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Abstract: In vision-based control schemes, a position measurement is computed from image
processing. This kind of sensor sensibly differs from the classical physical sensors for which
the data can be filtered before being sampled. This paper is dedicated to the analysis of the
dynamical effects of this measurement system. A model is derived allowing to emphasize the
behavior in the high frequencies, with better accuracy than the models available. When the
camera is used as a sensor for a mechanical system with a continuous-time model, we show
that a discrete-time model can be derived that accounts accurately for the camera effect. When
considering identification of the continuous-time model of the system, it is shown that accurate
results can be obtained with output measurement provided by camera by considering the input
data as provided by a first-order hold instead of a zero-order hold. It is also shown that accurate
results can be obtained even if the eigen modes are close to the Shannon frequency and when
neglecting modes at higher frequency than the Shannon frequency.
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1. INTRODUCTION

Vision systems with real-time image processing have been
developping during the last decades and are now able to
provide measurements allowing to estimate the position of
an object at relatively high frequency. Based on this mea-
surement, specific control schemes have been developed for
controlling robotic manipulators (Corke [1996]). Anders-
son [1989] developed a robot playing ping-pong based on
a 60 Hz stereo vision system. Nakabo et al. [2000] used a
1000 Hz vision chip in a visual loop and obtain astonishing
fast results. Those approaches yielded interesting results in
various fields, such as medical robotics, as shown by Krupa
et al. [2003] and Ginhoux et al. [2005].

When dealing with the model of a camera, it is classical
to consider the projective model whose parameters can
be estimated from a calibration procedure (Brown et al.
[2005]). This model is static and concerns the formation
of the image of the 3D object. When the object is moving
and if its displacements during an integration period of
the image are significant, the measure provided by image
processing is altered. Very few papers deal with this
issue. To our knowledge, the only model was proposed
by Ranftl et al. [2007], who implemented visual servoing
for a fast ultrasonic actuator. More often, vibrations are
considered as an external perturbation and its effects must
be compensated for, such as in Luna et al. [2006].

The aim of this paper is to investigate the dynamical
effects of the vision-based measurement. A mathematical
model will be developed in Section 2, that allows to
understand the effects of the camera as a position sensor.

Based on this model, the dynamical effects of the camera
when identifying a dynamical system will be investigated
in Section 3. It will be show that an accurate discrete-
time model can be derived. In the case of continuous-time
identification, we will evaluate the effects of the camera
in two cases: first when identifying a flexible system with
eigen frequencies close to the Shannon frequency, second
when identifying a system including high dynamics that
are neglected in the identification model.

2. VISION-BASED POSITION MEASUREMENT

2.1 Description

Image processing allows to compute the position in the
image of some elements of interest. For example, a LED
placed at the tip of an instrument held by a robot yield a
marker in the image and the center of mass of the marker
can be computed in real-time and used for control. This
kind of control schemes, also called visual servoing in the
Robotics community, received great interest during the
two last decades (see Hutchinson et al. [1996]).

Classically, the elements of interest are simple circular
markers and the goal of the image processing is to compute
the coordinates of their centers of mass in the image.
In order to limit the computation cost for real-time im-
plementation, this is generally done with the following
method in three steps:

• a Sobel filter, i.e. a spacial high-pass filter, allows to
emphasize the transition between the background and
the spot;
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• a threshold is applied in order to select only the pixels
with high gradient;

• the center of mass of the remaining pixels is computed
as an estimation of the center of the marker.

This computation is done in a limited region of interest
where only one marker is to be found. Some variations
can be considered: it is possible to detect the projection
of a laser held by a robotic arm, such as in Krupa
et al. [2003]. The marker can also be a simple black
point placed on a white background as in Gangloff and
de Mathelin [2003], Bachta et al. [2007]. In 2D visual
servoing, the goal is to control directly the position of the
markers in the image. Several markers can be combined in
order to compute the configuration of a manipulator and
allowing 3D visual servoing. Features of higher order can
be also considered. For example, the position of a curved
needle was considered as a portion of a circle and located
with image processing by Nageotte et al. [2005]; visual
servoing of spheres is presented by Fomena and Chaumette
[2007]. Active vision systems, based on the projection of
structured light can also be used for estimation of 3D
surfaces as done by Albitar et al. [2007].

