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Abstract: Robust control systems synthesis is generally recast as a class of robust feasibility problems
which is to find a solution satisfying a set of parameter-dependent convex constraints for all possible
parameter values. For this class of the problems, a stochastic ellipsoid method with multiple cuts each
of which corresponds to each of the constraint is proposed, where a new update rule is presented for
constructing a smaller ellipsoid which contains the intersection of a previous ellipsoid and half spaces
determined by given multiple subgradients. Moreover, we show an explicit relation between the volume
of the ellipsoid updated by the original method and that of the proposed method. A quantitative analysis
of the volume of the updated ellipsoid is also provided, which leads to a further modification of the
algorithm for achieving fast convergence.
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1. INTRODUCTION

Robust control synthesis such as guaranteed cost regulator or
LPV control can generally be recast as a class of robust feasibil-
ity problems, which is to find a solution satisfying a parameter-
dependent constraint. Even though this problem has a convex
constraint in design variable, finding a solution is determin-
istically intractable due to its parameter-dependency, that is,
we have to handle infinite number of constraints depending on
uncertain parameters in principle.

In order to cope with this difficulty, the stochastic ellipsoid
method (Kanev, De Schutter, and Verhaegen, 2003; Oishi,
2007) has been proposed. This algorithm employs random
sampling of the uncertain parameter and uses the ellipsoid
method (Bland, Goldfarb, and Todd, 1981) for updating the
candidate of the solution. Then, a critical issue for improving
this type of the algorithms is to construct a smaller ellipsoid
which contains the intersection of the previous ellipsoid and
the possible solution set determined by a subgradient of the
constraint with the sampled parameter.

In the previous work (Wada and Fujisaki, 2006), the authors
utilized a fact that the robust control synthesis is originally
formulated with several matrix inequalities corresponding to,
e.g., state feedback gain, observer gain, coupling condition, and
so on, and proposed a modified stochastic ellipsoid method.
This idea was further explored in the context of switched
system design (Wada and Fujisaki, 2007). Note here that the
algorithm (Wada and Fujisaki, 2006) handles these multiple
constraints separately in each iteration, which can lead to more
updates of the candidate of the solution for one random sample,
while the original algorithm can lead to only one update for
one random sample. As a result, with this algorithm, we can
reduce the total number of random samples that is necessary

for convergence, which was extensively demonstrated through
numerical examples.

In contrast to the previous work, in this paper, we propose a
new update rule of an ellipsoid which directly utilizes mul-
tiple subgradients given by the multiple constraints. In other
words, we here consider one-shot update with given multiple
cuts, while the previous approach employs a set of updates
corresponding to the given cuts. Then, we focus our attention
on theoretical aspects of the proposed algorithm. In fact, we
prove that the volume of the ellipsoid updated by the proposed
update rule with multiple subgradients is always smaller than
that of the ellipsoid updated by the original update rule with one
subgradient. Moreover, we derive an explicit relation between
the volume of the ellipsoid updated by the original method and
that of the proposed method. We also provide a quantitative
analysis of the volume of the updated ellipsoid, which leads
to a further modification of the algorithm for achieving fast
convergence.

We hasten to note that there are a few other update rules of
an ellipsoid which use multiple subgradients. For example, in
surrogate cuts (Goldfarb and Todd, 1982), multiple subgradi-
ents are combined into a particular cut which is deeper than
any cut derived by the given subgradients. That is, the ellipsoid
is updated indirectly with the cut. On the other hand, in the
literature (Shor and Gershovich, 1979; Ech-Cherif and Ecker,
1984), the updated ellipsoid is constructed directly with mul-
tiple cuts if its center and its directions of all principal axes
can be determined in advance. Unfortunately, this property is
not satisfied in general except when the number of the given
subgradients is two. In contrast to these existing update rules,
the proposed method enables us to update the ellipsoid directly
with multiple cuts in general even when the number of the
subgradients is greater than two.
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This paper is organized as follows. In Section 2, we state the
problem formulation of the robust feasibility problem with
multiple constraints. In section 3, we propose a stochastic
ellipsoid method with multiple cuts to solve this problem.
Section 4 presents numerical examples. Finally, we make some
concluding remarks in Section 5.

