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Abstract: A polynomial approach to solve the optimal control problem of switched systems is
presented. It is shown that the representation of the original switched problem into a continuous
polynomial systems allow us to use the method of moments. With this method and from a
theoretical point of view, we provide necessary and sufficient conditions for the existence of
minimizer by using particular features of the minimizer of its relaxed, convex formulation.
Even in the absence of classical minimizers of the switched system, the solution of its relaxed
formulation provide minimizers. Copyright c© 2008 IFAC
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1. INTRODUCTION

In this paper we deal with optimal control problem of
switched systems, i.e., continuous systems with switching
signals. Recent efforts in switched systems research have
been typically focused on the analysis of dynamic behav-
iors, such as stability, controllability and observability,
etc.,(e.g., Sun and Ge [2005], Lin and Antsaklis [2005],
Liberzon [2003]). Although there are several studies facing
the problem of optimal control of switched systems (both
from theoretical and from computational point of view
Spinelli et al. [2006], Riedinger et al. [2003], Bengea and
DeCarlo [2005], Xu and Antsaklis [2004]), there are still
some problems not tackled, especially in issues where the
switching mechanism is a design variable. There, we see
how these difficulties arise, and how tools from nonsmooth
calculus and optimal control can be combined to solve
optimal control problems.

Previously, the approach based on convex analysis have
been treated in Riedinger et al. [2003], and further devel-
oped in Bengea and DeCarlo [2005] considering an optimal
control problem for a switched system, these approaches
do not take into account assumptions about the number
of switches nor about the mode sequence, because they
are given by the solution of the problem. The authors use
a switched system that is embedded into a larger family
of systems and the optimal control problem is formulated
for this family. When the necessary conditions indicate
a bang-bang-type of solution, they obtain a solution to
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the original problem. However, in the cases when a bang-
bang-type solution does not exist, the solution to the
embedded optimal control problem can be approximated
by the trajectory of the switched system generated by
an appropriate switching control. On the other hand, in
Riedinger et al. [2003] and in Patiño et al. [2007], the
authors determine the appropriated control law by finding
the singular trajectory along some time with non null
measure.

The nonlinear, non-convex form of the control variable,
prevents us from using the Hamilton equations of the
maximum principle and nonlinear mathematical program-
ming techniques on them. Both approaches would entail
severe difficulties, either in the integration of the Hamilton
equations or in the search method of any numerical opti-
mization algorithm. Consequently, we propose to convexify
the control variable by using the method of moments in
the polynomial expression in order to deal with this kind
of problems.

In this paper we present a method for solving optimal con-
trol for an autonomous switched systems problem based
on the method of moments developed recently in Meziat
et al. [2007] for optimal control, and in Lasserre [2001] for
global optimization. We propose an alternative approach
for computing effectively the solution of nonlinear, opti-
mal control problems. This method works properly when
the control variable (i.e., the switching signal) can be
expressed as polynomials. The essential of this paper is the
transformation of a nonlinear, non-convex optimal control
problem (i.e., the switched system) into an equivalent
optimal control problem with linear and convex structure,
which allows us to obtain an equivalent convex formulation
more appropriate to be solved by high performance numer-
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ical computing. To this end, first of all, it is necessary to
transform the original switched system into a continuous
non-switched system for which the theory of moments is
able to work. Namely, we relate with a given controllable
switched system, a controllable continuous non-switched
polynomial system.

This paper is organized as follows. In Section 2 we present
the problem formulation. A polynomial approach for the
switched system is developed in Section 3. The new poly-
nomial optimal control problem is described in Section 4
with the main elements of the theory of moments, which
is presented to solve the polynomial problem in Section 5.
Finally, in Section 6 some conclusions are drawn.

