ )(χ- χ̂ )T]= 2
ρσ (WTW)-1  (8) 

iiχ̂χ̂
2
iχ̂ Cσ =  is the ith diagonal coefficient of χ̂χ̂C . The relative 

standard deviation 
riχ̂%σ is given by: 

iiχ̂χ̂ χ̂σ100%σ
ri

=  (9) 

However, experimental data are corrupted by noise and error 
modeling and W is not deterministic. This problem can be 
solved by filtering the measurement matrix Y and the 
columns of the observation matrix W as described in 
(Gautier, 1997) and (Khalil et al., 2007). This identification 
method is illustrated in Fig. 1: 

Robot Band pass
filtering

Linear
Least squares

+

-

Γ(t) q(t)

( )χq,q,qIDu ˆˆˆˆ

model dynamic Inverse

= q,q,q ˆˆˆ

ρ(t)

χ

(t)Γ̂

 
Fig. 1: Identification method based on the inverse dynamic model 

 

The use of LS is particularly interesting because no 
integration of the differential equations is required and there 
is no need of initial conditions. However, the calculation of 
the velocities and accelerations are required using well tuned 
band pass filtering of the joint position (Gautier, 1997) and 
(Pham et al., 2001). 

3. OUTPUT ERROR IDENTIFICATION METHOD 

The OE identification methods consist in minimizing a 
quadratic error between an actual output and a simulated 
output of the system, assuming both the actual and simulated 
systems have the same input. Usually, this output is a state 
model output such as the joint position for mechanical 
systems (Khatounian et al., 2006), (Walter and Pronzato, 
1997) and (Richalet and Fiani, 1995) (Fig. 2). Hence, an OE 
method needs the integration of the state equation which is 
the direct dynamic model for robots. 
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Fig. 2: OE identification method using non linear programming algorithms 

Generally, the non linear programming algorithm minimizes 
the quadratic error between the actual output and the 
estimated output. 

Compared to IDIM and LS, these techniques are quite time 
consuming because the state equation of the system and its 
sensitivity functions (the derivative of the output w.r.t the 
parameters) must be integrated on a long time and many 
times at each step of the recursive non linear optimization 
method. More over, difficulties arise with multiple and local 
solutions depending on the initial conditions. 

4. DIDIM: DIRECT and INVERSE DYNAMIC 
IDENTIFICATION MODELS METHOD 

The new identification method is based on a closed loop 
simulation using the DDM. The optimal parameters minimize 
the 2 norm of the error between the actual and the simulated 
torque. It overcomes the non linear LS problems by using the 
IDIM to calculate the gradient and the hessian of the cost 
function of this non linear LS problem. Details on the DIDIM 
method are given in (Janot, 2007c). 

The optimal solution χ̂  is given by: 

2
S

χ
)(Argminˆ χyyχ −=  (10) 

It minimizes the cost function: 

2
S )()J( χyyχ −=  (11) 

This is a non linear least squares problem which can be 
solved with the Newton’s method because of its quadratic 
convergence. Hence, it comes: 

( )( ) ( )k
1

k
2

k1k ˆJˆJˆˆ χχχχ ∇∇−=
−

+  (12) 

We introduce the estimation error: 
)(S χyyε −= . 

The gradient vector is given by εεχ T)(2)J( ∇=∇  and with the 
Gauss Newton approximation, the hessian matrix is given by 

εεχ ∇∇≈∇ T2 )(2)J( . 