2. PROBLEM FORMULATION

Let us consider a robust feasibility problem with multiple
constraints:

Find z ∈ Rn s.t. vi(z, θ) ≤ 0 ∀θ ∈ Θ ∈ Rp (1)
∀i ∈ {1, 2, . . . ,m}

where Θ is a measurable set and vi : Rn × Θ 7→ R is a
measurable function and convex in z. In this paper, we assume
that n ≥ 2, which has been used in the literature of standard
ellipsoid methods (Bland, Goldfarb, and Todd, 1981).

Since we do not assume that each constraint vi of this problem
is convex in θ, it is generally difficult to find an element of the
solution set
S � {z ∈ Rn : vi(z, θ) ≤ 0 ∀θ ∈ Θ,∀i ∈ {1, 2, . . . ,m}}

if we take a deterministic approach.

We therefore take a probabilistic approach (Tempo, Calafiore,
and Dabbene, 2004). That is, we first introduce a probability
measure P into the set Θ. Then, we consider a z ∈ Rn which
satisfies

P{θ ∈ Θ : vi(z, θ) ≤ 0 ∀i ∈ {1, 2, . . . ,m}} ≥ 1 − ε
for a given accuracy ε ∈ (0, 1). That is, we consider an
approximate solution which satisfies the parameter-dependent
constraints for almost all parameter values. We call such a
z ∈ Rn a probabilistic solution with an accuracy ε.

Our problem in this paper is to develop a randomized algorithm
which finds a probabilistic solution of the problem (1) within a
given risk δ ∈ (0, 1) or says that the problem (1) is infeasible in
a deterministic sense.

3. RANDOMIZED ALGORITHM

In this section, we propose a stochastic ellipsoid method with
multiple cuts for seeking a probabilistic solution within a spec-
ified risk δ ∈ (0, 1). We first choose an initial candidate z0 ∈ Rn

of the solution, a positive definite matrix Q0 � 0, and a param-
eter µ > 0. With z0, Q0, we set the initial ellipsoid E0 which is
described as

E0 � {z ∈ Rn : (z − z0)TQ−1
0 (z − z0) ≤ 1}.

From these parameters, we compute two integers

` �
⌈
2(n + 1) ln

Vol(E0)
µ

⌉
, κ �

 ln
`

δ

/
ln

1
1 − ε

 (2)

where Vol(E0) denotes the volume of the initial ellipsoid E0.

In the following algorithm, k denotes the k-th iteration and
` corresponds to the number of updates, and κ indicates that
the ellipsoid has not been updated for consecutive κ random
samples. Then, zk and Qk are sequentially updated according to
the update rule of the ellipsoid method if zk does not satisfy
vi(zk, θk) ≤ 0 for all i ∈ {1, 2, . . . ,m} for a random sample
θk. When the ellipsoid has not been updated consecutive κ
times, this algorithm stops with zk as output. If ` reaches `, this
algorithm stops indicating infeasibility.

Algorithm 1.

1. Set k := 0 and ` := 0.
2. If ` ≥ `, stop the algorithm indicating infeasibility.
3. Set κ := 0.
4. If κ = κ, stop the algorithm with zk as output.
5. Draw θk ∈ Θ according to P.
6. If vi(zk, θk) ≤ 0 for all i ∈ {1, 2, . . . ,m},

set κ := κ + 1.
7. If there exists i ∈ {1, 2, . . . ,m} such that vi(zk, θk) > 0,

compute subgradients of vi with respect to z at zk
and θk such that vi(zk, θk) > 0, select subgradients
gi, i = 1, 2, . . . , q such that gT

i Qkg j ≤ 0 for all i , j,
and define matrix G composed of gi, i = 1, 2, . . . , q
as

G �
[
g1 g2 . . . gq

]
, 1 ≤ q < n.