2. PROBLEM FORMULATION

A switched system is a system that consists of several
continuous-time systems with discrete switching events. A
switched system may be obtained from a hybrid system by
neglecting the details of the discrete behavior and instead
considering all possible switching patterns from a certain
class. This represents a significant departure from hybrid
systems, especially at the analysis stage Liberzon [2003].
Switched systems have many application examples, such
as power electric circuits, automotive controllers, chemical
processes, etc.

The mathematical model can be described by

ẋ(t) = fσ(t)(x, u, t), (1)

where fi : Rn×Rm×R+ → Rn are vector fields, the exoge-
nous input u ∈ Rm and σ : [0, tf ] → Q ∈ {0, 1, 2, ..., q} is a
piecewise constant function of time. Every mode of opera-
tion corresponds to a specific subsystem ẋ(t) = fi(x, u, t),
for some i ∈ Q, and the switching signal σ determines
which subsystem is followed at each point in time, into
the interval of time [0, tf ] with tf as the final time . The
control inputs, σ and u, are both measurable functions.
No assumptions about the number of switches nor about
the mode sequence are made. In addition, we consider non
Zeno behavior, i.e., we exclude an infinite switching accu-
mulation points in time. The state of the system described
does not undergo into jump discontinuities. Further, for
the interval [t0, tf ], the control functions must be chosen
such that the initial and final conditions are satisfied.
Define the optimization functional to be minimized

J = ϕ(x(t0), x(tf )) +

∫ tf

t0

Lσ(t)(t, x, u)dt,

s.t. ẋ(t) = fσ(t)(x, u, t)
x(t0) = x0

σ(t) ∈ Q

(2)

where ϕ is a real-valued function, and Lσ(t) : R+ × Rn ×
Rm → R are continuously differentiable.

In order to solve this problem, we use a continuous
polynomial expression that is able to represent the original
problem. The main idea is to transform the original
problem into a problem represented by a differential-
algebraic system in a polynomial form, as it is shown in
the next section.

3. THE POLYNOMIAL APPROACH

In this section, we show how the optimal control problem
(2) can be reformulated. For that, it is necessary to
transform (1) into a polynomial expression that mimics
the behavior of the original system. Then, with this
polynomial expression, we can apply the relaxation based
on several tools from nonlinear optimal control theory. In
particular, the relaxation based on the moments problem.

3.1 Polynomial Expression

The polynomial expression that is able to mimic the
behavior of the switched system is developed using a new
variable s, which works as a control variable. The starting
point is to rewrite (1) as a continuous non-switched control
system in its more general case.

First, we define a drift vector field F(x, u) : Rn×Rm → Rn

F(x, u) = [f0(x, u), f1(x, u), ..., fq(x, u)] (3)

where fi(x, u), i ∈ Q is the function for each subsystems
of the switched systems given in (1). Now, in order to
find the polynomial expression we need for each i ∈ Q =
{0, 1, ..., q}, a quotient lk with the property that lk(i) = 0
when i �= k and lk(k) = 1.

Let L be the vector of Lagrange polynomial interpolation
quotients Burden and Faires [1985] defined with the new
variable s, i.e.,

L(s) = [l0(s), l1(s), ..., lq(s)]
T (4)

where

lk(s) =

q∏

i=0
i�=k

(s − i)

(k − i)
(5)

On the other hand, we can use a complementary poly-
nomial which is used to constrain s to take only integer
values. Let Q(s) be the constraint polynomial so that

Q(s) =

q∏

k=0

(s − k) = 0 (6)

A related continuous polynomial system of the switched
system (1) is constructed in the following representation.

