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Abstract: In this paper, robust adaptive NN control is investigated for small form factor hard
disk drives which is mainly used in mobile applications. The hysteresis friction nonlinearity from
the pivot bearing degrades the servo performance, as hard disk drive servo system operates
in track-following mode. To deal with the effect of hysteresis friction nonlinearity, adaptive
hysteresis friction compensation with RBFNN approximation is proposed. The effectiveness of
the proposed adaptive control compared with the conventional proportional-integral-derivative
(PID) control will be shown through comprehensive simulation results.
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1. INTRODUCTION

Today’s information storage industries are moving to the
manufacturing of micro hard disk drives, which will be
used in small hand-held devices such as portable com-
puters, digital cameras, video cameras, MP3 players, car
navigation and audio systems, even mobile phones in the
near future. As the disk drives are smaller, the track place-
ments become denser. A more precise head positioning
accuracy is required due to the growth of areal density.
The servo loop which is aimed to meet an error budget at
sub-nanometer scales becomes the most significant effect
in small form factor hard disk drives.

The existence of pivot bearing hysteresis friction and exter-
nal disturbances in the voice-coil-motor (VCM) actuator
results in large residual errors and high-frequency oscilla-
tions. As a consequence, the position error signal will be
increased and the performance of hard disk drive servo
systems will be decreased. In the worst case, the data may
be lost due to damage of drives. These factors attract us
to study and compensate for the nonlinear effects of pivot
bearing hysteresis friction in the VCM actuator. Several
models have been proposed to present the behavior of
pivot nonlinearities in both time and frequency domain
(Abramovitch et al., 1994), (Wang et al., 1994).

Cancelation of pivot hysteresis nonlinearities in HDDs
have been presented by researchers using different kinds
of control methods. For instance, acceleration feedforward
control was investigated, (Ishikawa and Tomizuka, 1998)
using friction observer with Kalman filter to estimate
the difference between scaled VCM current and angular
acceleration. In (Yan and Lin, 2003), a disturbance ob-
server was also designed based on VCM current and the
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arm acceleration feedback to recover the gain loss at low
frequency range. A nonlinear compensator, which behaves
like a double integrator has been developed in (Gong et
al., 2002) to cancel the nonlinear effects.

Moreover, an integrated test apparatus for pivot bearing
analysis was designed in (Liu and Liu, 1999), where a laser
doppler vibrometer (LDV) was used to measure accurately
the displacement and velocity of actuator for feedback con-
trol. In (Peng et al., 2005), an enhanced composite nonlin-
ear feedback (CNF) control technique has been proposed
to improve tracking performance of the VCM actuator.
As an attractive alternative solution, (Ge et al., 2007) has
designed a novel disturbance observer based on a series of
integral filters to estimate unknown arbitrarily fast time-
varying external disturbances with the exponential accu-
racy. In addition, observer-based adaptive friction compen-
sation was adopted in (Wit and Ge, 1997), to achieve the
asymptotic stability of the systems which have generalized
by position/velocity static characteristics.

In contract to prior works, non-model based neural net-
work (NN) controller was implemented in HDD-servo sys-
tem (Herrmann et al., 2005), in which notch filter was
augmented for resonance cancelation while robust parame-
ter estimation technique was employed to counteract pa-
rameter estimation errors. It has been proven that neural
networks are the suitable candidature for friction model-
ing and adaptive control design for friction compensation
(Ge et al., 2001). To improve the control performance of
piezo-positioning mechanism, an adaptive wavelet neural
network (AWNN) control with hysteresis estimation has
been studied (Lin et al., 2006).

In this paper, adaptive neural network control is proposed
based on the LuGre friction model (Wit et al., 1995), which
can capture all the static and dynamic characteristics of
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hystereis friction nonlinearity and provide the capability of
accurate modeling both in sliding and pre-sliding regimes.

The organization of this paper is as follows. The problem
formulation and preliminary knowledge including some
notations, assumptions and RBFNN, which will be used
in the later adaptive neural control design, are described
in Section 2. The control design methodology using neural
networks and the stability analysis through Lyapunov syn-
thesis are developed in Section 3. In Section 4, the pro-
posed method is evaluated through extensive simulation
studies before conclusion is drawn in Section 5.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Dynamics of Hard Disk Drive System

Consider the following dynamics of hard disk drive (HDD)
system :

mẍ + h(x, ẋ) + d(t) = u (1)

where m is the system inertial mass; x, ẋ and ẍ are the
position, velocity and acceleration of VCM actuator tip
respectively; d(t) is the external disturbance; u is the
control input; h(x, ẋ) is the bearing frictional hysteresis
of actuator pivot.