Update the candidate of the solution as

zk+1 := zk − γQkG̃e (3)

Qk+1 := η
(
Qk − σQkG̃G̃TQk

)
(4)

where
G̃ � G(GTQkG)−1/2 (5)

α �
−(n − 2) +

√
(n − 2)2 + 4(n − q)

2(n − q)
(6)

γ �
α

1 + 2α
(7)

σ �
2α

1 + 2α
(8)

η �
1 + 2α + qα2

1 + 2α
(9)

and e denotes the q dimensional vector all elements
of which are equal to 1. Set ` := ` + q.

8. Set k := k + 1 and go to Step 2.

Then, a significant feature of the proposed algorithm appears
in the procedure at Step 7, where the ellipsoid is updated via
a set of given multiple subgradients. On the other hand, in the
original stochastic ellipsoid method (Kanev, De Schutter, and
Verhaegen, 2003; Oishi, 2007), the update rule uses only one
subgradient per one update. Another important difference is to
use ` := ` + q in the stopping rule, while Oishi (2007) uses
` := ` + 1.
Remark 1. When q = 1, the update rule at Step 7 of Algo-
rithm 1 reduces to the update rule of the original stochastic
ellipsoid method (Kanev, De Schutter, and Verhaegen, 2003;
Oishi, 2007).

Now, we define the k-th ellipsoid Ek and half spaces Hi, i =
1, 2, . . . q as
Ek � {z ∈ Rn : (z − zk)TQ−1

k (z − zk) − 1 ≤ 0}
Hi � {z ∈ Rn : gT

i (z − zk) ≤ 0}, i = 1, 2, . . . , q.
Then, we obtain the following result.
Theorem 2. The ellipsoids Ek , Ek+1 determined by the update
rule at Step 7 satisfy

Ek ∩
 q⋂

i=1

Hi

 ⊆ Ek+1. (10)

Proof. We first define g̃1, . . . , g̃q and W as[
g̃1 . . . g̃q

]
�

[
g1 . . . gq

]
W, W � (GTQkG)−1/2.
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Note that (GTQkG)1/2 � 0 is positive definite and thus non-
singular. Furthermore, all off diagonal elements of (GTQkG)1/2

are non-positive since we select the vectors g1, g2, . . . , gq such
that all off diagonal elements of GTQkG are non-positive (Ale-
feld and Schneider, 1982). Then, all elements of the inverse
matrix W of (GTQkG)1/2 are non-negative (Graham (1987),
Lemma 5.1).

From this property, we see that for any z ∈ ⋂q
i=1Hi,

g̃T
j (z − zk) =

q∑
i=1

wi jgT
i (z − zk) ≤ 0. (11)

We further define half spaces H̃ j with g̃ j, j = 1, 2, . . . , q as

H̃ j � {z ∈ Rn : g̃T
j (z − zk) ≤ 0}.

Since
⋂q

i=1Hi ⊆ H̃ j for all j = 1, 2, . . . , q, we obtain
q⋂

i=1

Hi ⊆
q⋂

j=1

H̃ j. (12)

This is the first step of this proof.

Then, we go to the next step. We notice that , for any z ∈ Ek,

0 ≥ (z − zk)TQ−1
k (z − zk) − 1

= (z − zk + Qkg̃ j − Qkg̃ j)TQ−1
k (z − zk + Qkg̃ j − Qkg̃ j) − 1

= (z − zk + Qkg̃ j)TQ−1
k (z − zk + Qkg̃ j)

− (z − zk + Qkg̃ j)Tg̃ j − g̃T
j (z − zk + Qkg̃ j)

= (z − zk + Qkg̃ j)TQ−1
k (z − zk + Qkg̃ j)

