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Abstract: This paper presents the application of a novel optical flow optimization algorithm for a 
comprehensive on-road vehicle motion analysis. Optical flow, which contains abundant local motion 
information, has been extensively studied for vehicle motion estimation in the last decades. How to 
generate a reliable optical flow at a low computation cost is always a challenging task. The primary aim of 
this paper is to enhance the accuracy and efficiency of optical flow estimation for a reliable vehicle motion 
analysis. In the paper, an innovative optical flow optimization algorithm is proposed based on a 3-D Pulse-
Coupled Neural Network (PCNN) model. Because of the excellent information clustering ability of PCNN, 
the proposed algorithm can significantly improve the quality of optical flow. Moreover, a sparse motion 
flow field is generated to boost the computation efficiency. We employ a preliminary processing to detect 
the Region of Interest (ROI) in the image, and optical flow is only calculated and optimized in the ROI to 
save computation resources. Finally, the improved sparse optical flow field is exploited for a systematic 
on-road vehicle motion analysis. The proposed methodology has been evaluated under various challenging 
traffic situations to demonstrate its excellent performance. 
Keywords: Optical flow, intelligent vehicle, motion estimation, motion detection, Pulse-Coupled Neural 
Network 

 

1. INTRODUCTION 

Vehicle motion analysis is an important component in 
intelligent vehicle systems (Sun et al., 2006). It can be used 
to alert drivers about abnormal driving conditions, potential 
collisions or even trigger an automatic emergency control 
(Large et al., 2004), (Cheng et al., 2006). Optical flow 
(Bereziat et al., 2000), which contains valuable local motion 
information, has been widely investigated for the task. 
Giachetti, Campani and Torre have already proved the 
feasibility of reliable vehicle motion estimation on a basis of 
optical flow interpretation (Giachetti et al., 1998). 

Until now, various methods have been proposed for optical 
flow computation. These methods are mainly classified into 
two categories: differential techniques (Bauer et al., 2006), 
(Papenberg et al., 2006) and correlation techniques (Weickert 
and Schnorr, 2001), (Alvarez et al., 2000). Unfortunately, the 
popular differential techniques often fail in the traffic scene 
analysis, since the large displacement between consecutive 
frames overturns their fundamental temporal/spatial 
consistency assumption. The correlation techniques can 
successfully overcome the problems incurred by the large 
displacement. However, they also encounter some critical 
problems: (1) texture insufficiency brings in serious 
instability; (2) noise critically damages the image quality; (3) 
a large amount of computations are involved in the 
correlation calculation. Many efforts have been made to 

improve the performance of optical flow computation based 
on different principles (Kruger et al., 2000), (Kenney et al., 
2005) and (Chivilo et al., 2004). However, none of them can 
produce the reliable estimation which is required for vehicle 
motion analysis. 

To solve the above problems, we propose a systematic 
methodology for on-road vehicle motion analysis based on 
optical flow optimization. To enhance the accuracy and 
robustness, an innovative 3-D Pulse-Coupled Neural 
Network (PCNN) model is constructed to perform optical 
flow optimization. Furthermore, a Region of Interest (ROI) is 
defined in the image and only the points within the detected 
ROI are considered for optical flow optimization to improve 
the efficiency of our method. Experimental results show that 
the improved optical flow field is precise enough to perform 
a quantitative vehicle motion analysis. 

The rest of this paper is organized as follows: Section 2 
briefly outlines the architecture of the proposed methodology. 
Details of the proposed optimization methodology, which 
include ROI generation, preliminary optical flow calculation 
and optical flow optimization, are presented in Section 3. In 
Section 4, we further discuss the application of the improved 
optical flow field for comprehensive vehicle motion analysis. 
Finally, experimental results are demonstrated in Section 5 
and conclusions are given in Section 6. 
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2. OVERVIEW OF METHODOLOGY 

The proposed methodology comprises four major steps: (1) 
Region of Interest (ROI) generation; (2) preliminary optical 
flow calculation; (3) optical flow optimization; (4) vehicle 
motion analysis. Fig. 1 systematically demonstrates the 
architecture of the method. Details of each step will be 
presented in the following sections. 