In the present paper, we focus on the characterization of
the dynamical effects of the camera-based measurement
system. The black-and-white camera considered herein has
an integration period of T = 20 ms, corresponding to
the classical frequency of 50 Hz. One image is acquired
every T period. The camera resolution is 300×420 pixels.
We consider the case of a circular marker of 30 pixels of
diameter emitting constant light and placed over a black
background. The process of the formation of a grey-level
image can be considered as a continuous-time state system
where the state vector contains the intensity of each pixel.
The state equation, giving the rate of variation of the
luminosity of each pixel, depends on the marker position.
Such a model have been implemented; the obtained image
for a fast displacement of the marker, corresponding to a
circular trajectory with a diameter of 160 pixels at 24 Hz,
is presented in Fig. 1, in addition with the trajectory of the
center of the marker. The contour and the measurement
obtained from image processing are given in Fig. 2. Notice
that a color camera can be modeled in the same way by
considering independently the three color components.

2.2 Modeling

Let consider the following assumptions concerning the
image integration:

A1. the size of the marker is small compared to the
displacement during an integration period, so that
the gradient image is close to the original trajectory;

A2. the trajectory in the image of the marker do not inter-
sect itself over an integration period (i.e. for (t1, t2) ∈
[tk, tk+1]

2, (xM (t1), yM (t1)) = (xM (t2), yM (t2)) ⇒

t1 = t2);
A3. the camera resolution is high so that spacial dis-

cretization effects can be neglected;
A4. the amplitude of the speed of the marker in the image

is constant during an integration period.

Under assumptions A1 to A3, the measurement is equal to
the center of mass of the curve depicted by the center of the

Fig. 1. Image produced by a fast circular displacement of
the marker and the trajectory of the marker

Fig. 2. Gradient image and its center of mass (+)

marker. Denoting M a point of the curve located between
Mk−1 and Mk that are the positions at respectively tk−1

and tk; denoting O the origin of the image, the center of
mass Gk of the portion of curve of length lk is defined by:

∫ Mk

Mk−1

−−→
OMdl = lk

−−→
OGk. (1)

If assumption A1 is violated, the center of mass of the
contour will be displaced for rotating trajectories. Indeed,
the outer part of the contour has a longer length than the
inner part, which produces a shift of the center of mass
in the centrifugal direction. If assumption A2 is violated,
some pixels can be found that correspond to the same
position of the marker at two diferent times. These pixels
would be counted once in the image processing whereas
they would be counted twice in Eq. (1), once for each time;
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Fig. 3. Trajectories provided by the measurement based
on image processing and the simplified model

therefore, violation of assumption A2 yields a shift in the
results of the image processing compared with Eq. (1).

Performing a change of variable, relationship (1) rewrites:
∫ tk

tk−1

−−→
OM

√

ẋ2
M

(t) + ẏ2
M

(t) dt = lk
−−→
OGk, (2)

with:

lk =

∫ tk

tk−1

√

ẋ2
M

(t) + ẏ2
M

(t) dt. (3)

Under assumption A4, the relationship simplifies and the
coordinates of Gk write:

xGk =
1

T

∫ tk

tk−1

xM (t) dt, (4)

yGk =
1

T

∫ tk

tk−1

yM (t) dt. (5)

The measurement provided by image processing can then
be considered as the mean value over a sampling period.
The remainder of the paper relies on this assumption and
is therefore valid for any sensor providing a mean value of
a quantity over an integration period.

The measurements provided by this model were computed
on a circular trajectory at 5 Hz and compared with
the measurements obtained by image processing applied
to simulated images. In Fig. 3, exhibiting the obtained
results, one can see that the model reproduces nicely
the measurements obtained by image processing. The
measurement error can be considered as a random variable
and the signal-to-noise ratio (SNR) is high.

2.3 Implementable models

Denoting y(t) one entry of the measurement vector con-
taining the coordinates of the markers, image processing,
applied to the image available at time tk = kT , provides
the measurement wk that is considered as the average of
y(t) on an integration period:

wkvk 1−z−1

T

v(t)y(t)
1
s

Fig. 4. Model of the camera-based measurement system
(first version of Model #1)

w(t) wky(t) 1−exp(−Ts)
Ts

Fig. 5. Second version of Model #1

wk =
1

T

∫ tk

tk−1

y(t)dt. (6)

A first model is easily derived by introducing an interme-
diate variable:

v(t) =

∫ t

0

y(τ)dτ. (7)

Denoting v(z) the Z-transform of the sampled-time signal
vk = v(tk), one can write w(z) = H(z)v(z) with:

H(z) =
1 − z−1

T
. (8)

Therefore, the camera-based position measurement can
be simulated with three elements as shown in Fig. 4: a
continuous-time integrator, a sampler and a discrete-time
first-order transfer function. This model will be referred as
Model #1 in the sequel.

