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Abstract: In this study, we present a new continuous output feedback type controller mechanism for the 
tracking problem of a class of uncertain nonlinear systems. The proposed strategy requires the 
uncertainties of the dynamical system to be first order differentiable and achieves semi-global asymptotic 
tracking when only the system outputs are measurable. The Controller design is based on a Lyapunov-type 
stability argument. Simulation studies on a two link planar robotic system are presented to illustrate the 
feasibility of the proposed strategy. 

 

1. INTRODUCTION 

The tracking control problem for uncertain nonlinear systems 
has been extensively studied for decades. This extensive 
research interest is not only due to the theoretically 
challenging  nature of the problem but also due to practical 
needs, as the mathematical model for nearly all dynamical 
systems in control theory contain some uncertainty and 
feedback alone is not enough for preferential performance. 
Researchers have proposed many different types of 
controllers depending on the nature of the uncertainty. To 
give a few examples, when the parametric uncertainties are 
constant or slowly time-varying and the function containing 
the overall uncertainties can be linearly parametrizable, due 
to its continuous nature, adaptive control (Kristic et al., 1995; 
Sastry and Bodson, 1989) would be the preferred choice. 
Unfortunately in adaptive controllers each uncertain 
parameter has to be adapted separately, making the tuning 
process (due to the parameter update gains) moderately 
tedious. On the other hand when the uncertainties of the 
system are bounded by some known norm-based function, 
the theory of robust control (Qu, 1998) can be applied. From 
the implementation point of view, unlike adaptive controllers, 
the robust controllers have fewer gains to deal with. 
However, in most cases the convergence of the tracking error 
into an ultimate bound can be assured with the robust 
controllers and over shrinking this ultimate bound, for better 
performance, might cause undesirable system responses (like 
chattering). When the uncertainties of the dynamics are 
periodic, learning controllers (Arimoto et al., 1984; Messner 
et al., 1991;  Dixon et al., 2002) can be used, the down part 
is, there are only limited number of systems with periodic 
dynamics (same is also true for the desired dynamics). 
Recently researches have proposed alternative methods to 
overcome the aforementioned disadvantages of adaptive and 
robust controllers. Motivated by the satisfactory performance 

of PI type controllers for many practical systems, a nonlinear 
Proportional-Integral (NPI) type controller was presented for 
a class of uncertain dynamical systems (Ortega et.al., 2002). 
Though the proposed controller had some discontinuities, 
owing to its simple structure has fewer parameters to tune. 
Moreover, the effects of the controller gains on the system 
are predictable owing to the similarities of the controller 
structure to linear PI type counterpart. Therefore the 
implementation is quite easy. In 2004, Xian-et.al. presented a 
continuous tracking controller strategy for second order 
differentiable uncertain dynamics systems. The proposed 
controller strategy achieves asymptotic tracking and was 
backed up by a novel Lyapunov based analysis. However, our 
experience with the proposed method have shown that the 
control input signal, similar to variable-structure controller, 
has high order frequency components, which in practical 
implementations might trigger chattering like phenomenon. 

The development of controllers that only require output 
measurements (i.e., output feedback (OFB)) has received 
considerable interest in literature due to the advantages of 
eliminating many sensors (e.g., reduced system complexity, 
cost, and noise). Global1 solutions to the OFB link position 
setpoint control problem have been presented by several 
researchers. For example, model-based global regulating 
OFB controllers were proposed in (Berguis and Nijmeijer, 
1993; Burkov, 1993; Kelly, 1993). With the intent of 
overcoming the requirement of exact model knowledge, an 
OFB regulator was designed (Ortega et al., 1995); however, 