− (z − zk)Tg̃ j − g̃T
j (z − zk) − 2

≥ −2
(
g̃T

j (z − zk) + 1
)

(13)

holds. From (11) and (13), we obtain

(z − zk)Tg̃ j(g̃T
j (z − zk) + 1) + ((z − zk)Tg̃ j + 1)g̃T

j (z − zk)

= 2(z − zk)Tg̃ jg̃T
j (z − zk) + (z − zk)Tg̃ j + g̃T

j (z − zk)
≤ 0. (14)

Now, we define strips L̃ j, j = 1, 2, . . . , q as

L̃ j � {z ∈ Rn : 2(z − zk)Tg̃ jg̃T
j (z − zk)

+ (z − zk)Tg̃ j + g̃T
j (z − zk) ≤ 0}.

Then we see that

Ek ∩
 q⋂

i=1

H̃i

 = Ek ∩
 q⋂

i=1

L̃i

 . (15)

Finally, we move on to the last step of the proof. We notice that,
for any z ∈ Ek ∩

(⋂q
j=1 L̃ j

)
,

(z − zk)TQ−1
k (z − zk) − 1

+ r
q∑

j=1

(
2(z − zk)Tg̃ jg̃T

j (z − zk) + (z − zk)Tg̃ j + g̃T
j (z − zk)

)
≤ 0,

where r is any positive number. Thus, we set r = α > 0.
Applying (3), and (4) to the above inequality, we can derive
the updated ellipsoid Ek+1 as

(z − zk)TQ−1
k (z − zk) − 1

+ α

q∑
j=1

(
2(z − zk)Tg̃ jg̃T

j (z − zk) + (z − zk)Tg̃ j + g̃T
j (z − zk)

)
= (z − zk)TQ−1

k (z − zk) − 1

+ α
(
2(z − zk)TG̃G̃T(z − zk) + (z − zk)TG̃e + eTG̃T(z − zk)

)
= (z − zk)T Q−1

k (z − zk) + γ2 (1 + 2α) eTe − η
+ 2α(z − zk)TG̃G̃T(z − zk)

+ γ (1 + 2α) (z − zk)TG̃e + γ (1 + 2α) eTG̃T(z − zk)

=
(
z − zk + γQkG̃e

)T (
Q−1

k + 2αG̃G̃T
) (

z − zk + γQkG̃e
)
− η

=
(
z − zk + γQkG̃e

)T (
Qk − σQkG̃G̃TQk

)−1 (
z − zk + γQkG̃e

)
− η
= η

(
(z − zk+1)TQ−1

k+1(z − zk+1) − 1
)
. (16)

With (12), (15), (16), and η > 0, we conclude that

Ek ∩
 q⋂

i=1

Hi

 ⊆ Ek ∩
 q⋂

j=1

H̃ j

 = Ek ∩
 q⋂

j=1

L̃ j

 ⊆ Ek+1.

�

This theorem shows that the proposed update rule appropri-
ately works. That is, the updated ellipsoid Ek+1 contains the
intersection of the previous ellipsoid Ek and the half spacesHi,
i = 1, 2, . . . , q which involve the solution set S. This property
is necessary for ellipsoid method.

Another key issue is that the volume of Ek+1 should be less
than that of Ek. Here, we prove that this property actually holds
showing a relation between the volume of the updated ellipsoid
and the number of given subgradients.
Theorem 3. For given n ∈ {1, 2, . . .}, q ∈ {1, 2, . . . , n − 1},

Vol(Ek+1)
Vol(Ek)

= f (n, q) < 1 (17)

holds, where Ek and Ek+1 denote the original ellipsoid and the
updated ellipsoid respectively,

f (n, q) �

√
(1 + 2α + qα2)n

(1 + 2α)q+n (18)

and α is given by (6).

