
Methodologies on Brain-Machine

Interaction

Shuzhi Sam Ge ∗,1 Yaozhang Pan ∗ Abdullah Al Mamun ∗

∗ Social Robotics Lab, Interactive Digital Media Institute, Edutainment
Robotics Lab, Department of Electrical and Computer Engineering,

National University of Singapore, Singapore 117576

Abstract: Recent development in cognitive neuroscience and brain imaging technologies
provides us with a increasing ability to a new multidisciplinary research, brain machine
interactions (BMIs). In this paper, the critical technologies used in BMIs, such as bio-sensor,
translation algorithms, and the major applications are discussed. By providing an overview of
these aspects, we can see how advanced technologies in these areas can be utilized to improve
the state of art BMIs. In this paper, based on real EEG data, RBF neural network method
and a machine learning algorithm, weighted locally linear embedding (WLLE) are proposed for
neural modeling and pattern recognition respectively to efficiently interpret brain patterns for
BMIs.

1. INTRODUCTION

Advances in cognitive neuroscience and brain imaging
technologies provide us with the increasing ability to
interact directly with activity in the brain. During the
recent decade, the research on direct functional interfaces
between brains and artificial devices, such as computers or
artificial robot limbs, have succeeded so readily that a new
multidisciplinary area, brain machine interactions (BMIs),
could be developed based on the frontier of systems neuro-
science, bio-sensing, computing, electronics, mechachonics
and communications technologies with the potential to act
as intelligent and high-level communications and with im-
portant applications in clinic, prostheses, entertainment,
games and health maintenance.

Since the first experimental demonstration presented in
(Chapin et al. [1999]) that a robotic manipulator could be
directly controlled by ensembles of cortical neurons, a con-
tinuous stream of research papers have shown an enormous
interest in BMIs among the scientific community. Several
groups of researchers have successfully used BMIs for
controlling computer cursors, wheelchair or other devices,
and helping paralyzed or action constrained patients to
communicate with outside as described in (Wolpaw et al.
[2002], Birbaumer et al. [1999], Hinterberger et al. [2005],
Kubler et al. [2001a,b], Obermaier et al. [2003, 2001],
Sheikh et al. [2003], Wolpaw [2004], Birbaumer [2006]).

Born as a highly multidisciplinary field, the BCIs lies in
the extremely rich information provided by a lot of distinct
areas of researches:

(i) the brain sensing technologies as an input mechanism
that can be mapped into BMIs commands for control-
ling should be full developed;

(ii) the cognitive mechanisms on the user involved tasks
should be thoroughly analyzed and evaluated to de-

1 To whom all correspondences should be addressed. Tel: (+65) 6516
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velop translation algorithms from brain activities to
command signals; and

(iii) cognitive and affective state of the user should be
dynamically adapted to evaluate the interaction be-
tween human and machine.

Successful research and development in the area of BMIs
have important implications in several aspects of human
society. Developed with bio-sensor technology, cognitive
science, intelligent control, and efficient translation al-
gorithm, the BMIs can act as a high level communica-
tion to users from diverse groups, e.g., as prostheses for
handicapped people, or a fun controller in video games
for entertainment of common population. These thrusts
enable the development of human-machine interactions
that adapt dynamically to human intentions, emotions,
and needs, and bridge the gap between the three spaces:
human space, physical space and information space.

In this paper, we briefly review the latest advances in the
core technologies of the BMIs. Then RBF neural network
method for modeling and a machine learning algorithm,
weighted locally linear embedding (WLLE) for clustering
an EEG data set are presented and applied in a case
study. In the following sections, we first introduce the
up to date bio-sensor technologies in Section 2. Then the
translation algorithms for obtaining command signal from
the brain activities are discussed in Section 3. A series
of different BMI applications are introduced in Section 4.
Furthermore, in Section 5, RBF neural network and WLLE
algorithm are presented, and a case study is carried out
for modeling and clustering a data set with two type brain
patterns, left hand movement and right hand movement.
At last, conclusion is given in Section 6.

