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Abstract: This paper is concerned with the distributed fusion estimation problem for discrete-time linear 
stochastic multi-delayed systems with multiple sensors and correlated noise. Firstly, a new optimal filter in 
the least mean square sense is presented for discrete stochastic multi-delayed systems with a single sensor, 
where the white noise filter is used to obtain the optimal state estimate. Then, a distributed optimal scalar-
weighted fusion filter is given for discrete-time linear stochastic multi-delayed systems with multiple 
sensors. A recursive formula for the estimation error cross-covariance matrix between any two local 
optimal estimates is derived. Compared with the centralized filter, it has a little accuracy loss but better 
reliability. At last, a simulation example shows the effectiveness of the proposed algorithms. 

 

1. INTRODUCTION 

The problem of state estimation for systems with time delays 
has been investigated widely due to many applications in 
signal processing, communication and control systems, etc. 
(Zhang & Xie, 2007). The general approaches to the design 
of an optimal filter or observer for these systems include the 
augmented optimal Kalman filter by an augmented state 
space representation, which has the high implementation cost 
and large memory, and the non-augmented optimal filter 
(Mishra & Rajamani, 1975; Priemer & Vacroux, 1969; Raja 
Rao & Mahalana, 1971; Liang & Christensen, 1975; Liang, 
1977), where the optimal filters were directly obtained based 
on projection theory, avoids the disadvantages of the 
augmented approach. 

For systems with distributed multiple sensors, the centralized 
filter (Willner, 1976), where all measured sensor data are 
communicated to a central site for processing, has large 
computational burden and is not fault tolerant though it can 
obtain the optimal estimation when there are not faulty 
sensors. The distributed filter (Hashemipour, 1988), where 
the local estimates can lead to global optimal or suboptimal 
estimation according to certain fusion criterion, has better 
reliability due to its parallel structure that allows a higher 
input data rate and makes fault detection and isolation easy. 
Various distributed and parallel versions of the Kalman filter 
with applications have been investigated. Early, Bar-Shalom 
(1981) studied the correlation of two sensor subsystems and 
gave a formula to compute the cross-covariance matrix of 
two local estimators. Carlson (1990) presented the federated 
square-root filter where an upper bound of the covariance 
matrix of the process noise is used and the initial estimation 
errors between any two local estimators are assumed to be 
uncorrelated, to avoid the computation of cross-covariance 
matrix. Kim (1994) gave the maximum likelihood (ML) 
fusion filter under the assumption of normal distributions. Li 
et al. (2003) gave the unified fusion rules for centralized, 
distributed and hybrid fusion architectures based on a unified 

linear model in weighted least squares (WLS) sense and best 
linear unbiased estimate (BLUE) sense. Three optimal fusion 
algorithms weighted by matrices, diagonal matrices or scalars 
in the linear minimum variance (LMV) sense were presented 
in (Sun, 2004) where the fusion estimation weighted by 
matrices is the same as the ML estimation (Kim, 1994) and 
the distributed estimation in the BLUE sense (Li et al., 2003), 
but the assumption of normal distributions is not necessary. 
Further, the weighted fusion algorithms were applied to the 
distributed fusion filter and smoother for systems with 
correlated noises (Sun & Deng, 2004; Sun, 2005) and 
distributed deconvolution estimators (Sun, 2004). In the 
distributed fusion estimation above, the concerned systems 
do not involve time delays. The Kalman filter for systems 
with multiple sensors having different measurement delays 
were given by a re-organized innovation approach (Zhang et 
al., 2004; Lu et al., 2005), which involves in series of the 
computation of multiple filters with the same dimension as 
the state of the original system. Though it has the same 
accuracy with the centralized, the reliability can not be 
guaranteed if there are faulty sensors.  

