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Abstract: This paper is one of two joint papers, each presenting a different representation of
a feedforward neural network. Here a discrete-time polytopic quasi linear parameter varying
(LPV) model of a nonlinear system based on a neural state-space model is proposed, whereas in
the joint paper (Abbas and Werner [2008]) a neural state-space model is transformed into a linear
fractional transformation (LFT) representation to obtain a discrete-time quasi-LPV model of
the nonlinear system. As a practical application, air charge control of a spark-ignition (SI) engine
is used in both papers to illustrate two different synthesis methods for fixed structure low-order
discrete-time LPV controllers. In the present paper, the synthesis of a fixed-structure low-order
self-scheduled H∞ controller is based on linear matrix inequality (LMIs) and evolutionary search.
A controller is designed for the nonlinear system and its performance is compared with that
achieved when a standard self-scheduled H∞ controller is used.

1. INTRODUCTION

Linear parameter-varying (LPV) gain-scheduled control
of nonlinear systems has received considerable attention
recently as a way of extending linear control techniques to
nonlinear systems. However, constructing an LPV model
of a nonlinear plant is not trivial. Such a model can be gen-
erated from a nonlinear physical plant model; however, a
suitable physical model may not always be available. More-
over, when transforming a physical model into LPV form,
nonlinear characteristics may have to be approximated by
polynomials. A further issue is that a physical model is
typically continuous-time, and approximating a controller
designed in continuous-time e.g. using Tustin approxi-
mation may lead to performance deterioration when the
sampling rate is limited.

An alternative approach that avoids these problems is to
identify a LPV model directly from experimental input-
output data. Neural networks such as multilayer percep-
tron (MLP) networks can model nonlinear systems to an
arbitrary degree of accuracy and have been widely used in
nonlinear control applications, see e.g. (v. d. Boom et al.
[2003]) and (Norgaard et al. [2000]).

A method for extracting an LPV model from a multilayer
perceptron network and controller design based on this
model, was proposed in (Bendtsen and Trangbæk [2002])
and extended in (Abbas and Werner [2008]), where a
neural state-space model is transformed into LFT form. In
(Suykens et al. [1996]), neural network models are inter-
preted as uncertain linear models in LFT representation,
but these representations can only be used for robust
controller design, not for synthesis of LPV controllers.

In this paper we propose a way to transform MLP net-
works into a discrete-time polytopic quasi-LPV models in

a nonconservative way. A method that was presented in
(Kwiatkowski et al. [2006b]) for an automated generation
of affine LPV representations from nonlinear and parame-
ter dependent systems, will be utilized here. The resulting
model can be used directly to design a LPV controller from
input-output data only.

In this paper we use the method proposed in (Apkarian
et al. [1995]) to design a discrete-time LPV controller
for the neural network model - represented as a discrete-
time quasi-LPV model - and then apply the resulting
controller to the original plant. The idea behind this
design technique is to solve standard H∞ problems at the
vertices of a polytope in parameter space that contains
the range of operation. Using a single Lyapunov function
to show stability and finite L2-gain at these vertices, one
guarantees that these properties will also hold for all points
which are linear combinations of the vertices. One can then
interpolate between these vertex controller to construct
the desired controller.

For several practical reasons, the control designer often
wishes to impose constraints on the order and structure
of the controller. In this case however, the synthesis
problem is non-convex and difficult to solve, and various
approaches have been presented in the literature based
on sequential LMI optimization (Ghaoui et al. [1997]),
branch and bound method (Tuan and Apkairan [2000]),
Nonsmooth optimization (Burke et al. [2006]), polynomial
optimization by sums of squares relaxation (Hol and
Scherer [2004]) and other methods. Most of these methods
are used to design linear time invariant controllers only. On
the other hand, designing a fixed-structure low-order LPV
controller is more difficult, and only few researchers have
addressed this issue (Wu and Prajna [2004]). Here we use
a hybrid approach to solve this problem, based on LMIs
and evolutionary search. An efficient way of initializing the
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evolutionary search in this method will also be presented
here.

The paper is organized as follows. Section 2 presents a
method for transforming a neural state-space model into
a discrete-time polytopic quasi-LPV model. The proposed
controller synthesis procedure is presented in Section 3.
To illustrate the proposed method, it is applied to charge
control of a SI engine in Section 4. Finally, conclusions are
drawn in Section 5.