                                                 
1 Global position tracking means that the controller must 
drive the link position error to zero for any finite, initial 
position and velocity tracking errors, with no conditions on 
the size of the initial tracking errors.  
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the stability result was semi-global2 asymptotic. On the other 
hand, a limitation that exists in almost all of the proposed 
OFB link position tracking controllers is the semi-global 
nature of the stability results. To give a few examples, a 
model-based observer was used to construct a semi-global 
exponential link position tracking controller (Lim et al., 
1996). Variable structure OFB controllers were designed to 
compensate for parametric uncertainty (Canudas de Wit and 
Fixot, 1991; Canudas de Wit and Slotine 1991). Filter-based 
robust control schemes which produce semi-global, 
uniformly ultimately bounded (UUB) were designed in 
(Berghuis and Nijmeijer, 1994; Qu et al., 1995; Yuan and 
Stepanenko, 1991). Then adaptive OFB controllers were 
presented in (Burg et al.,1994; Burg et al., 1996; Kaneko and 
Horowitz, 1997; Zergeroglu et al., 1999) that yield semi-
global asymptotic link position tracking in the presence of 
parametric uncertainty. In 1996, Loria developed a model-
based controller which produces global uniform asymptotic 
tracking but the proposed method is only valid for a one 
degree-of-freedom (DOF) system. Then, a global OFB 
adaptive controller was designed for n-DOF robot 
manipulator (Zhang et al.,2000) Finally, a robust OFB 
tracking controller was proposed with a global, uniformly 
ultimately bounded link position tracking (Dixon et al.,2004).  

In this work, we extend our previous result (Kuvulmaz and 
Zergeroglu, 2007) to output feedback case. When compared 
to (Ortega et al., 2002) our approach does not possess any 
singularities and when compared to (Xian et al., 2004) can 
compensate the uncertainties for a larger class of nonlinear 
systems. However, our approach requires a high gain 
condition on the feedforward compensation gain which might 
be considered as a theoretical weakness.  

The remaining of the paper is organized as follows: the 
model under consideration and the control problem are stated 
in Section 2. Section 3 contains the error system 
development, while controller design with the stability 
analysis to ensure asymptotic tracking and boundedness of 
the closed loop system are given in section 4. Simulations 
performed on a two-link, planar robotic mechanism are 
presented in Section 5 and lastly some concluding remarks 
with possible future research are presented in Section 6.  

2. PROBLEM STATEMENT 

For the ease of presentation3, we consider a second order 
single-input single-output dynamical system having the 
following form 

)(),,()( tuxxfxxm =+ θ&&&  (1) 

where x  is the output and the notations x& , x&& are used to 
identify the first and second order derivatives of the output 
respectively. 0)( 〉xm  and ),,( θxxf & is first order 

                                                 
2 In a semi-global stability result, a control gain often has to 
be adjusted according to the “size” of the initial conditions.  
3 Extension to multi-input multi output and higher order 
versions are also possible with a considerably small effort. 

differentiable nonlinear, uncertain function and )(tu is the 
control input.  

Property 1: The inertia matrix can be upper and lower 
bounded by the following inequalities (Lewis et al., 1993) 

21 )( mxmm ≤≤  (2) 

where 1m and 2m are positive constants.  

Our control objective is to ensure that the state signal )(tx  
would track the given smooth reference trajectory )(txd . To 
quantify this objective we defined the tracking error signal 

)(te in the following form 

xxe d −=  (3) 

In our analysis we will utilize the common assumption that 
the reference trajectory signal )(txd and its first three time 
derivatives are always bounded (i.e. 

∞∈Ltxtxtxtx dddd )(),(),(),( &&&&&& ).  

Velocity variables can not be measured because of that the 
related variables are obtained by filtering technique of 
position error. While position tracking error is the input, the 
velocity tracking error is the output of the system.  The 
proposed filter dynamics is as follows 

ekpr f )1( 1 +−=  (4) 

ff rkeepp )1( 1 +−−+−=&  (5) 

fff ree +−=&  (6) 

where the filter output ℜ∈)(trf  will be used for the link 
velocity variable.  ℜ∈)(),( tetp f  are the auxiliary variables 
used to establish the velocity variable. 1k  is the positive 
control gain which is defined as  

)1(1

1
1 += nk

m
k  (7) 

where nk is the positive nonlinear damping gain. In order to 
form the open loop position error system, dynamics of the 
filter output would be obtained. Taking the time derivative of 
(4) and inserting for p& from (5) we get the dynamics of the 
filter output  

fff rkeepekr )1()1( 11 +−−+−+−= &&  (8) 

Inserting the value of p from (4) in equation (8),  

fff reekr −−++−= η)1( 1&  (9) 

where the filtered error signal ℜ∈)(tη is defined as  

free ++= &η  (10) 