 
Fig. 1. Architecture of the methodology 

 

3. SPARSE OPTICAL FLOW OPTIMIZATION 

Overall, three major improvements are made in the method to 
enhance the robustness and efficiency: (1) a correlation-based 
technique is employed to handle the large displacements in a 
vehicle-recorded image sequence; (2) sparse optical flow is 
generated in the detected ROI to boost processing speed; (3) 
a novel optimization algorithm is proposed to improve the 
quality of optical flow. 

3.1 ROI generation 

An important aspect of computation efficiency improvement 
is the removal of irrelevant outlier information (i.e. sky, trees 
or buildings). In our case, the Region of Interest (ROI) 
includes lane markers and moving vehicles. An explicit 
example of ROI generation is shown in Fig. 2. 

For most structured roads, in the area as far as 50m ahead, 
lane markers can be approximately portrayed by straight lines 
with certain orientation angles. Therefore, a linear method is 
applied for the lane detection due to its simplicity and 
robustness. The method consists of gradient-based edge 
detection and Hough Transform. For a gray-level image      

I(x, y), its gradient function ∇I(x, y) can be approximately 
estimated as follows: 
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where Dx and Dy are the intensity differences computed in x 
and y directions using the Sobel operator (Pratt, 2001). The 
threshold T∇ is set to filter out edge points with a trivial 
gradient value. The gradient-based edge detection result is 
shown in Fig. 2 (b). Then, we employ a Hough Transform 
technique (Pratt, 2001) to locate the lane markers in the 
image. The Hough Transform technique is robust to noise 
disturbance and obstruction by taking into account all edge 
points. This is particularly useful to detect dashed lanes or 
partially blocked lane. The gradient accumulation function 
C(ρ,θ) is calculated as: 

( , ) ( , )i i
i

C I x yρ θ = ∇∑      (3) 

(xi, yi) are all the edge pixels satisfying ρ = xi cosθ+ yi sinθ. A 
look-up table of sinθ and cosθ (θ∈ (-90,90]) would be 
generated to speed up the computation. Assuming lane 
markers are the most significant linear structure in the image, 
local maxima can be found in the 2-D accumulation function 
C(ρ,θ) to determine the position of lane markers. In our case, 
two prominent boundaries of the current driving lane can 
always be successfully detected. 

 
(a)     (b)       (c) 

 
 (d)    (e)       (f) 

Fig. 2. An example of ROI generation. (a) the input frame, 
(b) gradient-based edge detection result, (c) lane detection 
and search area definition, (d) search windows generation, (e) 
vehicle detection based on the edge analysis (false detection 
can be eliminated by checking the symmetry), (f) the final 
defined ROI which includes the vehicles and lane markers. 

After the lane detection, a feasible search region is defined 
for vehicle detection. The search region is defined as shown 
in Fig. 2 (c), where the road width w is calculated based on 
lane detection and camera calibration. It’s noted that the 
defined search area adequately covers the current driving lane 
and two adjacent lanes. Along each lane, a series of search 
windows are automatically generated, as shown in Fig. 2 (d). 
Each search window has a rectangular shape, whose width 
and height are set sufficient to enclose the largest vehicle. It’s 
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noted that the rear part of a vehicle usually contains many 
distinct horizontal and vertical structures, such as window, 
bumper, and registration plate. The existence of a vehicle will 
incur significant edge constellations into an image. Therefore, 
the edge information is applied as the key factor for vehicle 
detection. In a search window, the gradient magnitudes of all 
edge points are accumulated as: 

( , )j j
j

Ga I x y= ∇∑     (4) 

If the gradient accumulation Ga exceeds a pre-defined 
threshold, then the window is considered to contain a vehicle. 
In addition, the symmetry level is inspected to eliminate false 
vehicle detection results. The symmetry level of a search 
window is calculated as: 

/ 2

1 1
( / 2 , ) ( / 2 , )

H W

x y
Gs I W x y I W x y

= =

= ∇ − − ∇ +∑∑   (5) 

where H and W denote the height and width of the search 
window. The higher Gs is, the more symmetric is the 
window. In the near vision field, moving vehicles can be 
robustly detected on the basis of edge and symmetry 
investigation.  

The detection results of lane markers and vehicles are 
combined to generate the final ROI, as shown in Fig. 2 (f). To 
save computation cost, only the pixels within the detected 
ROI are considered for optical flow computation and 
optimization in the next step. 