2. DERIVATION OF A QUASI-LPV MODEL IN
POLYTOPIC FORM FROM A NEURAL NETWORK

MODEL

Consider a discrete-time nonlinear model

xk+1 = g(xk, uk) (1a)

yk = Cxk (1b)

The problem considered in this section is to represent this
model in the form of a discrete-time polytopic quasi-LPV
model

xk+1 = ΣiαiAixk + ΣiαiBiuk = A(θk)xk + B(θk)uk

yk = Cxk (2)

An LPV system is called polytopic when it can be rep-
resented by state-space matrices A(θk), B(θk), C(θk) and
D(θk), where the time varying parameter vector θk ∈ Rl

ranges over a fixed polytope and the dependence of A(.),
B(.), C(.) and D(.) on θk is affine. The time varying
parameter vector is assumed to depend on a vector of
measurable signals ρk ∈ R

r referred to as scheduling
signals, according to

θk = s(ρk) (3)

where s : Rr → R
l is a continuous mapping. In the

case of quasi-LPV systems, some or all of the scheduling
parameters depend on measured system input and output.
A matrix polytope is defined as the convex hull of a finite
number of matrices Ni with the same dimension. That is,

Co{Ni, i = 1, . . . , l} :=

{ l
∑

i=1

αiNi : αi ≥ 0,

l
∑

i=1

αi = 1

}

The time varying parameter θk varies in a polytope Θ,
which is assumed to be a compact set, with vertices
v1, v2, . . . , vr ; that is,

θk ∈ Θ := Co{v1, v2, . . . , vr}

The problem considered in this section is to transform the
neural state-space model (1a),(1b) into a polytopic quasi-
LPV model (2) which has the above properties with

[A(θk) B(θk)] ∈ Pθ := Co

{

[Ai Bi] , i = 1, . . . , r

}

(4)

where Pθ ⊂ Rl : θ ∈ Pθ∀k > 0.

The idea in (Kwiatkowski et al. [2006b]), which proposed
a method to generate affine LPV representations from
nonlinear systems, will be extended here to construct the
above quasi-LPV model from a given MLP feedforward
neural network containing a single linear hidden layer with
l neurons and hyperbolic tangent activation functions. As-
sume that the nonlinear system dynamics are represented
in the following neural state-space form, which has zero
bias in the output layer

x̃
1:p
k+1 = Wo tanh(Wxx̃k + Wuũ + W̃b) (5a)

ỹk = Cx̃k (5b)

where x̃k = [ỹT
k ỹT

k−1 ... ỹT
k−ny]T ∈ R

n is the state

vector. Note that x̃k+1 given in (5a) is just the predicted

output vector from the neural network, i.e. x̃
1:p
k+1 = ˆ̃yk, and

the rest of the state vector is given as follows

x̃k+1 = [x̃1:p
k+1 ỹT

k ỹT
k−1 ... ỹT

k−ny+1]
T

ỹk ∈ R
p is the output vector of the system, ũ =

[ũT
k ũT

k−1 ... ũT
k−nu]T , ũk ∈ R

m is a control signal.

Wo ∈ Rp×l and Wx ∈ Rl×n, Wu ∈ Rl×(m×nu) contain the
output and hidden layer weights, respectively. W̃b ∈ R

l

contains a set of biases in the hidden layer. Prior to
the network training, the user has to select values for l
and ny, nu, such that a good estimation of the parameter

matrices Wo,Wx,Wu and vector W̃b is obtained (Norgaard
et al. [2000]). Note that the choice of the number of hidden
neurons l will determine the number of scheduling param-
eters of the LPV model. For simplicity we will assume
nu = ny.

In order to remove the bias W̃b from (5a), it is assumed
that there exists an equilibrium point (x̃k, ũ) = (x̃o

k, ũo),
such that

0 = Wo tanh(Wxx̃o
k + Wuũo + W̃b)

This equilibrium can be determined as
[

x̃o
k

ũo

]

= −W+W̃b (6)

where W = [Wx Wu] is assumed to have full column rank
and W+ is a right inverse. Then the network coordinates
can be changed such that the new coordinates are xk =
x̃k − x̃o

k, u = ũ − ũo. As a result, (5a) can be written as

x
1:p
k+1 = Wo tanh(Wxxk + Wuu) (7)

Now, define the following time varying parameter

θ
j
k =







tanh(W j
xxk + W j

uu)

(W j
xxk + W

j
uu)