As the IDIM is linear to the parameters, y is chosen as a 
sampling of τ instead of a sampling of q in the OE method, 
i.e. y = Y. The output of the OE method is the control input 
of the simulated system. The cost function is: 

( ) 2
J( ) ( ) ( ) ( )= − S S S Sχ Y W q χ ,q χ ,q χ χ  (13) 

( )( ) ( ) ( )S S S SW q χ ,q χ ,q χ  is the observation matrix built with 
the simulated positions, velocities and accelerations 
respectively denoted SSS q,q,q , that is: 

( )
( )

( )

S1 S1 S1 S1

Sr Sr Sr Sr

( ) ( ) ( )
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S S S S

ID q ,q ,q
W q χ ,q χ ,q χ

ID q ,q ,q
 (14) 

These states are calculated by integrating the DDM: 

( ) ( )( )χq,qNτχqMq 1 ,, ssSss −= −  (15) 

( )χqM ,s  is the inertia matrix and ( )χq,qN ,ss is the vector 
regrouping the Coriolis, the gravity and the friction effects. 
Finally, the criterion to be minimized is:  

εεχWYχ T2
S)J( =−=  (16) 

Now, the derivatives of J(χ) are calculated. The gradient of ε 
equals the sensitivity functions, S∇ = ∇ε Y . It is 
approximated by the following relation: 

( )
S S

( ) ( ) ( ) ⎞⎛ ∂
∇ = − − ≈ −⎟⎜ ∂⎝ ⎠

S S S SW q χ ,q χ ,q χ
ε W χ W

χ
 (17) 

This is possible because of the closed loop simulation which 
assumes that SSS q,q,q closely track the reference trajectory 
for a wide range of χ values.  
This is the point of the DIDIM method where the sensitivity 
functions are the columns of WS which are algebraic 
expressions easily calculated by the IDM. 

Equation (17) is the approximation used in the Gauss Newton 
method. This approximation simplifies considerably the 
calculation of the sensitivity functions. Then, at each step, the 
Gauss Newton method reduces to a linear LS problem, that 
is: 

( ) 2
k+1 k k k

χ
ˆ ˆ ˆ ˆArgmin ( ) ( ) ( )= − S S S Sχ Y W q χ ,q χ ,q χ χ  (18) 

( ) 1T T
k 1 S k k S kˆ ˆ ˆ ˆ( ) ( ) ( )

−

+ = Sχ W χ W χ W χ Y  (19)  

 ( )k k k kˆ ˆ ˆ ˆ( ) ( ) ( ) ( )=S S S S SW q χ ,q χ ,q χ W χ  (20) 

This approach is particularly interesting because of the 
following reasons: 

• Only one signal is needed, the actuator torque, 
• The data filtering is the integration of the direct 

dynamic model which is a low pass integral filter 
without any tuning, 

• The expressions of the sensitivity functions are simple, 
• It combines the inverse and the direct dynamic models 

and validates both models for computed torque control 
and for simulation purposes. 
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The identification process can be resumed by the following 
algorithm illustrated Fig. 3: 
• The algorithm is initialized with values which can be 

very different from the real ones, 
• At each step of the recursive algorithm, SSS q,q,q , are 

calculated by simulation of the closed loop robot 
tracking exciting trajectories using the Direct Dynamic 
model. WS is obtained as a sampling of the Inverse 
Dynamic model ( )SSS q,q,qIDS , 

• k 1ˆ +χ  is the LS solution of (18),  
• The algorithm stops when the relative error decreases 

under a chosen small number tol: tol
k

k1k ≤
−+

ε
εε

 

System to be
identified

+
-

SSS q,q,q

τ

ε

χ̂

q,qq,Control
Law

Control
Law Sτ

RR q,q

( ) ( )( )SSSSS q,qHτqqM −=
:DDM

( ) 11 ˆˆminˆ :LSLinear 

minˆ :LSlinear Non 

++ =

⇔=

kkk χχW-Yχ

Y-Yχ

S

S

 
Fig. 3: Scheme of the algorithm of the new identification method 

 
In the following, this identification process is applied to a 2 
DOF robot. 

5.  EXPERIMENTAL VALIDATION 

5.1 Presentation of the SCARA robot 

The identification method described is carried out on a 2 
joints planar direct drive prototype robot without gravity 
effect. The description of the geometry of the robot uses the 
modified Denavit and Hartenberg notation (Khalil and 
Kleinfinger, 1986) and the notations are illustrated in Fig. 4. 
The robot is direct drived by 2 DC permanent magnet motors 
supplied by PWM choppers. 