A similar model can also be derived. Let us introduce a
fictitious continuous-time signal:

w(t) =
1

T

∫ t

t−T

y(τ)dτ, (9)

such that wk = w(tk). Derivation of the equation yields:

ẇ(t) =
1

T
(y(t) − y(t − T )). (10)

Using the Laplace transform, the equation writes:

ẇ(s) =
1

T
(1 − exp(−Ts))y(s). (11)

Therefore, one have w(s) = H̃(s) y(s) with:

H̃(s) =
1 − exp(−Ts)

Ts
(12)

This latter model, represented in Fig. 5, is equivalent to
Model #1 as z = ZL−1(exp(Ts)), Z denoting the Z-
transform and L the Laplace transform. This latter for-
mulation suits for frequency analysis whereas the previous
one is convenient for simulation.

2.4 Effects on measurement

The Bode diagram of Model #1 of the camera is presented
in Fig. 6 in addition with two other approximated models:

• Model #2 ((1 + z−1)/2), presented in dashed line,
is the mean-value of the position at the present sam-
pling instant and the position at the previous instant.
It was used by Ranftl et al. [2007] for controlling a
high-speed ultrasonic motor;
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Fig. 6. Bode Diagrams of the models (plain: Model #1;
dashed: Model #2; dotted: Model #3

• Model #3 (exp(−T s/2)), presented in dotted line, is
a delay of half of the period.

One can notice that the effects of the camera are neg-
ligible for angular frequencies lower than 1

T
. For higher

frequencies, the three models have the same phase but
different gains. Model #3 has a constant gain. The gain of
Model #2 is zero for frequencies 1

T
(1

2
+ k), k ∈ N whereas

the gain of Model #1 is zero at frequencies 1

T
(1 + k),

k ∈ N. Moreover, Model #2 do not reproduce the gain
attenuation at the high frequencies. This gain attenuation
is very important as it is not possible to implement anti-
aliasing filter; this gain attenuation works as a natural
anti-aliasing filter.

3. EFFECTS ON MODEL IDENTIFICATION

3.1 Discrete-time model

When a continuous-time system G(s) is fed with a ZOH
and when the data are normally sampled, the equivalent
discrete-time model writes:

G(z) =
z − 1

z
Z L

−1

(

G(s)

s

)

. (13)

When, in addition, the measurement is done through a
camera, Model #1 allows to derive the discrete-time model
of the system:

G̃(z) =
(z − 1)2

Tz2
Z L

−1

(

G(s)

s2

)

, (14)

which corresponds to the equivalent model with a first-
order holder (FOH) and a conventionally sampled mea-
surement.

Consider for instance a second-order model:

G0(s) =
Kω2

0

s2 + 2ξω0s + ω2
0

(15)

Its discrete-time model with camera and ZOH, obtained
from (14), writes:

G̃0(z) = z−1 β0 + β1z
−1 + β2z

−2

1 − α1z−1 + α2z−2
(16)

with:

α1 = 2 exp(−ξω0T ) cos(wT ), (17)

α2 = exp(−2ξω0T ), (18)

β0 = K

(

2ξ

ω0T
(α1 − 1) + 1 − g

)

, (19)

β1 = K

(

2ξ

ω0T
(1 − α1 − α2) − α1 + 2g

)

, (20)

β2 = K

(

α2(
2ξ

ω0T
+ 1) − g

)

, (21)

where:
w = ω0

√

1 − ξ2 (22)

and:

g =

(

2ξ

ω0T
cos(wT ) +

1 − 2ξ2

wT
sin(wT )

)

exp(−ξω0T ).

(23)

Therefore, an accurate discrete-time model can be iden-
tified without difficulty with one delay and order two
at both numerator and denominator 1 . Notice that this
model relies on 5 parameters compared to the 3 parame-
ters of the continuous-time model (when accounting for a
static unitary gain); therefore, it is not easy to obtain the
parameters of the continuous-time model from discrete-
time identification. The sequel of this section considers the
identification of the continuous-time model G0(s).

3.2 Continuous-time model identification

Continuous-time model identification algorithms has been
developed more recently that their discrete-time counter-
parts. Nowadays, many algorithms are available in tool-
boxes such as Contsid 2 and Captain 3 . As their discrete-
time counterparts, they consider different kinds of noise
models (output error, ARX, ARMAX...). As the data are
sampled, it is possible to consider that the input data were
obtained either with a ZOH or a FOH; the output being
simply sampled. Following the analysis of the previous
subsection, we propose to improve the accuracy of the
identification results based on data obtained with a ZOH
at the input and camera measurement by considering the
data as produced with a FOH and a conventional sam-
pling.