, (W j
xxk + W j

uu) 6= 0

1, (W j
xxk + W j

uu) = 0

(8)

for 1 ≤ j ≤ l, where W j
x ,W j

u denote the jth rows in the
respective hidden layer weight matrices. Then (7) can be
rewritten as

xi
k+1 = W i

oΘd(Wxxk + Wuuk) (9)

for 1 ≤ i ≤ p, where Θd ∈ Rl×l is a diagonal matrix that
contains the variable parameters of the LPV model, and
W i

o denotes the ith row in the outer layer weight matrix.
In this way, the neural network model is transformed into
a quasi-LPV model (2) where

A(θk) =























A11(θk) A12(θk) . . . A1n(θk)
...

...
...

...
Ap1(θk) Ap2(θk) . . . Apn(θk)

1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1























(10)

with Ari(θk) =
∑l

j=1 wrj
o θ

j
kwji

x , where, wrj
o , wji

x and wji
u

are the elements of W i
o, W j

x and W j
u , respectively,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6467



B(θk) =























B11(θk) B12(θk) . . . B1(m×nu)(θk)
...

...
...

...
Bp1(θk) Bp2(θk) . . . Bp(m×nu)(θk)

0 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0























(11)

with Bri(θk) =
∑l

j=1 wrj
o θ

j
kwji

u , and

C = [Ip×p 0 . . . 0] (12)

The time varying parameters can be collected into a vector
θ ∈ Rl; its bounds belong to [θj,min θj,max] where

θj,min = min
0≤k≤T

θj (13a)

θj,max = max
0≤k≤T

θj (13b)

again for 1 ≤ j ≤ l where k ∈ [0 T ] is the time interval
in which the training data have been acquired. It should
be noted that 0 ≤ θj,min, θj,max ≤ 1 so no scaling is
required. This completes the transformation of the neural
state-space model (5a), (5b) into a quasi-LPV model in
the polytopic representation (2) with the condition (4)
where A(θ), B(θ), and C are given by (10) - (12). The
time varying parameter vector is defined by (8) and its
bounds are given by (13a),(13b).

3. DISCRETE-TIME CONTROLLER DESIGN

This section describes the discrete-time design of a fixed-
structure, low-order, self-scheduled H∞ controller, based
on a model obtained by the method of the previous sec-
tion. A hybrid evolutionary-algebraic approach for solving
the non-convex problem of fixed structure and low-order
controller design that was proposed in (Farag and Werner
[2004]) is utilized here for this purpose. The method
is based on the following assumptions (Apkarian et al.
[1995]):

• The discrete-time polytopic LPV system has the form

xk+1 = A(θk)xk + B1(θk)wk + B2(θk)uk

zk = C1(θk)xk + D11(θk)wk + D12(θk)uk

yk = C2(θk)xk + D21(θk)wk + D22(θk)uk

(14)

and the system matrices are assumed to belong the
polytope Pθ defined by

Pθ := Co

{

[

Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

]

, i = 1, 2, . . . , l

}

(15)

where Ai, B1i, . . ., denote the values of the matrices
A(θk), B1(θk) , . . . at the vertices vi of the parameter
polytope Θ.

• in (14) the system matrices B2(θk), C2(θk), D12(θk)
and D21(θk) are parameter dependent.

• D22(θk) = 0.
• the pairs (A(θk), B2) and (A(θk), C2) are quadrati-

cally stabilizable and quadratically detectable over Θ
respectively.

• The discrete-time LPV controller which establishes
quadratic H∞ performance for the closed-loop system
has the following state space representation

Ω(θ) :=

[

AK(θk) BK(θk)
CK(θk) DK(θk)

]

(16)

where AK , BK , CK , DK are affine in θ.
• The closed-loop system can be compactly written in

the form
xcl

k+1 = Acl(θk)xcl
k + Bcl(θk)wk

zk = Ccl(θk)xcl
k + Dcl(θk)wk

(17)

In the closed-loop system (17) the system matrices can be

represented as Acl(θk) = Ao(θk) + B̃Ω(θk)C̃, Bcl(θk) =

Bo(θk) + B̃Ω(θk)D̃21, Ccl(θk) = Co(θk) + D̃12Ω(θk)C̃,

Dcl(θk) = D11(θk) + D̃12Ω(θk)D̃21 where

Ao(θk) =

[

A(θk) 0
0 0nk×nk

]

, Bo =

[

B1

0

]

, D̃21 =

[

0
D21

]

Co = [C1 0] , B̃ =

[

0 B2

Ink
0

]

,

C̃ =

[

0 Ink

C2 0

]

, D̃12 = [0 D12]

where nk < n is the order of the controller.