2. BIO-SENSORS FOR BMIS: MONITORING AND
RECORDINGS OF NEURONAL ACTIVITY

During the past decade, a number of BMIs or BCIs have
been developed based on different bio-sensor technologies
for monitoring and recording brain activity, and can be
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classified into two main classes by the feature of invasive
or noninvasive.

The invasive methods appeared first as part of an evalu-
ation for epilepsy surgery, when it is necessary to insert
electrodes near the surface of the brain, under the surface
of the dural matter, which is accomplished via burr hole
or craniotomy. This is referred to variously as “electro-
corticography (ECoG)”, “intracranial EEG (I-EEG)” or
“sub-dural EEG (SD-EEG)”. Recently, many researches
on BMIs are based on the intracranial sensor methods due
to its capacity and high transfer rate (Obermaier et al.
[2003], Wolpaw and McFarland [2004]).

There are also a variety of noninvasive methods that have
been employed to monitor brain signals in BMIs. They
include, but are not limited to: electroencephalographic
signals (EEG), magnetoencephalographic signals (MEG),
positron emission tomography (PET), functional magnetic
resonance imaging (fMRI), and optical imaging (NIRS,
near-infrared systems). Among these methods, EEG seems
to have the three properties that could lead to success-
ful implementation of BMIs for various missions: non-
invasiveness, relatively low cost, and portability. The main
features such as spatial solution, time solution, hardware
complexity and cost of different technologies are demon-
strated in Fig. 1 according to the descriptions in (Volkow
et al. [1997], Casey and Haan [2002], Purves et al. [1999]).
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Fig. 1. Overview of the core technologies involved in brain
signal sensing

3. TRANSLATION ALGORITHMS: FROM
NEURONAL ACTIVITY TO COMMAND SIGNALS

At present, BMIs use a variety of translation algorithms
for obtaining the features to communicate with the intent
of the user. Slow cortical potentials (SCPs), a potential
shifts in EEG around 1-2 Hz, which can be controlled by
humans using feedback and positive reinforcement mecha-
nism, are introduced and utilized in (Kubler et al. [2001b],
Birbaumer et al. [2000]). The third positive component in
visual evoked potentials that evoked around 300 ms after
visual stimuli, which called P300 evoked potentials, are
utilized for several BMI applications in (Donchin et al.

[2000], Piccione et al. [2006], Sellers and Donchin [2006]).
mu rhythm, which is alpha-range activity that can be seen
over the sensorimotor cortex, has been studied in (McFar-
land et al. [2004], Wolpaw and McFarland [2004]). Steady
state visual evoked potential (SSVEP) in (Lalor et al.
[2005], Sutter [1984]) and event-related synchronization
(ERS), event-related desynchronization (ERD) via motor
imagery in (Pfurtscheller et al. [2003], Pfurtscheller and
da Silva [1999]) are also popular methods used in BMIs.

Among these translation algorithms for obtaining com-
mand signals from neuronal activity, SCP requires exten-
sive training, but once mastered, it will have a relatively
stable performance. Methods such as P300 VEP, do not
require training but need many trials of signal with low re-
sponse. Another method, motor imagery, has fast response
but the performance is not satisfactory. SSVEP has been
successfully used with only one active channel, however,
it requires users to gaze at flashing blocks, which make it
not practical for long time using. There is still no perfect
translation algorithm for all type of BMIs, that’s to say,
which way is better depends on the object of BMI and
many other practical aspects.