Moreover, a given q ∈ {1, 2, . . . , n − 2},
f (n, q) > f (n, q + 1) (19)

holds. For a given q ∈ {2, 3, . . . , n − 1},
f (n, q) < ( f (n, 1))q (20)

holds.

Proof. We first show the statement (17). The ratio of the
volume of the updated ellipsoid Ek+1 to that of the original
ellipsoid Ek is given by

Vol(Ek+1)
Vol(Ek)

=

√
det

[
η
(
Qk − σQkG̃G̃TQk

)]
det[Qk]

=

√
det[ηI] det[I − σG̃TQkG̃]

=

√
(1 + 2α + qα2)n

(1 + 2α)q+n

= f (n, q).
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Now, we regard n as a constant and define the function f̃ (q, α)
of q ∈ R, q ≥ 0 and α ∈ R, α ≥ 0 as

f̃ (q, α) � n log(1 + 2α + qα2) − (q + n) log(1 + 2α). (21)

Since f (n, q) and f̃ (q, α) have the same order relation for α
determined by q ∈ {1, 2, . . . , n − 1} and (6), we will use f̃ (q, α)
instead of f (n, q) to show statements (17), (19), and (20) in the
following discussion.

Notice first that the partial derivative of f̃ (q, α) with respect to
α is given by

∂

∂α
f̃ (q, α) = 2q

(n − q)α2 + (n − 2)α − 1
(1 + 2α + qα2)(1 + 2α)

.

Thus, the positive stationary point of f̃ (q, α) is

α =
−(n − 2) +

√
(n − 2)2 + 4(n − q)

2(n − q)
.

Since n − q > 0, f̃ (q, α) is minimized by this stationary point.
Noting that f (n, q) = 1 at α = 0 and this stationary point is
equal to α given by (6), we see that the statement (17) holds.

To show the statement (19), let

αq �
−(n − 2) +

√
(n − 2)2 + 4(n − q)

2(n − q)
,

where n > q > 0.

We first show that
f̃ (q, αq) ≥ f̃ (q + q̃, αq) (22)

for any q̃ ∈ (0, n − q). We differentiate f̃ (q + q̃, αq) with respect
to q̃ and obtain

d
dq̃

f̃ (q + q̃, αq) =

 nα2
q

1 + 2αq + (q + q̃)α2
q
− log(1 + 2αq)


≤

 nα2
q

1 + 2αq + (q + q̃)α2
q
−

2αq

1 + 2αq


=

−q̃α3
q − nα2

q

(1 + 2αq + (q + q̃)α2
q)(1 + 2αq)

< 0,
where we use Lemma 6 (See Appendix A) and the identity

(n − q)α2
q + (n − 2)αq − 1 = 0.

This inequality implies (22).

Following the proof of the statement (17), we can see that, for
any fixed q < n, f̃ (q, α) takes the minimum at α = αq. Thus, if
αq+1 , αq, we have

f̃ (q + 1, αq) > f̃ (q + 1, αq+1).
From this inequality and (22), we see

f̃ (q, αq) ≥ f̃ (q + 1, αq) > f̃ (q + 1, αq+1),
which meets (19).

To show the statement (20), we first show that
f̃ (q, α1) − q f̃ (1, α1) < 0, q ∈ (1, n) (23)

holds. We differentiate the right hand side of (23) with respect
to q and substitute α1 = 1/(n − 1). Then, we obtain

d
dq

(
f̃ (q, α1) − q f̃ (q, α1)

)
=

n
n2 + q − 1

+ n log
(
1 − 1

n2

)
.

Furthermore, we can derive
d
dq

(
f̃ (q, α1) − q f̃ (1, α1)

)
<

n
n2 + n

(
− 1

n2

)
= 0,

where we use n2 + q − 1 > n2 and Lemma 6 (See Appendix A).
Since f̃ (q, α1) − q f̃ (q, α1) = 0 at q = 1, this inequality implies
(23).