The synthesis is based on the following result given in
(Apkarian et al. [1995]) and (Apkarian et al. [1996]).

Theorem 1. Consider the discrete-time polytopic LPV
system (14). There exists a discrete-time LPV con-
troller guaranteeing quadratic H∞ performance γ along
all parameter trajectories in the parameter polytope Θ
if and only if there exist a symmetric matrix Xcl in
R

(n+nk)×(n+nk) satisfying the system of l + 1 LMIs





AT
cliXAcli − X AT

cliXBcli CT
cli

BT
cliXAcli BT

cliXBcli − γI DT
cli

Ccli Dcli −γI



 , i = 1, ..., l + 1

(18)

The condition in (18) - for a given controller - is linear
in the variables γ and Xcl. To determine the optimal
performance measure, one needs to find the solution to
the problem

min
Xcl

γ subject to (18) (19)

To solve the non-convex problem of finding a controller of
order nk < n that minimizes the performance measure,
we follow the approach in Farag and Werner [2004] and
split the original problem into a convex subproblem -
the minimization problem (19) - and a nonconvex one -
the search for the controller parameters. The former one
can be solved with LMI solvers and the latter one with
evolutionary search techniques. Let K denote a set of local
controllers {K1, . . . ,Kl} for each vertex. The synthesis
procedure can be summarized as follows.

• Generate an initial random population of controllers
for all vertices {K1, . . . ,Kµ}.

• Evaluate the objective function

f(K)i =































γ̂ if Acli is stable for each
vertex,

κ(Acli) + βu if Acli is unstable for
any vertex,

βs if Acli stable for each
vertex, (19) infeasible for
any vertex

where γ̂ is the solution to the minimization problem
(19). The term κ(Acli) denotes the maximum real
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part of the eigenvalues of Acli for any vertex, and
βu ≫ βs represents a penalty for destabilizing con-
trollers and infeasible inequalities, respectively.

• Evolve the current population, i.e. use ranking to
evaluate the fitness and apply evolutionary operators
(mutation and crossover).

• Repeat the steps Evaluate and Evolve until a stop-
ping criterion is met.

Next we propose a way to initialize the population of
the evolutionary search. First, the problem is solved for
each vertex, i.e. (19) subject to a single LMI. Then the
populations associated with each vertex are fused into a
single population whose size equals the number of decision
variables. This larger population is then taken as the initial
population of the original problem of synthesizing a self-
scheduled H∞ controller.

The selection of the structure (ny, nu, l) of the neural
state-space model is not trivial. Moreover, the assessment
of the quality of a neural network model should not be
done based on cross validation by simulation alone - a
model should be assessed in terms of achievable control
performance when the synthesis is based on this model. For
this purpose, a whole set of neural network models should
be trained, with different structure and using different
training signals. The modelling and synthesis procedure
described above can then be applied to all models in
the set, and the achieved control performance can be
compared.

Since the number of the time varying parameters θk,
(8) depends on the number of neurons in the hidden
layer of the neural state-space model, the efficiency of the
synthesis approach is improved as that number is reduced,
because the number of the LMIs (2l + 1 and l + 1 in the
case of full-order and fixed-structure low-order controllers,
respectively) is decreased, as well as the number of decision
variables. This should be taken into consideration when
the number of the hidden neurons is chosen during the
modelling stage.

4. APPLICATION TO CHARGE CONTROL OF AN SI
ENGINE

In the following, the design procedure described in the
previous section is applied to a continuous-time nonlinear
Simulink model of the intake manifold of a SI engine
(Kwiatkowski et al. [2006a]) for air charge control, for more
details about the physical model refer to (Kwiatkowski
et al. [2006a]). The nonlinear dynamics of the system
will be represented as a discrete time quasi-LPV model
based on a neural network model obtained from the input-
output data only. Since the engine is controlled by a
digital controller and the model is in discrete-time form, a
discrete-time LPV controller will be designed.