So far, the distributed fusion estimation for multi-sensor 
systems with multiple time delays in the state has not been 
investigated although it has wide applications in 
communication and control. Furthermore, to the best of the 
author’s knowledge, the optimal filter for the single sensor 
system with correlated noise has not been solved perfectly in 
(Raja Rao & Mahalana, 1971; Liang & Christensen, 1975; 
Liang, 1977). Different from them, in the present paper, we 
give a new optimal filter by using white noise filter (Mendel, 
1977) based on innovation analysis approach. Further, the 
distributed weighted fusion optimal filter is given for 
discrete-time stochastic multi-delayed systems with multiple 
sensors based on scalar-weighted optimal fusion algorithm in 
the LMV sense (Sun, 2004). Compared with the centralized 
optimal filter, it avoids the high-dimensional computation 
and large memory, and has better reliability due to the 
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parallel structure. A recursive formula to compute the cross-
covariance matrix between any two local estimates is derived. 

The rest of this paper is organized as follows. Problem 
formulation is given in Section 2. The new non-augmented 
optimal filter with white noise filter is presented for single-
sensor system with correlated state and measurement noises 
in Section 3. The distributed optimal scalar-weighted fusion 
filter is given in Section 4. In Section 5, a simulation example 
with three sensors is given. Finally, the conclusions are 
drawn in Section 6. 

2. PROBLEM FORMULATION 

Consider the discrete-time linear stochastic multi-delayed 
system with multiple sensors 
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where the symbol E  is the mathematical expectation, the 
superscript T is the transpose, and tkδ  is the Kronecker delta 
function. 
Assumption 2. The initial states )( kx − , 0,1, ,k d=  are 

independent of )(tw  and )()( tv i , Li ,,2,1=  and 

kkx μ=− )](Ε[ , ),(]))()()([(Ε 0
T lkPlxkx lk =−−−− μμ , 

0,1, ,k d= ; kl ,,1,0= . 
Our aim is to find the distributed optimal (i.e., linear 
minimum variance under scalar weighting) fusion filter 

( )ˆ ( | )ox t t  of state ( )x t  that is generated by scalar-weighted 
fusion of local filters ( )ˆ ( | )ix t t  from the measurements 

))(,),1(),0(( )()()( tyyy iii , Li ,,2,1= . 

3. LOCAL OPTIMAL FILTER 

For every single sensor subsystem of system (1)-(2), the state 
estimation problem can be solved by the augmented approach. 
But the augmented approach requires expensive computation 
cost and large memory due to the high system dimension. To 
avoid these disadvantages, we will derive the optimal filter 
based on innovation approach. It has the smaller computation 
cost than the augmented optimal filter, but has identical 

accuracy. Different from (Raja Rao & Mahalana, 1971; 
Liang et al., 1975, 1977) where some formulas can not be 
implemented, the white noise filter is used to obtain the 
optimal estimator in our approach. 
Theorem 1. For the multi-delayed system (1)-(2) with 
Assumptions 1 and 2, the local optimal Kalman filter based 
on the i-th sensor subsystem is given by 
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with the initial values 0)1|(ˆ )( =−−kx i  and ( ) ( , | 1)iP k l− − − =  
0 ( , )P k l , 0,1, ,k d= , kl ,,1,0= . We define the 

covariance matrix ( ) ( , | )iP ∗ • ( ) ( )TE[ ( | ) ( | )]i ix x= ∗ •  of the 
estimation errors ( ) ( )ˆ( | ) ( ) ( | )i ix x x∗ = ∗ − ∗  and ( ) ( | )ix • =  

( )ˆ( ) ( | )ix x• − • , with =−− )|,()( tltktP i )|,(
T)( tktltP i −− . 

( ) ( , | )i
xwP t k t t− = ( ) ( )TE[ ( | ) ( | )]i ix t k t w t t−  is the correlated 

matrix between ( ) ( | ) ( )ix t k t x t k− = − − ( )ˆ ( | )ix t k t−  and 
( ) ( )ˆ( | ) ( ) ( | )i iw t t w t w t t= − , with ( ) ( , | )i

wxP t t k t−  ( )T ( , | )i
xwP t k t t= − . 