Consider a switched system of the form given in (1) with a
drift vector field which are in the form given in (3). Then,
there exists a unique polynomial P of order q with the
property of

fi(x, u) = P (x, u, i) for each i ∈ Q

This polynomial is given by

P (x, u, s) = F(x, u)L(s)

=

q∑

k=0

(s)fk(x, u)lk
(7)

where s ∈ R, and lk(s) is as in (5). Now, the system
(1) takes the constrained continuous form of a nonlinear
differential algebraic equation

ẋ = P (x, u, s)
0 = Q(s)

for each i ∈ Q = {0, 1, ..., q} subject to the constraint
polynomial Q(s) given in (6). For instance, if q = 1, the
system (7) has the same form of the convex combination of
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two subsystems. Note that the trajectories of the original
switched system (1) correspond to piecewise constant
controls taking values in the set σ ∈ {0, 1, ..., q}. In the
same way we define a polynomial representation for Lσ(t)

using the Lagrange’s quotients as follow,

L(x, t, u, s) =

q∑

k=0

(s)Lk(x, u)lk (8)

3.2 Polynomial Optimal Control Problem

Now, based on the above reformulation we can define an
optimal control problem based on this representation. For
that, we take the original problem (2) with the additional
restriction, Q(s) = 0, i.e.,

J = ϕ(x(t0), x(tf )) +

∫ tf

t0

L(x, t, u, s)dt

s.t. ẋ(t) = P (x, u, s) =

(
q∑

k=0

fk(x, u)lk(s)

)

Q(s) = 0
x(t0) = x0

x ∈ Rn, s ∈ R, u ∈ Rm

(9)

where lk(s), Q(s), and L as above. Note that the system
(9) is a continuous nonlinear differential-algebraic equation
system (DAEs).

Although the representation presented above has been
developed in general form, from now on we focus on a
specific case. In particular, we are concerned with the
case where there is no external control variable u, called
autonomous case. We use s as a control variable.

The Hamiltonian for the optimal control problem (9) has
the form

H(x, t, s, λ) = L(x, t, s) + λT P (x, s) + γQ(s) (10)

Let Q(s), P (x, s), and L(x, t, s) be polynomials shown in
(6), (7) and (8). λ and γ are the Lagrange multiplier. All
of these polynomials can be expressed as polynomials in
the control variable s. In general we have:

L(x, t, s) =

q∑

k=0

ak(x, t)sk

P (x, s) =

q∑

k=0

pk(x, t)sk

Q(s) =

q+1∑

k=0

cksk

(11)

With these polynomials, the Hamiltonian H must have a
polynomial form in the control variable s. From (10) and
(11), it can be shown that we have the Hamiltonian as

H(x, t, s, λ) =

q+1∑

k=0

αk(x, t, λ, γ)sk (12)

Thus, the global minimization of H in s has the form

min
s(t)

H(s) =

q+1∑

k=0

αk(x, t, λ, γ)sk (13)

This is a problem well suited to be solved by the method
of moments (Meziat et al. [2007], Lasserre [2001], Ben-Tal
and Nemirovsky [2001]) as we see in the next section.

4. CONVEXIFICATION OF THE POLYNOMIAL
EXPRESSION AND THE THEORY OF MOMENTS

In this section we present an alternative method for
computing effectively the solution of nonlinear, optimal
control problems. This method works properly when the
nonlinearities in the control variable can be expressed
as polynomials. The essential of this approach is the
transformation of a nonlinear, non-convex optimal control
problem into an equivalent optimal control problem with
linear and convex structure. First, we present some basic
concepts about the moments problems and its relationship
with polynomial expressions.

4.1 Moment Problems and Polynomials

In Berg [1994], an interesting historical introduction is pre-
sented about the moment problem introduced by Stieltjes,
where it is also introduced what is now known as the
Stieltjes integral with respect to an increasing function
φ, the latter describing a distribution of mass (a measure
µ) via the convention that the mass in an interval (a, b] is
µ((a, b]) = φ(b)−φ(a). This integral was used to solve the
following problem which is called the Hamburger moment
problem:

Given a sequence m0, m1, ...mn of real numbers. Find
necessary and sufficient conditions for the existence of a
measure µ on R so that

mn =

∫

R

xndµ(x) for n = 0, 1, ...

The number mn is called the n’th moment of µ, and the
sequence (mn) is called the moment sequence of µ.