Following the proof of the statement (17), we can see that
f̃ (q, α) takes the minimum at α = αq for any fixed q < n. Thus,
if α1 , αq and q , 1, we have

f̃ (q, αq) < f̃ (q, α1).
From this inequality and (23), we obtain

f̃ (q, αq) < f̃ (q, α1) < q f̃ (1, α1)
which meets (20). �

The statement (17) of this theorem means that we can always
obtain the updated ellipsoid of which volume is smaller than
that of the original ellipsoid. Furthermore, the statement (19)
shows that if we use many subgradients , the updated ellipsoid
has a smaller volume. We also remark that, from the statement
(20), the volume of the ellipsoid updated with q subgradients is
smaller than the volume of the ellipsoid updated q times with
one subgradient. This property enables us to replace ` := ` + 1
with ` := ` + q at Step 7 in Algorithm 1.
Remark 4. We can replace (GTQkG)1/2 with W̃ at Step 7 in
Algorithm 1, where W̃ is a triangular matrix which satisfies
W̃TW̃ = GTQkG. This is because the statement (10) of The-
orem 2 still holds since all off diagonal elements of W̃ are non-
negative and all diagonal elements of W̃ are positive (Graham
(1987), Lemma 5.7).

Finally, we summarize the properties of Algorithm 1, where
we see that several useful properties of the stochastic ellipsoid
method (Oishi, 2007) are preserved.
Theorem 5.

(1) The number of random samples is less than or equal to κ`.
(2) The number of updates of ellipsoid is less than or equal to
`.

(3) When Algorithm 1 stops at Step 4 with zk as output, the
probability that satisfies

P{θ ∈ Θ : vi(zk, θ) ≤ 0,∀i ∈ {1, 2, . . . ,m}} ≤ 1 − ε
is less than or equal to δ.

(4) When Algorithm 1 stops at Step 2 indicating infeasibility,

Vol(S ∩ E0) < µ
holds.

Proof. The statements (1) and (2) follow from the construction
of Algorithm 1.

The proof of the statement (3) is similar to the literature (Oishi,
2007). We first define two events, F` and B`:

F` : The number of updates of ellipsoid reaches `, then the
algorithm stops at Step 5 with z` as output.

B` : The random sample z` satisfies

P{θ ∈ Θ : vi(z`, θ) ≤ 0, i ∈ {1, 2, . . . ,m}} ≤ 1 − ε.
That is, z` is not a probabilistic solution with a given
accuracy ε.

Our aim is to show the probability that the output z` of the
algorithm is not a probabilistic solution is less than or equal
to δ for any ` = 1, 2, . . . , `. That is, we show that
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P∞
⋃̀
`=1

(F` ∩ B`)

 ≤ δ
holds.

Notice that, for each ` = 1, 2, . . . , `,
P∞ {F` ∩ B`} ≤ Pκ {F` |B`} Pκ {B`} ≤ Pκ {F` |B`} ≤ (1 − ε)κ

holds. Since the selection (2) implies

`(1 − ε)κ ≤ δ,
we obtain

P∞
⋃̀
`=1

(F` ∩ B`)

 ≤ `(1 − ε)κ ≤ δ
which shows the statement (3) of Theorem 5.

Finally, we show the statement (4). The equation (20) shows
that

Vol(E`+1) < exp
(
− q

2(n + 1)

)
Vol (E`)

when we update the ellipsoid with q subgradients. Therefore, if
` ≥ `, the above inequality and Theorem 2 imply

Vol(S ∩ E0) < Vol(E`) < exp
− `

2(n + 1)

 Vol (E0) ≤ µ.

�

This theorem shows that Algorithm 1 always stops in a finite
number of iterations. When the algorithm stops at Step 4 with
zk as output, the probability that the obtained zk is a probabilistic
solution with ε is greater than 1 − δ. When the algorithm stops
at Step 2 indicating infeasibility, the volume of intersection
between the solution set S and the given initial ellipsoid E0 is
less than or equal to µ. That is, we see that the solution set is
too small to find a solution.