)|()( tktK i −  is the gain matrix and )()( tiε  is the innovation. 
Proof. Taking projection on both sides of (1) on the space 
generated by ))(,),1(),0(( )()()( tyyy iii , we have (4). From 
projection theory, we have (5) and (7), where the gain 

( ) ( | )iK t k t−  is defined as follows 
( ) ( )T 1 ( ) ( )T( | ) E[ ( ) ( )]E [ ( ) ( )]i i i iK t k t x t k t t tε ε ε−− = −     (15) 

Substituting (2) into (7), we can rewrite (7) as 
( ) ( ) ( ) ( )( ) ( ) ( | 1) ( )i i i it H t x t t v tε = − +                  (16) 

Substituting (16) into (15) and noting that ( )x t k− =  
ˆ( | 1) ( | 1)x t k t x t k t− − + − −  and ( )ˆ( | 1) ( | 1)ix t k t x t t− − ⊥ − ,  

where the symbol ⊥  denotes orthogonality, and the 
uncorrelation of ( )x t k−  and ( ) ( )iv t , 0k ≥ , we have (8). (9) 
can be obtained directly from (16). 
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From projection theory, we have the white noise filter 
( )
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Substituting (16) into (17) and noting that ( )ˆ ( | 1) 0iw t t − =  
and the uncorrelation of ( ) ( | 1)ix t t −  and ( )w t , we have (6). 
Subtracting (4) from (1) yields the prediction error equation 
as 
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Substituting (20) into (19) yields (10). Similarly, (11) can be 
obtained by using (18). 
    From (5), we have the estimation error equation as 
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Then, the estimation error covariance is given by 
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Substituting (23) into (22) yields (12). From (6), we have the 
white noise filtering error as 
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From (21) and (24), we have (13) and (14), where ( ) ( | )ix t k t−  
( ) ( )i tε⊥ , the uncorrelation of ( ) ( | 1)ix t k t− −  and ( )w t  and 
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Corollary. For system (1)-(2), when ( ) 0k tΦ = , 1, 2, ,k =  
1d − , i.e., it reduces to the single-delayed d system with 

correlated noise, we have the corresponding filter.  

4. DISTRIBUTED OPTIMAL FUSION FILTER 

For system (1)-(2) with multiple sensors, we can use 
Theorem 1 to obtain the centralized optimal filter by 
combining all measurements from all sensors into one 
measurement vector. However, the centralized optimal filter 
has not the reliability if there are some faulty sensors or 
sensor data loss. To avoid the shortcoming, we will give the 
distributed weighted fusion filter by applying the scalar 
weighting fusion algorithm (Sun, 2004). It has the parallel 
structure which means its reliability. The cross-covariance 
matrix of the estimation errors between two local estimates is 
required, which can be computed by the following Theorem. 

Theorem 2. For multi-sensor time-delayed system (1)-(2) 
with Assumptions 1 and 2, the cross-covariance matrix of the 
estimation errors between two sensor subsystems is given by 
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Substituting (32) into (33) and using Assumption 1 yield (28), 
where ( )
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obtained readily from (16). From (24) and Assumption 1, we 
can obtain (29) readily.          □ 
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Based on the local optimal filters in Theorem 1 and cross-
covariance matrices in Theorem 2, we have the distributed 
fusion filter by applying optimal scalar-weighted fusion 
algorithms in the LMV sense (Sun, 2004) as 
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Note that local optimal filters ( )ˆ ( | )ix t t , Li ,,2,1=  can be 
computed by Theorem 1. 
Scalar weights ( ) ( )ia t , Li ,,2,1=  are computed by  
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where (1) ( ) T( ) [ ( ) ( )]La t a t a t=  and T,1][1,1,=e  are 