3.2 Preliminary optical flow calculation 

Instead of the poorly performed differential technique, a 
correlation technique is employed in our algorithm for optical 
flow estimation. The correlation technique computes the 
optical flow by searching the displacement which produces 
the minimum Sum of Absolute Difference (SAD). In a M×N 
image, the SAD of displacement ( , )x yr r r  at pixel (i,j) is 
defined as: 

( , , ) ( , )
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dx b dy b
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        (i =1, 2...M, j =1, 2...N, r =1, 2...R)         

where b is the size of the matching mask, M and N are the 
size of the image, R is the number of all possible 
displacements. Moreover, the Block Matching (BM) is 
defined as: 

1( , , )
( , , )

BM i j r
SAD i j r

=         (7) 

The higher the BM is, the lower is the SAD. However, 
exclusively searching for the maximum BM (minimum SAD) 
usually cannot guarantee the correctness of optical flow 
estimation in a complex traffic scene. Hence a new concept, 
Block Matching Probability (BMP), is introduced as: 

( , , )( , , ) 100%
( , , *)

BM i j rBMP i j r
BM i j r

= ×       (8) 

where r* is the displacement with the highest BM. BMP(i,j,r) 
measures the probability of displacement r being selected as 
the motion description at pixel (i,j). A M×N×R matrix is 
created to store the probability information of R 
displacements at M×N pixels. In addition, the Block 
Matching Certainty (BMC) is defined as: 

( , , *) ( , )
( , )

( , , *) ( , )

BMP i j r BMP i j
BMC i j

BMP i j r BMP i j

−
=

+
    (9) 

where BMP  is the average of all BMP values. The meaning 
of BMC is quite explicit. It measures the difference between 
the highest BMP and others. A large difference implies that 
one displacement has a distinct advantage over others to be 
selected as the motion estimation. Consequently, the higher 
the BMC is, the more reliable is the motion estimation. In the 
next section, the BMP matrix will be re-calculated by 
referring to the more reliable adjacent motion estimates. 

3.3 Optical flow optimization 

 

Fig. 3.  3-D PCNN model structure 

Pulse-Coupled Neural Network (PCNN) is a neural model 
based on the biological structure of cat’s visual cortex 
(Eckhorn, 1999). Until now, PCNN has mainly been applied 
in two-dimensional image processing tasks (Yu and Zhang, 
2004) and (Gu et al., 2005). Here, a novel 3-D PCNN model 
(Cao et al., 2007) is constructed to perform three-dimensional 
optical flow optimization. The input of the PCNN model is 
the 3-D (M×N×R) BMP matrix. Accordingly, the model 
comprises R layers and each layer has M×N neurons. Neuron 
(i,j,r) receives BMP(i,j,r) as its input. In the model, each layer 
corresponds to one displacement for all pixels, while each 
column refers to all possible displacements for one pixel. Fig. 
3 shows the structure of the 3-D PCNN model. 

Principally, the BMP re-calculation attempts to apply the 
reliable estimates to rectify the uncertain ones. It firstly 
identifies the column with the highest BMC. In this column, 
the neuron with the highest BMP will pulse and trigger a 
firing wave in the iteration T. In the PCNN model, the neuron 
fired at step t will pass a lift-up to its adjacent neurons. The 
neurons who received the lift-up will fire at the next step t+1 
if they have already had high inputs. Consequently, the firing 
wave will expand in the layer until no neuron has a high 
enough input to fire any more. Then the model will find the 
second highest BMC and start another firing wave in the 
iteration T+1. After a neuron fired, its BMP value is replaced 
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with the higher internal status. As a consequence, the BMP 
will be re-calculated. The optimization will be terminated 
when the highest BMC is lower than a pre-defined threshold. 
The neuron dynamic activity is described as follows: 

( , , ) ( , , )F i j r BMP i j r=         (10) 
( ( ), ( ), ( )) 1

( ( ), ( )) ( ) &
( ( ), ( ), ( )) max( ( ( ), ( ), )

Y i T j T r T
if BMC i T j T T
BMP i T j T r T BMP i T j T r

θ
=
>

=
 (11) 

Equation (11) determines the first neuron fired in the iteration 
T.  
REPEAT Equation (12) – (16) in the iteration T 
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k l N i j
L i j r T t w k l Y k l r T t

∈
= −∑   (12) 

[ ]( , , ( ), ) ( , , ( )) 1 ( , , ( ), )U i j r T t F i j r T L i j r T tβ= +   (13) 

{1 if ( , , ( ) ) ( , , 1)( , , ( ), ) 0 else
U i j r T t i j tY i j r T t δ> −=   (14) 