The dynamic model depends on 8 minimal dynamic 
parameters, considering 4 friction parameters: 

χ = [ZZ1R fv1 fc1 ZZ2 MX2 MY2 fv2 fc2]T. 

Where: ZZ1R = ZZ1 + Ia1. More details about the modelling 
and ID identification can be found in [2]. 

The closed loop is a simple PD control law. The sample 
control rate is 200Hz. Torque data are obtained from the 
current reference vir assuming a large bandwidth (1 KHz) of 
the current closed loop such as: 

τj = gtj virj  (21) 

gtj being the transmission gain of the joint j. 

The simulation of the robot is carried out with the same 
trajectory generator and the same control law as the actual 
robot. 

x 0

q 1

L

O ,  O0 1

x1

x 2

O 2

y2

y0

y1

y2

q 2

 
Fig. 4: SCARA robot : frames and joint variables 

5.2 Experimental identification results 

The new identification method is tested varying the initial 
conditions, the filtering of torque data, the acquisition 
sampling rate… 

At first, the algorithm is initialized with the values identified 
through the IDIM LS estimator which will be called the 
optimal solution in the following. In this case, the torque data 
are low pass filtered with a cut off frequency of 4Hz.  

The results are summarized in Table 1. Only 2 steps are 
enough to obtain a solution close to the optimal one. Hence, 
the DIDIM method does not improve the IDIM LS solution 
in the case of good filtering data. This result agrees with 
those exposed in (Vandanjon et al., 2007)), (Janot et al., 2007 
b) and (Marcassus et al., 2007).  

Direct validations have been performed (Fig. 5 and Fig. 6). 
The predicted torque is very close to the actual one (relative 
error less than 5%). 

 
TABLE 1: IDIM AND DIDIM COMPARISON WITH 4HZ CUT OFF FREQUENCY. 
Parameter IDIM LS %σXj 

(%) 
DIDIM %σX 

j(%) 
ZZ1R 3,43 Kgm² 0,50 3,45 Kgm² 0,52 
fv1 0,03 Nms/rad 52, 0 0,04 Nms/rad 40,0 
fs1 0,82 Nm 6,0 0,82 Nm 3,0  

ZZ2 0,063 Kgm² 0,51 0,061 Kgm² 0,49  
MX2 0,241 Kgm 0,56 0,248 Kgm 0,52  
MY2 0,014 Kgm 5,0 0,014 Kgm 3,5  
fv2 0,013Nms/rad 23,0 0,014Nms/rad 30,0 
fs2 0,137 Nm 2,30 0,133 Nm 3,0 

 ||ρ|| = 16 Nm  ||ε|| = 15 Nm  
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Fig. 5: DIDIM direct validation, axis 1. 
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Fig. 6: DIDIM direct validation, axis 2. 

 

Now, the robustness of the algorithm with respect to a bad 
initialization is analyzed. The initial values of the inertia, 
parameters are divided by 100 from the optimal values while 
the other values are fixed at 0.  

The results are summarized in Table 2. Only 5 steps are 
enough to reach the optimal solution of Table 1. This justifies 
the approximation made in (17). This result is very important 
because the algorithm is quite robust with respect to a bad 
initialization. So, it comes that the algorithm converges 
quickly and it is not very time consuming. 

The initial values of the inertia components ZZ1R and ZZ2 can 
be small but must be large enough to keep the inertia matrix 
M(q) regular for the DDM calculation (15). Their initial 
values can be divided by 1000 from the optimal values and 
the initial values of the gravity and friction parameters can be 
chosen at 0, keeping the algorithm to converge in 5 steps. 