4. DIFFERENT APPLICATIONS OF BMIS

BMIs enable communication without movement. Most
BMI researches focus on restoring communication for
severely disabled people, these include prostheses with
haptics such as in (Birbaumer and Cohen [2007], Bir-
baumer [2006], Birbaumer et al. [2000, 1999], Light et al.
[2002], Navarro et al. [2005]), wheelchair controlled by
mind in (Philips et al. [2007], Rebsamen et al. [2007]), and
so on. BCIs may also be helpful for treating brain disorders
and mental diseases, such as stroke, autism, epilepsy and
emotional disorders in (Sterman et al. [1974], Fox [1999],
Lubar et al. [1995], Pfurtscheller et al. [2003], Pfurtscheller
and da Silva [1999]). In (Pan et al. [2007b]), we pro-
posed a statistic method for detecting seizures onset based
on the EEG signal. To further improve the diagnosing
performance, we proposed a machine learning algorithm,
weighted locally linear embedding (WLLE), and utilized
it for unsupervised feature extraction, which shown bet-
ter performance than some other manifold learning algo-
rithms.

Although BCI and BMI researches will likely continue to
focus on medical applications, they may be also useful to
healthy users for other applications, such as playing video
games by mind, controlling robot remotely, flight/space
training for pilots and astronauts (Kong et al. [2002]),
substituting traditional interfaces such as keyboard, mice,
and controlling virtual and real machines (Lalor et al.
[2005], Obermaier et al. [2003], Bayliss and Ballard [2000],
Roux et al. [2003], Chapin et al. [1999]). An intelligent
environment including control TV, light, air conditioner,
etc. by mind for both the physically handicapped and
healthy people was developed by Cyberkinetics.

5. A CASE STUDY

In this section, we aim to analyze some EEG data asso-
ciated with either a left finger movement or a right finger
movement. The real EEG data we used are generously
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provided by Fraunhofer-FIRST, Intelligent Data Analy-
sis Group (Klaus-Robert Müler), and Freie Universität
Berlin, Department of Neurology, Neurophysics Group
(Gabriel Curio), through the BCI Competition 2003 web-
site (Blankertz et al. [2003, 2002]).

The Berlin Data were collected from 28 EEG sensors as
the subject moved either his left or right index finger in
succession 316 times at his own pace. Only the data for the
500ms before the finger movement were used, thus these
data represent the mental activity about finger movement
of the subject. These data are expressed as a 50×28 matrix
for each trial, and the whole data set contains 316 trials.

In this case study, we first use Radial-Basis Function
Neural Network (RBFNN) to model the brain patterns
to show the potential of artificial neural network (ANN)
for identifying the brain activities. Then an unsupervised
manifold learning algorithm, weighted locally linear em-
bedding (WLLE) is utilized for extracting features and
clustering the 316 EEG trials into two clusters, between
which one represents the left finger movement and the
other is a representative of the right finger movement. This
successful clustering algorithm can then theoretically be
implemented in a BMI/BCI to give some limited control
over the computer or mechanic systems by directly think-
ing.

5.1 Dynamic Identification and Modeling of Brain Activity

A group of researches focus on understanding complex
dynamics in biological brains by modeling and identifi-
cation the temporal dynamical brain signal (Koch and
Segev [1989]). The thorough understanding of the non-
linear brain dynamics and neurobiology may not only be
helpful to the field of artificial intelligence for pattern
recognition (Ge et al. [1992], Yao and Freeman [1990]), but
also offer critical fundamental information for developing
BMIs/BCIs.

In (Wu et al. [2004]), the authors presented a switching
Kalman filter model for the real-time inference of hand
kinematics from a population of motor cortical neurons
which can cope with crudely sorted neural data common
in on-line prosthetic applications. In (Yao and Freeman
[1990]), a model of biological pattern recognition based on
the observation of biological phenomena is proposed.

A series of systematic theories and applications for dy-
namic identification and modeling such as neuro-fuzzy
identification (Jia et al. [2005]), biological system control
(Pan et al. [2007a], Ge et al. [2005]), and machine learning
algorithm (Ge et al. [2006a,b]) were developed.