( , , *) intially
( , , ) ( , , 1)[1 ( , , ( ), )]

( , , ( ), ). ( , , ( ), )

BMP i j r
i j t i j t Y i j r T t

U i j r T t Y i j r T t
δ δ

⎧⎪= − −⎨
+⎪⎩

       (15) 

( , , ( )) ( , , )BMP i j r T i j tδ=                  (16) 
UNTIL no neuron fires any more, then update θ(T) to θ(T+1) 
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move to (11) to operate in the iteration T+1 
where ( , , )F i j r  and ( , , )L i j r  are the feeding and linking 
channels of the neuron (i,j,r), ( , )w k l  is a weighted functional 
mask, N8(i,j) denotes the eight neighborhoods of neuron (i,j), 
β is the linking strength, ( , , , )U i j r t  is the internal activity 
status, ( , , )i j tδ  is the activity threshold and θ(T) is the 
certainty threshold. ( , , , )U i j r t  is compared with ( , , )i j tδ  to 
decide the firing status ( , , , )Y i j r t  of the neuron. ( , , )i j tδ  is 
initially set to the highest BMP value in column (i,j) and kept 
updated to track the highest activity in the column.  

The underlying principle of the BMP re-calculation is very 
intuitional. Assuming the adjacent points are likely to have 
the same motion, the algorithm attempts to improve the 
uncertain optical flow by referring to the more reliable 
adjacent motion information. When local information is 
disturbed or insufficient, spatial supports from neighborhoods 
become essential to ensure the accuracy of the optical flow 
estimation. It’s also noted that a motion estimates will not be 
affected by its neighbourhoods if its reliability level is higher. 
This property will preserve the discontinuous but true optical 
flows in the optimization. 

Finally, the re-calculated BMP matrix is investigated to 
produce the final optical flow field. For each pixel, the 
displacement with the highest BMP is selected as its motion 
estimation.  

4. VEHICLE MOTION ANALYSIS 

In this section, we perform a comprehensive vehicle motion 
analysis by interpreting the improved optical flow field. To 
simplify the mathematical computation, we assume the host 
vehicle is moving on a planar structured road. This 

assumption, which is usually referred to as the passive 
navigation, stands true in many driving situations (Giachetti 
et al., 1998).  

4.1 Vibration correction 

To apply the optical flow for the vehicle motion analysis, the 
camera vibration needs to be compensated. Since the 
horizontal vibration is much smaller than the vertical one, 
only the latter one is considered. If there is no vibration 
disturbance, the vertical position of the vanishing point is 
expected to be fixed in the image. Based on the observation, 
the camera shock can be effectively rectified by estimating 
the vertical position variance sv of vanishing point and then 
subtracting it from the optical flow field. Previously, two 
straight lines have been defined to describe the lane markers 
in the near vision field. The intersection of these two lines 
can approximate the vanishing point. 

4.2 Ego motion estimation 

In the case of passive navigation, the relative motion between 
the camera and the road is exclusively caused by the host 
vehicle movement. Therefore, the ego-motion of host vehicle 
can be fully recovered from the optical flow in the road area.  
The motion (u,v) of a pixel (x,y) on the road surface can be 
expressed as (Giachetti et al., 1998):  

( )2/ /z yu t xy Hf x f fω= + +  
2 / /z yv t y Hf xy fω= +     (18) 

where tz is the instantaneous translational velocity and ωy is 
the perpendicular angular velocity. The camera height H and 
the focal length f can be measured through intrinsic and 
extrinsic camera calibrations. At each pixel, a pair of motion 
estimates (tz,ωy) is retrieved from its corresponding optical 
flow (u,v) based on (18). In the end, all estimates are 
averaged to improve the robustness of final vehicle ego-
motion estimation. 

4.3 Relative motions estimation 

The optical flow of a vehicle is investigated to calculate its 
relative motion to the host vehicle. Based on the relative 
motion, a moving vehicle on the road can be classified into 
either a departing vehicle or an approaching vehicle. A 
departing vehicle produces a converging optical flow, while 
an approaching vehicle generates a diverging flow in the 
image. Due to the large variability of vehicle appearance, it is 
difficult to recover the relative motion accurately. We apply 
the same method for ego-motion estimation to approximately 
calculate the relative motion. A minimum 10 km/h relative 
movement can be successfully detected. This is accurate 
enough for many intelligent vehicle applications (e.g., 
overtaking vehicle detection, collision avoidance, and 
emergency brake control). However, when a vehicle is 
getting close to the host vehicle and covers a large portion of 
the frame, its motion estimation tends to become unstable. 