In order to evaluate the accuracy that can be reached
by identification with the camera, identification of the
continuous-time model G0(s) with K = 1, w0 = 10 rad/s
and ξ = 0.1 was processed with the srivc method available
in the Contsid toolbox Garnier et al. [2007]. This method
is based on instrumental variables and considers an output
error model problem; the Poisson filters for estimating
the signal derivatives being adjusted iteratively. The input

1 The System Identification Toolbox, developed by L. Ljung et

al. is available with Matlab can be used for discrete-time model

identification.
2 The Contsid toolbox, developed by H. Garnier et al. is available

at http://www.iris.cran.uhp-nancy.fr/contsid.
3 The Captain toolbox, developed by P. Young et al. is available at

http://www.es.lancs.ac.uk/cres/captain/
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Fig. 7. Variations of the estimation errors (in percent of
the actual values) with respect to the sampling period
(plain: with camera and FOH (i); dashed: with camera
and ZOH (ii); dots: with camera, FOH and noise of
SNR=10 (iii, 2 samples))

excitation was chosen as a pseudo-random binary sequence
of order 9 and length 511, held contant over a sample
period of length T (ZOH). The output measurements are
simulated with the model of Fig. 4.

Identification was processed in three configurations:

i. by considering the data as provided by a FOH in order
to account for the camera;

ii. by considering the data as provided by a ZOH;
iii. in the same case as in (i) but with an output additive

noise with SNR ratio of 10; two noise samples being
considered.

In order to analyse the impact of the sampling frequency
with respect to the eigen-frequencies of the system, iden-
tification was done for different sampling periods T . The
model being rewritten:

G0(s) =
K

s2 + a1s + a0

, (24)

the relative errors of the three parameters K = 1, a1 =
2ξω0 and a0 = ω2

0 are given in percentage in Fig. 7. One
can see that if the Shannon condition is satisfied (i.e.
Tω0 < π), it is possible to obtain estimation results with
good accuracy (less than 1% without noise and arround
several percents with noise, provided that identification is
done with the FOH argument. Indeed, when neglecting
the effects of the camera and considering data as obtained
with ZOH, a significant shift appears, mainly on a0 = w2

0 ;
this shift increases as the sampling period T increases.

3.3 Effects of high-frequency dynamics

When identifying a model of a flexible structure, the
identified model will account for the modes at frequencies
lower than the Shannon frequency and the higher modes
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Fig. 8. Estimation errors (in percent of the actual values)
due to high frequency dynamics (plain: with camera
and FOH; dashed: with camera and ZOH; dots: with-
out camera

will be neglected. This will result in identification errors
on the identification model. In order to evaluate the errors
caused by the high frequency modes, tests were processed
with a model of order 4:

G(s) = G0(s)G1(s) (25)

where G0(s) is given in (15) and contain the low frequency
part of the system and:

G1(s) =
ω2

1

s2 + 2ξ1ω1s + ω2
1

(26)

contains the high frequency part of the system. With
T = 20 ms and ξ1 = 0.1, identification is done with the
same input signal as in the previous case for different
values of ω1. For comparison purposes, three cases are
considered, the results being given in Fig. 8:

i. measurements done by camera and identification data
considered as obtained from a FOH (plain line);

ii. measurements done by camera and identification data
considered as obtained from a ZOH (dashed line);

iii. conventional measurement (no camera) and identi-
fication data considered as obtained from a ZOH
(dotted line).

One can see that G(s) can be identified with good accuracy
(relative accuracy of 1% on the parameters) with a camera,
provided that Tω1 is large enough. Significant improve-
ments are obtained when using the FOH argument instead
of the ZOH argument, specially for parameter a0 = ω2

0 .

4. CONCLUSION

An original model was proposed in this paper in order to
account for the dynamical effects induced by a vision-based
measurement device. We have shown that the effects of the
camera on the measurement is similar to the effects of a
ZOH on the input of a system. The different assumptions
on which this model relies were also exhibited. When
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processing identification of a continuous-time model with
input data produced by a ZOH and measurement provided
by vision, it is necessary to choose the FOH argument
in the identification method, in order to obtain accurate
results.

Based on this model, we were able to show that it is
possible to identify a continuous-time model of a system
with eigenfrequencies close to the Shannon frequency with
good accuracy provided that the data are considered as
obtained with a FOH instead of a ZOH. It is also possible
to identify the lower-frequency part of a system containing
high-frequency dynamics even if the high-frequency modes
are relatively close to the Shannon frequency.
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