L -dimension column vectors. ( )( )( ) tr( ( , | ))ijt P t t tΣ =  is an 
L L×  matrix. The variance of the scalar-weighted optimal 
fusion filter is computed by 
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Also we have ( ) ( )( , | ) ( , | )o iP t t t P t t t≤ , Li ,,2,1= . 
Remark 1. The distributed weighted fusion optimal 
predictor and smoother can also be obtained from Theorem 
1 and Theorem 2 similarly. 
Remark 2. When every local filter has the steady state, the 
local gain and variance matrices have the steady state values. 
From Theorem 2, we see that the cross-covariance matrices 
also have the steady-state values. Then, the distributed 
steady-state weighted fusion filter can be obtained from 
(34)-(36). Further, the distributed steady-state weighted 
fusion filter has the smaller online computational cost than 
the centralized filter in the fusion centre since the online 
computation of the scalar weighted fusion of local estimates 
is only required. 
The computation procedure of the distributed weighted 
fusion filter can be summarized as follows: 
Step 1. Compute the local filters ( )ˆ ( | )ix t t  and variance 
matrices ( ) ( , | )iP t t t  by Theorem 1. 
Step 2. Compute the cross-covariance matrices ( ) ( , | )ijP t t t ,  
 
 

i j≠  by Theorem 2. 
Step 3. Compute the distributed weighted fusion filter 

( )ˆ ( | )ox t t  and variance matrix ( ) ( , | )oP t t t  by (34)-(36).  

5. SIMULATION EXAMPLE 

Consider a discrete-time stochastic delayed system with 
three sensors 
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( ) ( ) ( )( ) ( ) ( )i i iy t H x t v t= + , 3,2,1=i                             (38) 

where )(tw  and )()( tv i , 3,2,1=i  are correlated noises 
satisfying the relation ( ) ( ) ( )( ) ( ) ( )i i iv t w t tα ξ= +  where 

( ) ( )i tξ  with zero mean and variance ( )iQ
ξ

 is Gaussian noise 

independent of ( )w t  with zero mean and variance wQ . Our 
aim is to find the distributed scalar-weighted optimal fusion 
filter )|(ˆ )( ttx o . 
In simulation, we take N=100 sample data, and set 1=wQ , 

(1) 2Q
ξ

= , ( 2) 1Q
ξ

= , (3) 0.9Q
ξ

= , (1) [0.1,3]H = , (2) [0, 2]H = , 
(3) [ 0.1,1.5]H = − , (1) 0.9α = , (2) 0.8α = , (3) 0.7α = , the 

initial values 0)( =−kx , 20 1.0),( IlkP = , 2,1,0, =lk . For 
every single sensor subsystem, applying Theorem 1 we can 
obtain local optimal Kalman filters (LF) )|(ˆ )( ttx i , 3,2,1=i . 
From (34)-(36), we can obtain the distributed scalar-
weighted fusion filter (DSWFF) )|(ˆ )( ttx o , which is shown 
in Fig.1 where solid curves denote the true values and 
dashed curves denote the estimates. To compare with local 
filters (LF) and the centralized filter (CF), their estimation 
error variances are shown in Table.1. From Table.1, we see 
that DSWFF has higher accuracy than any LF does. Though 
DSWFF has a lower accuracy than CF, it has better 
reliability since the parallel structure is used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Distributed scalar-weighted fusion filter  
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Table 1. Comparison of accuracy for LF, DSWFF and CF 
       Filters 

Variances LF1 LF2 LF3 DSWFF CF 

)(1 tx  2.0087 2.0343 2.2196 1.9158 1.8045

)(2 tx  0.2132 0.2579 0.3603 0.1737 0.1616

 

6. CONCLUSIONS 

This paper has presented a new optimal filtering algorithm 
for discrete-time stochastic multi-delayed systems with 
correlated noise based on the innovation analysis approach, 
where the white noise filter is used. For the system with 
multiple sensors, we give a distributed fusion filter based on 
the scalar-weighted optimal fusion algorithm in the linear 
minimum variance sense. It has better reliability than the 
centralized filter. A recursive computation for the cross-
covariance matrix of estimation errors between any two-
sensor subsystems has been derived. 
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