TABLE 2: DIDIM WITH BAD INITIAL CONDITIONS. 
Parameter Initial values DIDIM %σXj (%) 

ZZ1R 3,4.10-2 Kgm² 3,45 Kgm² 0,2 
fv1 0 Nms/rad 0,02Nms/rad 15 
fs1 0  Nm 0,85 Nm 1,0 

ZZ2 6.10-4 Kgm² 0,061 Kgm² 0,1 
MX2 0 Kgm 0,248 Kgm 0,1 
MY2 0 Kgm 0,017 Kgm 2,0 
fv2 0 Nms/rad 0,01Nms/rad 10 
fs2 0 Nm 0,132 Nm 0,3 

 

Direct validations have been performed and they are very 
similar to those illustrated in Fig. 5 and Fig. 6. The estimated 
torque follows the noisy measured ones closely. 

As a final test, the algorithm is badly initialized and the 
actual torque and the simulated data are under sampled at 
10Hz. The results are summed up in Table 3. Once again, the 
identified values are very close to those given in Table 1. It is 
also possible to observe the simulated states and the torque 
data at a frequency which is lower than the frequency of the 
control law. That reduces the computation time of the optimal 
solution because of the reducing of the size of the vector Y 
and the size of the matrix WS. Finally, only 4 steps are 
enough to reach the optimal solution. The limit frequency to 
observe the torque data and the simulated data is close to 
4Hz. 
TABLE 3: DIDIM: BAD INITIAL CONDITIONS AND UNDER SAMPLING AT  10HZ. 

Parameter Initial values DIDIM %σXj (%) 
ZZ1R 3,4.10-2 Kgm² 3,46 Kgm² 0,52 
fv1 1.10-4 Nms/rad 0,04Nms/rad 30 
fs1 8.10-3 Nm 0,81 Nm 3,0 

ZZ2 6.10-4 Kgm² 0,062 Kgm² 0,49 
MX2 0,241.10-2 Kgm 0,249 Kgm 0,52 
MY2 1.10-2 Kgm 0,016 Kgm 4,0 
fv2 1.10-2 Nms/rad 0,01Nms/rad 25 
fs2 1.10-3 Nm 0,13 Nm 3,0 

 
Direct validations have been performed. The results are 

illustrated in Fig. 7 and Fig. 8. The estimated torque follows 
the noisy measured ones closely. 

 

210 220 230 240 250 260 270 280 290 300

-15

-10

-5

0

5

10

15

Direct validation

N
m

Samples

Measurement
Estimation
Error

 
Fig. 7: DIDIM direct validation, under sampled data at 10 Hz, axis 1. 
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Fig. 8: DIDIM direct validation, under sampled data at 10 Hz, axis 2. 
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6. CONCLUSION 

This paper has presented a new method for the identification 
of the dynamic and friction parameters of robots. It bypasses 
the need to measure or estimate joint position, velocity and 
acceleration by using both Direct and Inverse Dynamic 
Identification Models (DIDIM). It needs only torque data at a 
low sample rate. The optimal parameters minimize the 2 
norm of the error between the actual torque and the closed 
loop simulated torque assuming the same control law and the 
same tracking trajectory. This non linear least squares 
problem is simplified to an iterative linear LS solution using 
the inverse model to calculate the derivatives of the cost 
function. 

This method has been validated on the experimental 
identification of 2 DOF robot. It has been proved that it is not 
sensitive to bad initial conditions and to data under sampling. 
This is very important because in that case the ID method 
fails because the pass band filter cut off frequency which 
estimates the derivatives of the position is too small. This is 
often the case for industrial robots where the sample rate of 
the measurements is lower than the control sample rate.  

This method is also particularly interesting because it 
validates in the same identification procedure both the 
inverse dynamic model which is used for computed torque 
control and the direct dynamic model which is used for 
simulation. This technique combines the advantages of the 
inverse dynamic and LS identification method and of the 
output error identification method. 

However the actual control law must be known. Indeed, it is 
not possible to take the control torque as the input of an open 
loop simulation because of the instable behavior of the robot 
which is mainly a double integrator system. The open loop 
simulation is very sensitive to state initial conditions errors. 

So DIDIM is complementary of the IDIM method, depending 
on the knowledge of the control law and on the actual 
measurements. 

Future work concerns the validation of this technique on a 6 
DOF industrial robot. 
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