If  (10) is rearranged, we get the error dynamics as 

η+−−= free&  (11) 

In addition, we define an auxiliary term named integral effect 
injection term ξ as 
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∫ +++=
t

f edretet
0

)0())()(()()( τττξ  (12) 

It is obvious that the equation (12) can also be expressed as  

∫=
t

dt
0

)()( ττηξ  (13) 

 

3. ERROR SYSTEM DEVELOPMENT 

Taking the time derivative of (10), multiplying both sides of 
the resultant equation by )(xm and inserting for 

)(,),( fertx f &&&& from (1), (9) and (11) respectively, we have  

uermNmkm ff −+−+−= )2(1 ηη&  (14) 

After adding and subtracting ηm&
2
1  term to the both sides of 

the (14), we get 

ηη

ηη

mm

uermNmkm ff

&&

&

2
1

2
1

)2(1

−+

−+−+−=
 (15) 

where the auxiliary signal is defined as  

),,( θxxfxmN d &&& +=  (16) 

At this point we define the desired version of the auxiliary 
signal N , dN such that 

dd xxxxd NN === ,: &&  (17) 

Note that due to assumption that the reference trajectory term 
dx is third order differentiable, the newly defined “desired” 

version of the auxiliary term can be proven to be at least first 
order differentiable ))(),(..( ∞∈LtNtNei dd

& . Adding and 
subtracting dN to the right hand side of (17), we obtain  

ηηη muNNmkm d &&
2
1~

1 −−++−=  (18) 

where the function N~ is defined as  

ηmermNNN ffd &
2
1)2(:~

++−−=  (19) 

Remark 1: Since the auxiliary function N defined in (16) is 
continuously differentiable, we can show that N~ can be upper 
bounded in the following manner: 

jjN )(~ ρ≤  (20) 

where ⋅ denotes the standard Euclidean norm, )(tj is the 
vector function as  

[ ]ηff reej =:  (21) 

and )(⋅ρ is a positive defined non-decreasing bounding 
function.  

Based on the subsequent stability analysis we propose the 
following nonlinear PI control law  

∫ ++

+++++−=
t

ffi

fif

drek

eeekrktu

0

1

)()(

)(tanh)1()1()(

ττ

β

 (22) 

where 1k , ik  and β are positive control gains.   Substituting 
(22) into (18) the closed loop dynamics for the filtered 
tracking error is obtained as  

efee
t

dik

frkmkdNNmm

−+−∫−

++−++−=

)(tanh
0

)(

)11(1
~

2
1

βττη

ηηη &&

 (23) 

4. ANALYSIS 

Before going into the stability analysis, we state the 
following Lemma which will be useful by helping us prove 
the Lyapunov candidate function is lower bounded.  

Lemma1: Consider the auxiliary function )(tIβ defined as 

∫ +−=
t

bII w
0

: δβ  (24) 

with 

))tanh((: fdI eeNw +−= βη  (25) 

where the auxiliary constant term bδ , explicitly given in the 
following form 

).0())0()0((

)1))0()0(cosh((ln:

df

fb

Nee

ee

+−

++= βδ
 (26) 

When the constant scalar control gain β of (26) is selected to 
satisfy  

[ ]
∞∞

+〉 dd NNk &β  (27) 

with the high but bounded design gain k defined as 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=
≠0

)tanh(
1,1max

w
w

k ε  (28) 

where 0〉ε . Then )(tIβ will always be lower bounded by 
zero ( )0.. ≥Iei β  or equivalently 

b

t

I dw δττ ≤∫
0

)(  (29) 

Proof: For presentation easiness, a simple transformation is 
given in the following form by using (6) and (10) 

ww+= &η  (30) 

feew +=  (31) 

To prove the Lemma, we take only the part inside the integral in 
(24) and substitute (30) to obtain 
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.))((tanh)(

)()(

)))](tanh()(()([)(

0

0

00

∫

∫

∫∫

−

+

−=

t

t

d

t

d

t

I

dw
d
wd

dN
d
wd

dwNwdw

ττ
τ
τβ

ττ
τ
τ

ττβττττ

 (32) 

evaluating the third term and integrating the second term on 
the right hand side by parts, we have  