Now, some concepts related with the moment problem
and its relation with polynomials are presented. Let m :=
{mk} with first element m0 = 1 be the vector of moments
of some probability measure µm. Let Mq(m) be the mo-
ment matrix of dimension q, which is composed of all the
vectors in Rq+1 whose entries form a positive semidefinite
Hankel matrix (Ben-Tal and Nemirovsky [2001]),(Lasserre
[2001]):

Mq(m) = {(mi+j(t)) , i, j = 0, 1, ..., q with m0 = 1}

For instance, if we have q = 1, the Hankel matrix is as
follows:

Mq=1(m) =

[
1 m1

m1 m2

]

The theory of moments identifies those sequences m with
Mq(m) � 0 that correspond to moments of some proba-
bility measure µm on Rn.

4.2 Convexification of the Polynomial Expression

For solving non-convex polynomial programs like (13) we
can use the convex hull of the graph of the polynomial H ,
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so that it would be a coercive function, i.e., αk > 0. We
can describe such convex set as,

co(graph(H)) =

{∫

Q

H(s)dµ(s) : µ ∈ PQ

}
(14)

where PQ stands for the family of all probability Borel
measures with support contained in Q. Here Q can be
seen as a compact set, not necessary convex, defined
by polynomial inequalities or equalities, as in (6), and
co is the convex hull. Then, we can state the global
optimization problem (13) as an optimization problem
defined in probability measures,

min
µ∈PQ

∫

Q

H(s)dµ(s) (15)

whose solution is the family of all probability measures
supported in arg min(H). For an extended overview of the
theory, see Lasserre [2001].

Theorem 1. (Lasserre [2001],Meziat [2003]). When H is
coercive, the set of solutions of (15) is the set of all
probability measures supported in the set of global minima
of H , i.e., arg minH .

Corollary 2. (Meziat [2003]). When argmin(H) is the sin-
gleton {s∗}, the Dirac measure: µ∗ = δs∗ is the unique
solution of (15).

We use the polynomial structure of the objective function
H in order to transform the optimization problem (15)
into the mathematical problem: where Mq(m) is moment
matrix, whose entries are the algebraic moments of a
probability measure m = {mk} supported in Q.

min
m

q+1∑

k=0

αkmk(t)

s.t.
Mq(m) � 0, with m0 = 1

q+1∑

k=0

ckmk(t) = 0

(16)

which has the form of a semidefinite program and∑q+1
k=0 ckmk is the polynomial (11) in a linear form, it

means that each sk is replaced by {mk}, for all k =
0, 1, ..., q.

When H(s) is a coercive polynomial with a unique global
minimum s∗, the semidefinite program (16) has a unique
solution m∗ ∈ Rq+1, composed by the algebraic moments
of Dirac measure δs∗ . Thus, m∗

k = (s∗)k for k = 0, ..., q.
Hence, the global minimization of the Hamiltonian H can
be formulated as

min
m

H̃ = min
m

q+1∑

k=0

αkmk(t)

s.t.
Mq(m) � 0, with m0 = 1
q+1∑

k=0

ckmk(t) = 0

(17)

Therefore, if arg min(H) is the singleton {s∗}, the optimal
control can be expressed as,

s∗(x, t, λ) = m∗
1(x, t, λ)

because the entries of m∗(x, t, λ) are the moments of the
Dirac measure δs∗ . In this way, we can solve the non-
convex problem (9) by working out its convex relaxation

min
m(t)

ϕ(x(t0), x(tf )) +

∫ tf

t0

q∑

k=0

a(x, t)mkdt

s.t. ẋ =

q∑

k=0

p(x, t)mk(t)

q+1∑

k=0

ckmk(t) = 0

Mq(m) � 0, with m0 = 1
x(t0) = x0

(18)

The convex relaxation opens many possibilities to solve
the nonlinear problem. In the next section we present an
analysis of the convexified problem in order to deal with a
computational solution.