The Radial-Basis Function Neural Network (RBFNN) is
usually used as a tool for regression of nonlinear dynamics
because of its good capabilities in function approximation.
In this paper, the following RBFNN is used for modeling
the dynamic brain patterns h(Z): Rq → R

hnn(Z) = WT S(Z) (1)

where the input vector Z ∈ Ω ⊂ Rq, weight vector
W = [w1, w2, . . . , wl]

T ∈ Rl, the NN node number l > 1;
and S(Z) = [s1(Z), . . . , sl(Z)]T , with si(Z) being chosen
as the commonly used Gaussian functions, which have the
form

S(Z) = exp

[

−(Z − µi)
T (Z − µi)

η2
i

]

(2)

where µi = [µi1, µi2, . . . , µiq]
T is the center of the receptive

field and ηi is the width of the Gaussian function.

It has been proven that network (1) can approximate
any continuous function over a compact set ΩZ ⊂ Rq to
arbitrary any accuracy as

h(Z) = W ∗T S(Z) + ǫ, ∀Z ∈ ΩZ (3)

where W ∗ is ideal constant weights, and ǫ is the approxi-
mation error.

The ideal weight vector W ∗ is an artificial quantity re-
quired for analytical purposes. W ∗ is defined as the value
of W that minimizes |ǫ| for all Z ∈ ΩZ ⊂ Rq. When a

good estimate, Ŵ is obtained, the nonlinear dynamics can
be modeled and identified.

Fig. 2 shows two typical patterns of the Berlin data. One is
labeled as upcoming left hand movements and the other is
labeled as upcoming right hand movements. The modeling
results for these two patterns using RBFNN are shown in
Fig. 3. Figs. 2 and 3 show that the model is quite accurate
and gives modeling patterns almost the same as the real
patterns.
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Fig. 2. Tow typical patterns of the Berlin BCI data
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Fig. 3. Modeling of the two brain patterns
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5.2 Unsupervised Clustering By Machine Learning

The Berlin data is expressed as a 50×28 matrix pattern for
each trial, and the whole data set contains 316 patterns.
We analysis this data set in two steps.

First, in each EEG pattern, there are 50 EEG samples,
each of which contains 28 elements collected from 28
EEG channels. We could represent each pattern as X =
[x1, x2, . . . , xM ], M = 50, where xi is a state vector
representing the spatial distribution of EEG signal at the
ith sample point. For this 50 × 28 pattern matrix, we use
the eigenvalues of its covariance matrix to form a pattern
vector to represent the original matrix. The covariance
matrix can be calculated as

C =
1

M

M
∑

i=1

xix
T
i (4)

where M = 50 is the number of EEG samples in each
pattern matrix X . Then, the eigenvalues of matrix C, λi,
i = 1, 2, . . . , 50, are calculated to form a pattern vector
Λi = [λ1, λ2, . . . , λM ]T for each of the 316 EEG patterns.

The second step is dimension reduction (internal feature
extraction) and clustering of the brain patterns. For the
data set Λ = [Λ1, Λ2, . . . ,ΛN ], N = 316 in the high
dimensional space RD, the goal of dimension reduction
for feature extraction is to calculate a low dimensional
embedding of the data into Rd where d << D, while keep
the intrinsic structure of the original data set.

We first attempt to express data point Λi as a linear
combination of its k nearest neighbors Λj, j = 1, 2, . . . , k.

Λ̂i =
∑

j∈Ωi

wijΛj (5)

where Ωi is the neighborhood of sample Λi. In the original
LLE algorithm standard Euclidean metric based KNN
is used to select the nearest neighbors. However, in the
WLLE algorithm, we utilize the weighted distance mea-
sures in order to improve feature extraction performance.

The weighted distance is described in (Zhou and Chen
[2006]) as follows,

Dist(Λ0, Λi) =
‖Λi − Λ0‖

a + b (Λi−Λ0)T τ
‖Λi−Λ0‖

(6)

where a+ b (Λi−Λ0)T τ
‖Λi−Λ0‖

is the weight of the distance from Λi

to Λ0.

To facilitate parameter estimation for weighted distance,
we first present some properties in (Zhou and Chen [2006]).