4. NUMERICAL EXAMPLES

In this section, we illustrate the effectiveness of the proposed
algorithm. We here consider H∞ control problem for linear
parameter-varying (LPV) systems, which is taken from Fu-
jisaki, Dabbene, and Tempo (2003).

Let us consider an LPV system
ẋ(t) = A(θ(t))x(t) + B1(θ(t))d(t) + B2(θ(t))u(t)
e(t) = C1(θ(t))x(t) + D12(θ(t))u(t)
y(t) = C2(θ(t))x(t) + D21(θ(t))d(t)

and an LPV controller
ẋc(t) = Ac(θ(t))xc(t) + Bc(θ(t))y(t)
u(t) = Cc(θ(t))xc(t)

where x(t) ∈ Rnx is the state, d(t) ∈ Rnd is the disturbance,
u(t) ∈ Rnu is the control input, e(t) ∈ Rne is the controlled
output, y(t) ∈ Rny is the measurement output, and θ(t) ∈ Θ is
the scheduling parameter. We assume that

DT
12(θ)

[
C1(θ) D12(θ)

]
=

[
0 I

][
B1(θ)
D21(θ)

]
DT

21(θ) =
[

0
I

]
∀θ ∈ Θ.

It is known that if X = XT and Y = YT satisfy the matrix
inequalities

V1(X, θ) � 0, V2(Y, θ) � 0, V3(X, Y, θ) � 0 ∀θ ∈ Θ,

there exists an LPV controller such that the closed loop system
is quadratically stable and the upper bound ofL2 gain from d(t)
to e(t) is less than or equal to γ, where

V1(X, θ) � A(θ)X + XAT(θ) + XCT
1 (θ)C1(θ)X

+ γ−2B1(θ)BT
1 (θ) − B2(θ)BT

2 (θ) + εI

V2(Y, θ) � AT(θ)Y + YA(θ) + YB1(θ)BT
1 (θ)Y

+ γ−2CT
1 (θ)C1(θ) −CT

2 (θ)C2(θ) + εI

V3(X,Y) � −
[

X γ−1I
γ−1I Y

]
and ε > 0 is a given small constant.

For this problem, if we introduce

v(z, θ) �

∥∥∥∥∥∥∥∥
 [V1(X, θ)]+ 0 0

0 [V2(Y, θ)]+ 0
0 0 [V3(X,Y)]+


∥∥∥∥∥∥∥∥ (24)

we have a robust feasibility problem (1) with m = 1, where z
is a vector composed of the variables in X and Y , ‖ · ‖ denotes
Frobenius norm, and [·]+ denotes projection onto the cone of
positive semidefinite matrix. On the other hand, if we introduce

v1(z, θ) � ‖[V1(X, θ)]+‖
v2(z, θ) � ‖[V2(Y, θ)]+‖

v3(z) � ‖[V3(X,Y)]+‖, (25)
the LPV control problem reduces to a robust feasibility problem
(1) with m = 3. In fact, we see that z satisfies the condition

v(z, θ) ≤ 0 ∀θ ∈ Θ
if and only if z satisfies the multiple conditions

v1(z, θ) ≤ 0, v2(z, θ) ≤ 0, v3(z) ≤ 0 ∀θ ∈ Θ.
To illustrate the effectiveness of the proposed algorithm, we
solved the robust feasibility problem with three constraints (25)
and that with one constraint (24), then compared two results.
The former problem was solved by the randomized algorithm
proposed by Oishi (2007).

In this numerical example, we set the coefficients of the state
space equation as

A(θ) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 +

θ1 θ5 θ9 θ13
θ2 θ6 θ10 θ14
θ3 θ7 θ11 θ15
θ4 θ8 θ12 θ16

 = A0 + ∆

B1 =
[

B2 0
]
, B2 =

[
0 1 0 0
0 0 0 1

]T

C1 =

[
C2
0

]
, C2 =

[
1 0 0 0
0 0 1 0

]
D12 =

[
0 I

]T
, D21 =

[
0 I

]
Θ = {∆T∆ ≤ 10−2I}
nx = 4, nd = ne = 4, nu = ny = 2.