5. THE CONVEXIFIED OPTIMAL CONTROL
PROBLEM

With the concepts presented above, we can present the
optimal control problem in a convexified form, which is
tractable from a computational point of view due to its
linear structure and its related semidefinite program.

5.1 Analysis of the problem

We emphasize the fact that the semidefinite program (17)
corresponds to the optimization of the Hamiltonian of the
convex formulation (18). In this way we have

H̃ = L̃ + λT P̃ + γQ̃ =

q+1∑

k=0

αk(x, t, λ)mk(t)

where L̃ =
∑q

k=0 ak(x, t)mk, P̃ =
∑q

k=0 pk(x, t)mk, and

Q̃ =
∑q+1

k=0 ckmk are in linear form in the control variable
m.

Indeed, this is precisely the relaxation in moments of
the global optimization of the Hamiltonian H(x, t, λ, s)
when the variable s is transformed into the vector m.
Thus, every minimizer of the convex formulation (18)
attains the minimum value of the nonlinear optimal control
problem (9) and for this reason those minimizer attains the
minimum value of the switched optimal control problem
(2). The next theorem is a variation of Meziat et al. [2007].

Theorem 3. Let us assume that s∗(t) is a minimizer of
the optimal control problem (9). Then, the control vector
m∗(t) given as,

m∗
k(t) = (s∗(t))k ∀k = 0, ..., q + 1 (19)

is a minimizer of the formulation (18). Therefore, it is a
minimizer of the (2).

Proof. Since σ∗(t) is an optimal control for (2), in the
form (9), the maximum principle claims that σ∗(t) satisfies
the global minimization problem, i.e.,

H(x∗, t, λ∗, σ∗) = min
σ∈Q

H(x∗, t, λ∗, σ) (20)

where x∗ and λ∗ satisfy the boundary value problem:
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ẋ = P (x, t, s)

λ̇ = −
∂H

∂x
(x, t, s(t)∗)

x(t0) = x0,

(21)

On the other hand, the Hamiltonian function H has
the polynomial form (10) and s(t)∗ solves the global
minimization problem (20), therefore the vector m∗(t)
given as

m∗
k(t) = (s∗)k k = 0, ..., q + 1

solves the semidefinite program:

min
m∈Mq

H(x∗, t, λ∗, m) (22)

where the functions x∗, λ∗ in (22) come from the solution
of the boundary value problem (21). Since f and ∂H

∂x
in

(21) have a polynomial form in the variable s∗(t), and
every appearance of the k-th power of s∗(t) can be replaced
by m∗

k(t), then the boundary value problem (21) can be
expressed as

ẋ∗ = P (x∗, t, m∗(t))

λ̇ = −
∂H̃

∂x
(m(t)∗, x∗, t, λ∗)

x(t0) = x0,

(23)

and as m(t)∗ solves (21) and x∗,λ∗ satisfy (23) we have

H̃(x∗, t, λ∗, m∗(t)) = min
m∈Mq

H(x∗, t, λ∗, m) (24)

which is the maximum principle’s necessary condition of
the convex formulation (18). Since the relaxation (18) is
convex, the maximum principle’s necessary conditions are
also sufficient to guarantee optimality. Thus, m∗(t) is a
minimizer of (18). �

The theorem above states that the component m∗
1(t) of

the moments vector is, in fact, the optimal switched law
for the switched system (2). If m∗(t) is a minimizer of
(18), satisfying (18), m∗

1(t) is a minimizer of (2). Namely,
m∗

1(t) is the σ∗(t) (i.e., the optimal switched law). If
all minimizers of (18) fail in satisfying the expression
(19), then the problem (2) lacks of minimizers, i.e., an
optimal σ∗(t) does not exist. On the other hand, if the
Hamiltonian H is coercive, and it has a unique global
minimum in s irrespective of the values of x, t, and λ,
then every minimizer of the formulation (18) has the form
(19). Hence, (2) has at least a minimizer.