Theorem 1. If a random vector Λi has a deformed distri-
bution Dd(ai, bi, τi), then E(Λi) = c1biτi and E(‖Λi‖) =
c2ai, where c1 and c2 are constants.

c1 = 21/2 Γ((d + 1)/2)

Γ(d/2)d
(7)

c2 = 21/2 Γ((d + 1)/2)

Γ(d/2)
(8)

where Γ is the Gamma function Γ(k) =
∫ ∞

0
tk−1e−tdt,

(k > 0), and d is the low dimension of the embedding.

Then, we use its k-nearest neighbors Λj, j = 1, 2, . . . , k
to estimate the parameters of the deformed distribution,
that is, ai, bi and τi.

First, we calculate the difference between a sample Λi and
all its k-nearest neighbors, Λj , j = 1, 2, . . . , k, and obtain
Vi = [vi1, vi2, . . . , vik], where vij = Λj − Λi. Then, we use

Ĝi and L̂i, which are the center of mass and the averaged
vector length of Vi:

Ĝi =
k

∑

j=1

vij/k, L̂i =
k

∑

j=1

‖vij‖/k (9)

to estimate E(Λi) and E(‖Λi‖), respectively. According to
Theorem 1, we obtain an estimation to ai, bi and τi:

âi =
L̂i

c2
, b̂i =

‖Ĝi‖

c1
, τ̂i =

Ĝi

‖Ĝi‖
(10)

After properly select the neighbors, the next step of
WLLE is to obtain the optimal reconstruction weights for
each neighbor point. The optimal weight matrix wij for
data reconstruction can be obtained by minimizing the
approximation error cost function

ǫ(Wi) =
∑

i

dW (Λi,
∑

j∈Ωi

wijΛj)
2 (11)

subject to the constraints

j /∈ Ωi ⇒ wij = 0 (12)
∑

j∈Ωi

wij = 1 (13)

where Wi = [wi1, . . . , wik] is the weights connecting sample
Λi to its neighbors, function dW (·, ·) is an appropriate
distance measure. The first constraint says that only data
points in the neighborhood of data point Λi should be used

in the reconstruction of Λ̂i, while the second constraint
imposes invariance to translation.

The final step of WLLE is to compute a low dimensional
embedding of the high dimensional inputs Λi based on the
reconstruction weights wij . The high dimensional data are
mapped into the low dimensional space Rd by requiring
reconstruction to work as well as possible. This leads
to another minimization problem. The low dimensional
outputs yi, i = 1, 2, . . . , N are found by minimizing the
cost function,

Φ(Y ) =
∑

i

dW (yi,
∑

j∈Ωi

wijyj)
2 (14)

where Y = [y1, . . . , yN ] consists of the data points em-
bedded into the low dimensional space. This minimization
problem is not well-posed without further constraints. Zero
mean and unity covariance is used in this algorithm to
make the problem well-posed. In other words Y should
obey the constraints

N
∑

i=1

yi = 0 (15)

1

N
Y Y T = I, (16)
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where 0 is a vector with all elements being zero, and I is a
identical matrix. The first constraint is to assure that co-
ordinates yi can be translated by a constant displacement
without affecting the cost, while the second constraint
imposes unit covariance of the embedding vectors.

Based on this algorithm we proposed, we calculated the 2D
embedding of each brain pattern, and the result is shown in
Fig. 4. The figure shows that the two type brain dynamics
are clustered as two groups, where ∗ represent the right
hand movement, ◦ is the left hand movement, thus the
brain patterns related to left hand movement and right
hand movement can be easily identified.
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Fig. 4. Two clusters in 2D embedding of the brain dynamic
patterns

6. CONCLUSION

In this paper, the critical technologies used in BMIs,
such as bio-sensor and translation algorithm for brain
computer interface (BCI) were discussed. The mainstream
applications of BMIs in clinic, prostheses, entertainment,
games and health maintenance were presented briefly.
Potential of machine learning, dynamic modeling and
identification for BMIs applications were demonstrated
using a case study on real EEG data. By providing an
overview of above aspects and a real data application, we
demonstrated how advanced technologies in these areas
can be utilized to improve the state of art BMIs.
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