The pivot hysteresis friction model h(x, ẋ) is given by:

h = σ0z + σ1ż + σ2ẋ

ż = ẋ − α(ẋ)|ẋ|z

where h is the hysteresis friction force; z denotes the
average deflection of the bristles, which is not measurable;
σ0, σ1 and σ2 are the hysteresis friction force parameters
that can be physically explained as the stiffness of bristles,
damping coefficient, and viscous coefficient; and the non-
linear function α(ẋ) is a finite positive function which can
be chosen to describe different hysteresis friction effects.
α(ẋ) is used to characterize the Stribeck effect which is
given in (Wit et al., 1995) as follows:

α(ẋ) =
σ0

fc + (fs − fc)e−(ẋ/ẋs)2 (2)

where fc is the Coulomb friction level, fs is the level of
the stiction force and ẋs is the constant Stribeck velocity.

Remark 1. According to (Ge et al., 2000), there are no
terms which explicitly account for position dependence of
the hysteresis friction force in the above model. However,
there may exist some applications where the function α(·)
in the LuGre model also depends on the actual position, or
on a more complex combination of position and velocity.
Therefore, we assume that α(x, ẋ) is an upper and lower
bounded positive smooth function of x and ẋ, and consider
the LuGre model in the following form:

h = σ0z + σ1ż + σ2ẋ (3)

ż = ẋ − α(x, ẋ)|ẋ|z (4)

To facilitate control design later in Section 3, we need the
following assumptions.

Assumption 1. There exist positive constants αmin and
αmax such that 0 < αmin ≤ α(x, ẋ) ≤ αmax, ∀(x, ẋ) ∈ R2.

Assumption 2. States x and ẋ are measurable for feedback
controller design.

Assumption 3. The desired trajectories, xd, and its first
and second derivatives, ẋd and ẍd, are bounded and
continuous signals.

Assumption 4. The external disturbance d(t) satisfies the
following conditon:

|d(t)| ≤ d∗

where d∗ is an unknown positive constant.

The following lemma will be used in our design and
analysis.

Lemma 1. (Wit et al., 1995) Noting Assumption 1, if
|z(0)| ≤ 1/αmin then |z(t)| ≤ 1/αmin, ∀t ≥ 0.

The control objective is to design a robust adaptive
controller u for system (1) such that the output x follows
the specified desired trajectory xd.

2.2 Gaussian RBF Neural Network

In control engineering, radial basis function neural network
(RBFNN) has been successfully used as a linearly parame-
terized function approximator to solve different problems
due to its good capabilities (Ge et al., 2002). In this
paper, the following RBFNN is used to approximate the
continuous function h(z) : Rq → R,

hnn(z, W ) = WT S(z) (5)

where the input vector is z ∈ Ω ⊂ Rq, weight vector is
denoted as W = [w1, w2, ..., wl]

T ∈ Rl with the NNs node
number l > 1; and S(z) = [s1(z), ..., sl(z)]T is defined
as the basic function vector with si(z) which has been
expressed in the form of Gaussian functions as follow:

si(z) = exp
[−(z − µi)

T (z − µi)

η2

]

, i = 1, 2, ..., l (6)

where µi = [µi1, µi2, ..., µiq]
T is the center of the receptive

field and η is the width of the Gaussian function. It
has been proven that network (5) can approximate any
continuous function over, h(z), to any desired accuracy
over a compact set Ωz ⊂ Rq to arbitrary any accuracy
as h(z) = hnn(z,W ∗) + ε(z), ∀z ∈ Ωz with ideal NN
weights,W ∗ and NN approximation error ε(z). The fol-
lowing assumption is made for W ∗ and ε(z).

Assumption 5. There exist ideal constant weights W ∗

such that |ε(z)| ≤ ε∗ with constant ε∗ > 0 for all z ∈ Ωz.
Moreover, W ∗ is bounded by ‖W ∗‖ ≤ wm on the compact
set Ωz.