5.2 Autonomous Two-Switched System Case

In this section, we apply the theory of moments to trans-
form the problem (2) into a semidefinite program. Con-
sider for a specific case, the polynomial (7) when q = 1
and all the vector fields are linear: fi(x, u, t) = Aix, where
Ai ∈ Rn×n. This yields a linear autonomous switched
system and of the form,

ẋ(t) = Aσ(t)x(t) (25)

Using the polynomial transformation we have,

P (x, u, s) =

1∑

k=0

Lk(s)fk(x, u) = L0A0x(t) + L1A1x(t)

ẋ(t) = P (x, u, s) =

(
1∑

k=0

Lk(s)Ak

)
x(t)

(26)
with L0 = (1 − s), L1 = s. Combining (25) and (26), we
obtain the dynamics given by

ẋ(t) = (A0(1 − s) + A1s)x(t)
Q(s) = s(s − 1) = 0

(27)

Note that the trajectories of the original switched system
(8) correspond to piecewise constant controls taking values
in the set {0, 1}. In particular, ẋ(t) = A0x(t) results
by setting s = 0 in (9), while ẋ(t) = A1x(t) result by
setting s = 1. The switching behavior is defined by the
constrained polynomial Q(s). This can be generalized for
any q > 1. For illustration and to clarity this idea, consider
the regulator problem with t0 = 0, tf = 10, x0 = (5,−5),
and R = I2×2.

A0 =

[
0 1
−2 1

]
A1 =

[
0 2
−1 −1

]

Using the theory of moments, we can change the polyno-
mial variables for moments, i.e., s = m1, s2 = m2. The
relaxed problem based on the approach developed above,
can be reformulated as,

min
u

∫ tf

0

xT (t)Rx(t)dt

s.t.

ẋ(t) = (A0(1 − m1) + A1m1) x(t)

Q̃ = m2 − m1 = 0[
1 m1

m1 m2

]
≥ 0

(28)

This particular convex relaxation can be solved by high-
performance, numerical methods for convex mathematical
programs as in Sturn [1999], and Toh et al. [1999]. In Fig. 1
we can see the system response and the switching signal for
the regulator. It is clear that the system switches between
both subsystem, in order to stabilize the system to zero
from the initial condition. When the switching signal is ’1’
the active subsystem is A1, and when the signal is ’0’ the
second subsystem is active. This numerical example, using
the MATLAB optimization toolbox, let us confirm that the
first moment, i.e., m1, corresponds with the polynomial
variable s, and therefore with the switching signal σ.

6. CONCLUSION

In this paper, we have developed a new method for solving
the optimal control problem of switched systems based on
a polynomial approach. First, we transform the original
problem into a polynomial system, that is able to mimic
the switching behavior but with a continuous differential-
algebraic nonlinear representation. After that, we trans-
form the polynomial problem into a relaxed convex prob-
lem, through the method of moments. From a theoretical
point of view, we provide necessary and sufficient condi-
tions for the existence of minimizer by using particular
features of the minimizer of its relaxed, convex formula-
tion. Even in the absence of classical minimizers of the
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Fig. 1. System response and switching signal for initial
condition x=(5,-5)

switched system, the solution of its relaxed formulation
provide minimizers.

Further directions of this work can be focused on the
development a computational tool to solve the convex
relaxed problem in general cases, i.e., nonlinear vector
fields, and to prove the computational efficiency of the
method proposed. On the other hand, we have several
tools to optimal control of the switched system with
this polynomial representation, different of the method of
moments. And it opens several possibilities for the system
analysis, as stability analysis by using sum of squares
Parrilo [2000], and some other analysis as controllability,
observability among others. Some results on controllability
of switched systems related with non-switched polynomial
system have been presented in Perera and Dayawansa
[2004]. It means that with this approach, we have the
possibility of analysis and control for nonlinear switched
systems in a consistent way.
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