,])0()0()1)))0(((cosh(ln[
]1)))(((cosh(ln)()([

)(tanh()()()()(
00

d

d

t
d

d

t

I

Nww
twtNtw

dw
d

dNNwdw

−++
+−+

⎥⎦
⎤

⎢⎣
⎡ −−= ∫∫

β
β

ττβ
τ

τττττ

 (33) 

where the β term has been added and subtracted from the 
right hand side. Now we can upper bound (33) in the 
following way 

( )( )( )( )[ ]
( )( )( )( )[ ])0()0(10coshln

1coshln)()(

))((tanh
)(

)()()()(
00

d

d

t
d

d

t

I

Nww
twtNtw

dtw
d

dNNwdw

−++

+−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+≤∫∫

β

β

τβ
τ

τττττ

 (34) 

Where the 0))(tanh()( ≥twtw has been utilized. Notice that 
in (34), the integral term (the first line) on the right hand side 
of the inequality will exactly be zero when 0)( =tw and will 
have negative values for all other values of )(tw when the 
controller gain β is selected to satisfy (27). Similarly the 
same selection of β  will also ensure the negative semi 
definiteness of second term on the right hand side of (34) (as 

( ) 01))((coshln ≥−+ wwk  for )1( ε+≥k  ). And from the 
definition of bδ given in (26), it is straight forward to show 
that (29) holds.  

We are now ready to present the following Theorem 

Theorem 1: The control law of (22) ensures that all the 
signals in the closed loop system of (23) will remain bounded 
and the semi-global asymptotic convergence and stability of 
the error signal )(te is guaranteed in the sense that 

0)(lim =
∞→

te
t

 (35) 

provided that the control gain β is adjusted according to (27) 
and damping gain nk is selected to satisfy 

 ))0((
1

22 skn λ
λ

ρ〉  (36) 

where 1λ  and 2λ are defined as 

 { }0,,1,min
2
1

11 ikm=λ  (37) 

{ }bikm δλ ,,1,max
2
1

22 =  (38) 

and )(ts  is the vector function defined as  

[ ]TT zjs ξ=  (39) 

Proof: To prove the Theorem we define a non negative 
function of the form 

22

2
1

2
1)( ξη ikZmtV ++=  (40) 

with )(tZ  is defined to have the form  

IPZ ββ +=:  (41) 

where Pβ is selected as  

222

2
1

2
1

2
1

ffP ree ++=β  (42) 

and Iβ term is the lower bounded function defined in (24). 
We can upper and lower bound (40) by using 1λ and 2λ terms 
in the following way 

2
2

2
1 sVs λλ ≤≤  (43) 

Taking the time derivative of (40) substituting (7) and (23) 
we obtain 

 NkereV nff
~22222 ηηη +−−−−−=&  (44) 

And from (20), we can state the following upper bound for 
the time derivative of function V given in (40) 

[ ]22 )( ηρη nkjjjV −+−≤&  (45) 

Adding and subtracting  
nk

jj
4

)( 22ρ
 term to the right hand 

side of (45) yields 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−−

+−≤

n
n

n

k
jj

jjk

k
jj

jV

4
)(

)(

4
)(

22
2

22
2

ρ
ρηη

ρ&

 (46) 

In the above equation the terms in the brackets is square of 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

n
n

k

jj
k

2

)(ρ
η and due to the negative sign  on its front, 

is always negative, this enables us to further upper bounded 
(46) to have the following form 

2
2

4
)(

1 j
k

j
V

n
⎥
⎦

⎤
⎢
⎣

⎡
−−≤

ρ&  (47) 

When the damping gain nk is selected sufficiently large we 
can obtain 

 
4

)(
,

2
2 j

kjV n

ρ
ψ 〉−≤&  (48) 

for some 0〉ψ . Equation (48) can also be defined as 
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4
)(

,
2

2 s
kjV n

ρ
ψ 〉−≤&  (49) 

With the help of (43) we can rearrange (49) in the following 
way 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
〉−≤

1

22 )(
4
1,

λ
ρψ

tV
kjV n

&  (50) 