Thus, we see z ∈ R20 from X ∈ R5×5 and Y ∈ R5×5. The above
setting gives f (20, 1) = 0.975, f (20, 2) = 0.951 and f (20, 3) =
0.927. From these values, we can expect this algorithm fast
convergence and reduce the computational time if updates with
multiple cuts occur many times.

We chose several values of γ and executed Algorithms 1 100
times, where we chose the probability measure P as uniform
distribution on the set Θ (Calafiore et al., 2000), δ = 0.01,
ε = 0.01, µ = 1, and the initial ellipsoid E0 by letting z0 = 0,
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Table 1. Average numbers of random samples and
average computational times with each γ

γ 1.5 2.5 3.5 4.5 5.5
km

ave 1, 100.4 1, 140.9 1, 228.8 1, 975.2 1, 465.1
rm

feas 0.00 0.00 0.00 1.00 1.00
tmave [s] 6.91 7.16 7.61 9.64 7.06
ks

ave 1, 782.0 1, 782.0 1, 825.2 2, 753.6 1, 714.9
rs

feas 0.00 0.00 0.00 1.00 1.00
tsave [s] 10.19 10.14 10.36 13.17 8.06

Q0 = 100I. The result is shown in Table 1, where kave denotes
the average number of random samples,

rfeas �
The number of trials terminating at Step 4

The number of trials (= 100)
,

and tave denotes the average computational time measured on
a PC with Pentium 4 3.0 GHz and 2.0 GByte memory. The
superscripts ’s’ and ’m’ to kave, rfeas and tave correspond to the
problem (24) and the problem (25) respectively.

Table 1 says that the proposed algorithm generally performed
better than the original algorithm did. Especially, this result is
consistent with the following observation. If the feasibility set
is very small, a candidate z fails to satisfy v(z, θ) for almost
all θ ∈ Θ. This could be also true even if we replace v(z, θ)
with vi(z, θ), i = 1, 2, . . . ,m. Thus, updates with multiple cuts
could occur many times, which leads to fast convergence and
reduction of the computational time.

5. CONCLUSION

In this paper, we have proposed a new update rule of ellipsoid
with multiple cuts in the context of randomized algorithms, and
have investigated its performance. In particular, we have shown
that we can always obtain a smaller ellipsoid by the proposed
algorithm. Then, we have studied the performance of the pro-
posed algorithm, which enables us to modify the stopping rule
of the stochastic ellipsoid method. We have demonstrated this
effect through a numerical example.

Recently, Calafiore and Dabbene (2007) proposed the proba-
bilistic analytic center cutting plane method which is a ran-
domized algorithm similar to the stochastic ellipsoid method
discussed in this paper. We remark that a “multiple cuts” tech-
nique could be developed in that context. In this regard, a
deterministic analytic center cutting plane method employing
multiple subgradients has been developed by Ye (1997).
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Appendix A. COMPLEMENTS TO THEOREM 2

Lemma 6.

(1) For any x ∈ (0, 1),

log
1

1 − x
− x ≥ 0 (A.1)

holds.
(2) For any x ∈ (−1,∞),

log(1 + x) − x ≤ 0 (A.2)
holds.

Proof. Since exp(−x) is convex in x, we have
exp(−x) ≥ 1 − x.

Then, for any x ∈ (0, 1), we see

x ≥ log
1

1 − x
,

which implies (A.1).

Similarly, since exp(x) is convex in x, we have
exp(x) ≥ 1 + x.

Then, for any x ∈ (−1,∞), we see
x ≥ log (1 + x),

which implies (A.2). �

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

401