4.1 The Intake Manifold of an SI Engine

The intake manifold is not an isolated system but it is part
of the overall system of the vehicle, Fig. 1. The nonlinear
engine block generates the torque Te from the normalized
air charge mnac and the motor speed N , and the vehicle
model generates the motor speed from the torque and
some fixed environmental conditions. The opening of the

vehicle
N

V

+
-

+

+
engine

Nref
KP

Overall system

Temnacαlim

manifold

Fig. 1. Overall system in the closed loop system identifi-
cation

throttle valve in the intake manifold αlim is used to control
the amount of the normalized air charge. It should be
noted here that the speed of the engine influences the
internal dynamics of the intake manifold and the engine.

The vehicle model as shown in Fig. 1 has integral behavior;
for this reason the loop is closed between the engine speed
and αlim through a proportional gain Kp as shown in Fig. 1
in order to stabilize the engine speed during the input-
output data collection for system identification.

4.2 Nonlinear System Identification with Neural Networks

Generating an input signal to excite the different dynam-
ics of the nonlinear system is a crucial step in system
identification. The required operating ranges, the sampling
frequency and the bandwidth of the system are important
information to design a rich training signal. As shown in
Fig. 1, the intake manifold system has two inputs αlim and
N , and a single output mnac. The aim here is to construct
a single-input single-output black box model that is robust
against variation of the engine speed. This can be achieved
if the training signal excites the system at different levels
of the engine speed. For this purpose, a random signal,
Nref , in the low frequency range is designed to cover
the whole range of the engine speed and another pseudo-
random multilevel sequence V in the high frequency range
(Norgaard et al. [2000]), up to the Nyquist frequency,
is designed to excite the input-output dynamics of the
system (from αlim to mnac). The way the signals enter the
loop is shown in Fig. 1. The input-output data are collected
and divided into training and validation sets. The required
operating ranges for the different variables to design the
input signal are

mnac ∈ [10 80]%, αlim ∈ [0 100]%, N ∈ [760 6250]rpm

Here NARX model structures are used for the identifica-
tion with different values of ny, nu, l. Several feedforward
networks with different structure were separately trained
using the Levenberg-Marquardt optimization algorithm.
Cross validation confirmed that each model had learned
the behavior of the intake manifold system and was robust
against the variations of the engine speed. In this way a
set of neural state-space models was determined.

4.3 Controller Implementation and Simulation Results

The first step in the proposed design approach is to
convert the neural network models into polytopic discrete-
time quasi-LPV models using the method of Section 2.
Next, controllers are designed for these models. The design
objectives considered here are
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• Rise time tr < 0.3s
• Zero steady state error
• Small overshoot
• Constraint on actuator usage

To meet these objectives, two shaping filters (weights) were
used to tune the controller: WS for sensitivity and WKS for
control sensitivity. These were adjusted by changing their
gains and bandwidths until the required performance was
achieved with the following values:

WS = 0.00178
1 − z−1

1 − 0.995z−1
(20)

WKS = 0.0001
2.97 − 0.2z−1

1 + 0.9802z−1
(21)

Using the hybrid evolutionary-algebraic approach dis-
cussed in Section 2, a discrete-time LPV-PID controller
for the intake manifold system was computed. For com-
parison, a full-order LPV controller was also designed by
solving the associated LMI problem.

The full order controller was designed first. Because the in-
put matrix B2 in (14) depends on time varying parameters,
pre-filtering of the control input uk is required to remove
this dependence as discussed in (Apkarian et al. [1995]).
Thus, a first-order pre-filter with bandwidth larger than
the desired system bandwidth is added (P.F2 in Fig. 2).
The design algorithm which is proposed in Section 4 is
applied to obtain a full-order controller for each model.
These controllers are then tested on the nonlinear model of
the intake manifold. To avoid windup effects after actuator
saturation, an integral anti-windup with fixed gain Kaw

Campo and Morari [1990] is applied as shown in Fig. 2
(the solid part). By comparing the achieved performance
(in terms of the induced L2 gain), the best controller
and the corresponding model are determined. Here the
controller algorithm was applied to 450 neural state-state
space models with different structure and trained with
different signals. Nearly half of these models turned out to
be not quadratic stabilizable or detectable. The best model
has l = 3, nu = 1 and ny = 2 and the smallest induced
L2 achieved is γ ≈ 2.35. The corresponding discrete-time
controller is then connected to the continuous-time nonlin-
ear model through digital-to-analog (DA) and analog-to-
digital (AD) converters as shown in Fig. 2, together with
the anti-windup and another pre-filter (P.F 1), which is
used to shape the step response.