The ideal weights W ∗ and V ∗ are “artificial” required for
analytical purposes. According to the discussion (Ge et
al., 2002), W ∗ is defined as follows:

W ∗ = arg min
(W )

[

sup
z∈Ωz

|hnn(z, W ) − h(z)|
]

(7)

As the ideal constant W ∗ is unknown and needs to be
estimated in control design. Let Ŵ be the estimate of W ∗

and the weight estimation error be W̃ = Ŵ − W ∗.
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Throughout this paper, (̃·) = (̂·) − (·), ‖ · ‖ denotes the 2-
norm, λmin(·) and λmax(·) denote the smallest and largest
eigenvalues of a square matrix (·), respectively.

3. CONTROL DESIGN AND MAIN RESULTS

In this section, motivated by the work (Ge et al., 2001) and
(Ortega et al., 1998), the dynamic hysteresis friction model
(3) and (4) can be separated into two parts: (i) the term
with unknown constant coefficient, and (ii) the term which
is a function of the unmeasurable internal state z(t) and
is bounded by a function which is independent of z(t). We
can use RBFNN to approximate this unknown bounding
function. Based on Lyapunov synthesis, adaptation algo-
rithms for both the NN weights and the unknown system
and hysteresis friction parameters are presented.

Define the tracking error e and the filtered tracking error
r as follows:

e = x − xd

r = ė + λe
(8)

where λ > 0. Define the reference velocity and acceleration
signals as follows:

ẋr = ẋd − λe (9)

ẍr = ẍd − λė (10)

Substituting (4) into (3), we obtain

h = σ1ẋ + σ2ẋ + σ0z − σ1α(x, ẋ)|ẋ|z
= σẋ + hz(x, ẋ, z)

(11)

where σ = σ1 + σ2, and hz(x, ẋ, z) = σ0z − σ1α(x, ẋ)|ẋ|z,
which depends on z.

From Lemma 1, we know that hz is bounded by

|hz(x, ẋ, z)| = |(σ0 − σ1α(x, ẋ)|ẋ|)||z(t)|
≤ σ0 + σ1α(x, ẋ)|ẋ|

αmin
= h̄z(x, ẋ)

(12)

where h̄z(x, ẋ) is the bounding function of hz(x, ẋ, z) and
is independent of the unmeasurable internal state z. Then,

we use RBFNN ˆ̄hz(x, ẋ) = WT S(x, ẋ)to approximate the
unknown h̄z(x, ẋ). Therefore, there exists the following
function approximation

h̄z(x, ẋ) = W ∗T S(x, ẋ) + ǫ(x, ẋ) (13)

where W ∗ is the optimal weight vector, and ǫ(x, ẋ) is
the NN approximation error, which satisfies |ǫ(x, ẋ)| ≤
ǫ∗, ∀(x, ẋ) ∈ Ω, with a positive constant ǫ∗.

Then, we can have the following tracking error dynamics

mṙ = u − σẋ − hz(x, ẋ, z) − d(t) − mẍr

≤ u − σẋ + W ∗T S(x, ẋ) + φ − mẍr
(14)

where φ = ǫ∗ + d∗.

Consider the following control

u = −kr + σ̂ẋ + m̂ẍr − ŴT S(x, ẋ)sgn(r) − φ̂sgn(r) (15)

where constant k > 0, σ̂, m̂ and φ̂ are the estimates of
unknown θ, m and φ respectively.

Substituting (15) into (14) leads to

mṙ ≤−kr + σ̃ẋ + m̃ẍr − ŴT S(x, ẋ)sgn(r)

+W ∗T S(x, ẋ) − φ̂sgn(r) + φ (16)

Adding and subtracting W ∗T S(x, ẋ)sgn(r) + φsgn(r) on
the right hand side of (16), we have

mṙ ≤ −kr + σ̃ẋ + m̃ẍr − W̃T S(x, ẋ)sgn(r)
−W ∗T S(x, ẋ)sgn(r) + W ∗T S(x, ẋ)

−φ̃sgn(r) − φsgn(r) + φ

(17)

Theorem 1. Consider the closed-loop system consisting of
system (1) with dynamic hysteresis friction given by (3)
and (4), and the control law (15). If the Assumptions 1-4

are satisfied and the parameters σ̂, m̂, φ̂ and NN weight
Ŵ are updated by

˙̂σ =−kθ(ẋr + σθ θ̂) (18)

˙̂m =−km(ẍrr + σmm̂) (19)

˙̂
φ = kφ(|r| − σφφ̂) (20)

˙̂
W = Γ[S(x, ẋ)|r| − σwŴ ] (21)

where kθ, km, kφ, σθ, σm and σφ are positive design
constant parameters, Γ = ΓT > 0 is a dimensionally com-
patible constant matrix, then given any initial compact set
defined by