Notice that, )0(V is the maximum value of )(tV . So we can 
adjust nk  according to )0(V such that 

)
)0(

(
4
1,

1

22

λ
ρψ

V
kjV n 〉−≤&  (51) 

and finally when the damping gain is selected as follows we 
can upper bound the time derivative of )(tV  according to 
initial conditions  

))0((
4
1,

1

222 skjV n λ
λ

ρψ 〉−≤&  (52) 

From the structure of (40) and (52) it is clear that 
( )0,0 ≤≥ VV &  ∞∈LV  and due to the structure of V all the 
signals contained in V , are also bounded, that is 

∞∈ Lttrtete ff )(),(),(),( η . From (11) and (21) we can 
conclude that ∞∈Ltjte )(),(& . Thus the control input signal of 
(22) is bounded. It follows from (23) that ∞∈Lη&  that is all 
signals in the closed loop error system are bounded. Finally, 
from the structure of (52) we can conclude that j , therefore 

2Le∈ . With the above information and direct application of 
Barbalat’s Lemma (Sadegh and Horowitz, 1990) we can 
wrap up that the tracking error term, )(te will approach to 
zero as timpe approaches to infinity, as proposed in (35).  

5. SIMULATION RESULTS 

To illustrate the performance of the proposed control scheme, 
we have performed simulations on a 2-link, revolute, direct-
drive robot manipulator with the following dynamics (DDM 
Operations Manual, 1992) 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ +−−
+

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

++
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2

1

2

1

123

2123223

2

1

2232

232231

2

1

0
0

0)sin(
))(sin()sin(

)cos(
)cos()cos(2

x
x

f
f

y
y

xxp
xxxpxxp

x
x

pxpp
xppxpp

d

d

&

&

&

&

&

&&&

&&

&&

τ
τ

 (53) 

where x , x& , x&& are link position, velocity and acceleration 
vectors respectively. The unknown but constant parameters 
representing the robot parameters are taken as p1=3.473 
[kg.m2], p2 = 0.193 [kg.m2], p3 = 0.242 [kg.m2], fd1 = 5.3 
[Nm.s], fd2 = 1.1 [Nm.s] during the simulation studies. The 
robot’s reference trajectory is selected as  

rad
tt
tt

tx
tx

d

d

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−−
=⎥

⎦

⎤
⎢
⎣

⎡

))3.0(exp1()(sin2.1
))3.0(exp1()(sin7.0

)(
)(

3

3

2

1  (54) 

For both joints the initial position values are selected to be 
0.5236 rad (30 degrees). After the tuning process a fair 
performance for the controller was achieved when the 
controller gains were selected as follows 

40=nk ,  5=ρ ,  5001 =k 200=ik ,  100=β  (55) 

The simulation results are shown in Figures 1-2. Figure 1 
presents the link position tracking errors while Figure 2 
presents the control torques applied to each link motor during 
the simulations. As can be observed from the simulation 
results the control gain, β , is not high compared to the other 
controller gains. During the simulation studies we have also 
observed that cranking up β does not affect on the controller 
performance much. Therefore, it is our belief that the high 
gain condition given in (27) is only a theoretical drawback.  

6. CONCLUSION 

In this paper4, we have presented a new output feedback 
controller strategy for the tracking control of a class of 
uncertain nonlinear systems. Despite the parametric 
uncertainties in the system dynamics, both constant and/or 
time-varying, the proposed controller guarantees semi-global 
asymptotic tracking, and only requires the parametric 
uncertainties to be first order differentiable. Due to the 
continuous nature of the controller the proposed method can 
also be used in backstepping type controller designs. 
Moreover since the controller proposed can be formulated as 
a N-PI type controller, implementation and gain tuning are 
straightforward compared to other uncertainty compensating 
controllers in the literature. However the proposed controller 
requires a theoretical high gain condition on the 
compensation gain, β , given in (27). Future studies will 
concentrate on reducing this high gain condition.  

 
Fig. 1. Position Tracking Errors 

 

                                                 
4 This work was mainly supported by the grands provided 
from The Scientific Technological Research Council of 
Turkey-TÜBİTAK Project No: 104E061 
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Fig. 2. Control Torque Inputs 
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