For practical implementation in the electronic control unit
of the car, a low-order controller is required. An LPV-
PID controller was designed using the hybrid algorithm
presented in Section 3. The controller has the structure

K(θk) = KP (θk)+KI(θk)
T

2

1 + z−1

1 − z−1
+

KD(θk)

1 + αT
2

1+z−1

1−z−1

(22)

where T is the sampling time and α is a suitable con-
stant required to make the PID controller realizable. The
LPV-PID controller is designed for the best model. The
synthesis procedure is then applied to find and tune the
coefficients of K(θk) in (22) and the resulting controller
is tested on the nonlinear system. Again, an anti-windup,
this time consisting only of a fixed gain Kaw as shown in
Fig. 2 (the dotted part) is applied to the integral part of
the LPV-PID controller as proposed in (Kwiatkowski et al.

1
s

z
−1

z
−2

z
−1

DA

AD

A
D

++
-

K(θ)

+ -

-

+

P.F 2

P.F 1

Sch. signals

αlim
mnac

manifold

AD

Kaw

Fig. 2. Block diagram of the closed-loop system with
controller and anti-wind up, solid loop for full order
and dashed one for LPV-PID controllers, respectively
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15
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Fig. 3. Tracking of mnac with a full-order controller

[2006a]) to avoid windup effects. As before, the controller
is connected to the nonlinear system through AD and DA
converters and the two pre filters (P.F 1 and P.F 2) are
added for the same reasons as above.

The closed-loop tracking performance is illustrated in
Fig. 3 and Fig. 4 for the full-order and the LPV-PID
controllers, respectively. The full-order controller as well
as the LPV-PID controller follow the reference trajectory
in a satisfactory manner and both achieved the required
objectives. Table 1 shows a comparison between the full-
order and the LPV-PID controller synthesis and the per-
formance of the intake manifold. Table 1, Fig. 3 and Fig. 4
show how the output of the intake manifold with the LPV-
PID controller successfully tracks the required trajectory
and with approximately the same performance as the full-
order controller. It should be kept in mind that the LPV
controller synthesis based on a fixed Lyapunov function
for the whole range of operation - which was used here
- introduces conservatism into the design. This explains
the improvement in the controller performance reported
in (Abbas and Werner [2008]), where LPV controllers
are designed for the same system but with a parameter
dependent Lyapunov function.

Remark 1: The method proposed in Section 3 to find
an initial population for the controller synthesis problem
worked successfully in the present problem where the num-
ber of decision variables is (3 × 2l=24) with population
size 60 and 100 generations. First, the problem (19) is
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Fig. 4. Tracking of mnac with a LPV-PID controller

Table 1. Comparison between full-order con-
troller and LPV-PID controller

Full-order LPV-PID

Order 5th 2nd

tr < 0.16s < 0.15s

Anti-wind up type integrator with static gain static gain

Max. overshoot 1% 1.3%

Max. undershoot 3.8% 4.3%

solved for each vertex subject to a single LMI condition.
In this case the number of decision variables is only 3 and
a feasible solution at each vertex is easily found; the size
of the population associated with each vertex is 60. All
vertex populations are then fused into a single population
of 60 individuals by concatenating vertex individuals rep-
resenting 3 decision variables into individuals representing
candidate solutions to the original problem with 3 × 2l

variables.

Remark 2: The fact that the integral part explicitly ap-
pears in the PID controller facilitates the use of anti-
windup. For the full-order controller, an anti-windup
scheme proposed in (Campo and Morari [1990]) was used
that works well in simulation but increases the complexity
of the controller.

5. CONCLUSIONS

A procedure for transforming neural state-space model
into a nonconservative discrete-time polytopic quasi-LPV
model has been proposed. Based on this model, a hybrid
evolutionary-algebraic synthesis procedure is used to de-
sign a discrete-time, fixed structure and low-order self-
scheduled H∞ controller that guarantees stability and
performance for a wide range of operation. In the design
procedure the interdependence of the modelling step and
controller synthesis step is taken into account. A number
of different neural state-space models are assessed in terms
of the performance achieved with the corresponding con-
trollers. The proposed method was successfully applied to
design the air charge controller of a SI engine, leading to
a discrete-time LPV-PID controller based only on input-
output data of the nonlinear plant. Simulation studies
showed satisfactory performance similar to the perfor-
mance of a full-order LPV controller that was designed
for comparison.
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