5. EXPERIMENT RESULTS 

The proposed method has been tested in various challenging 
motorway driving circumstances. The evaluation results of 
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optical flow optimization and vehicle motion estimation are 
reported in this section.   

5.1 Data set 

The video camera is fixed on the dashboard of the host 
vehicle. Several video sequences are recorded under different 
illumination conditions on the M60 motorway in Manchester, 
UK. The capturing rate of the video is 15 frame/sec. The 
ground truth of pixel displacement is obtained by manual 
matching. The ground truth value of the host vehicle speed is 
obtained from the on-board odometer and checked manually. 
The speeds of other vehicles on the road are approximately 
estimated by measuring the length of lane markers.  

5.2 Optical flow optimization 

We first evaluate the performance of proposed optimization 
algorithm in several typical driving scenes, as shown in Fig. 4 
(a) – (d). The optical flow estimation using the traditional 
correlation technique are shown in Fig. 5 (a) – (d). In 
comparison, the results of the proposed optimization 
algorithm are shown in Fig. 6 (a) – (d). It is evident that the 
proposed method significantly improves the quality of optical 
flow in terms of accuracy and robustness. A more than 90 
percent accuracy rate can be achieved in most normal driving 
circumstances. 

5.3 On-road vehicle motion analysis 

The speeds of the host vehicle and other vehicles on the road 
are then estimated based on the improved optical flow field. 
Since the ground truth of angular velocity ωy is unavailable, 
we only examine the instantaneous velocity tz. As shown in 
Fig. 7, the method produces the ego-motion estimation at 
more than 95% precision rate. Meanwhile, the maximum 
error for relative motion estimation is less than 10 km/h. The 
detection rates of approaching and departing vehicles at 
different relative speeds are shown in Table I . The result is 
precise enough for most intelligent vehicle applications. 

  
  (a)    (b) 

  
  (c)    (d)  

Fig. 4. Typical traffic scenes. (a) a vehicle is approaching 
from the left, (b) a vehicle is overtaking from the right, (c) 
two vehicles are both approaching on the two adjacent lanes, 
(d) a vehicle is approaching while another is overtaking. 

 
(a) 

 
(b) 

 
(c) 

 
 

(d) 

Fig. 5. The optical flow estimation using the correlation 
technique in the traffic scenes shown in Fig. 4 (a) – (d)  

  
(a) 

  
   (b)          

  
(c) 

 
(d) 

Fig. 6. The optical flow estimation using the proposed 
optimization algorithm in the traffic scenes shown in Fig. 4 
(a) – (d)  
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        (a)     (b) 

  
        (c)     (d) 

Fig. 7. Vehicle speed estimation based on the improved 
optical flow field for the traffic scenes shown in Fig. 4 (a) – 
(d). (green/red solid lines denote the true/estimated speeds of 
the host vehicle; green/red dashed lines denote the 
true/estimated speeds of overtaking vehicles; green/red dash-
dot lines denote the true/estimated speeds of approaching 
vehicles) 

Relative 
speed 

Overtaking     
vehicle detection 

Approaching 
vehicle detection 

5-10 km/h 67.3% 75.1% 
10-20 km/h 91% 94.3% 

20 km/h 100% 100% 

Table I. Detection rates of the approaching and departing 
vehicles at different relative speeds 

6. CONCLUSIONS 

In this paper, a novel optical flow optimization methodology 
is proposed for a systematic vehicle motion analysis. In the 
methodology, three significant improvements are carried out 
to enhance the robustness and efficiency: (1) The correlation 
technique is applied to handle the large displacement in the 
image sequence; (2) The region of interest (ROI) is detected 
to improves the processing speed of the algorithm; (3) a 
novel 3-D PCNN model is constructed to improve the quality 
of optical flow. Our experiments demonstrate that the 
proposed algorithm has excellent performance in many 
challenging traffic circumstances. The accurate ego-motion 
estimation is achieved at less than 5% error rate. Meanwhile 
the maximum relative motion estimation error is less than 10 
km/h. The reliable vehicle motion estimation results can be 
further applied in various intelligent vehicle applications. 
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