Ω0 =
{

x(0), xd(0), θ̂(0), m̂(0), φ̂(0), Ŵ (0)
∣

∣

∣
x(0), θ̂(0), m̂(0),

φ̂(0), Ŵ (0) are chosen finite, xd(0) ∈ Ωd

}

(i) All the closed loop signals will be remained in a
compact set which is given by:

Ω =
{

x(t), σ̂, m̂, φ̂, Ŵ
∣

∣

∣
|x| ≤ max

[0,t]
|xd| + |e(0)| +

1

λ

√

2V (0) + 2c2

c1

m
, |σ̂| ≤ |σ| +

√

(2V (0) +
2c2

c1
)kσ,

|m̂| ≤ |m| +
√

(2V (0) +
2c2

c1
)km, |φ̂| ≤ |φ| +

√

(2V (0) +
2c2

c1
)kφ, ‖Ŵ‖ ≤ ‖W ∗‖ +

√

2V (0) + 2c2

c1

λmin(Γ−1)

}

(ii) All the closed loop signals will eventually converge to
the compact sets which is defined by:

Ωs =
{

x(t), σ̂, m̂, φ̂, Ŵ
∣

∣

∣
lim

t→∞

|r| =

√

2c2

mc1
,

lim
t→∞

|σ̃| =

√

2c2kσ

c1
, lim

t→∞

|m̃| =

√

2c2km

c1
,

lim
t→∞

|φ̃| =

√

2c2kφ

c1
, lim

t→∞

‖W̃‖ =

√

2c2

λmin(Γ−1)c1

}

Proof: Consider the following Lyapunov function candi-
date:

V =
1

2
mr2 +

1

2kσ
σ̃2 +

1

2km
m̃2 +

1

2kφ
φ̃2 +

1

2
W̃T Γ−1W̃
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Its derivative along (17) is

V̇ = mrṙ +
1

kσ
σ̃ ˙̃σ +

1

km
m̃ ˙̃m +

1

kφ
φ̃

˙̃
φ + W̃T Γ−1 ˙̃W

≤ −kr2 + σ̃ẋr + m̃ẍrr − W̃T S(x, ẋ)rsgn(r)

−W ∗T S(x, ẋ)rsgn(r) + W ∗T S(x, ẋ)r − φ̃rsgn(r)

−φrsgn(r) + φr +
1

kσ
σ̃ ˙̃σ +

1

km
m̃ ˙̃m +

1

kφ
φ̃

˙̃
φ

+W̃T Γ−1 ˙̃W

≤ −kr2 + σ̃(ẋr +
1

kθ

˙̃
θ) + m̃(ẍrr +

1

km

˙̃m)

+φ̃(−|r| + 1

kφ

˙̃
φ) + W̃T [−S(x, ẋ)|r| + Γ−1 ˙̃W ]

−W ∗T S(x, ẋ)|r| + W ∗T S(x, ẋ)r − φ|r| + φr

(22)

Since,

˙̃σ = ˙̂σ, ˙̃m = ˙̂m,
˙̃
φ =

˙̂
φ (23)

and

−W ∗T S(x, ẋ)|r| + W ∗T S(x, ẋ)r ≤ 0,
−φ|r| + φr ≤ 0

(24)

Substituting (23), (24) and (18)- (21) into (22), we have

V̇ ≤ −kr2 − σσσ̃σ̂ − σmm̃m̂ − σφφ̃φ̂ − σwW̃Ŵ (25)

By completion of squares, the following inequalities hold

−σσσ̃σ̂ ≤−σσ

2
σ̃2 +

σσ

2
σ2 (26)

−σmm̃m̂ ≤−σm

2
m̃2 +

σm

2
m2 (27)

−σφφ̃φ̂ ≤−σφ

2
φ̃2 +

σφ

2
φ2 (28)

−σwW̃T Ŵ ≤−σW

2
‖W̃‖2 +

σW

2
‖W ∗‖2 (29)

Substituting (26)-(29) into (25), we have the following
equations:

V̇ ≤ −kr2 − σσ

2
σ̃2 − σm

2
m̃2 − σφ

2
φ̃2 − σW

2
‖W̃‖2

+
σσ

2
σ2 +

σm

2
m2 +

σφ

2
φ2 +

σW

2
‖W ∗‖2

≤ −c1V + c2

(30)

where

c1 = min
{

2k, σσkσ, σmkm, σφkφ,
σW

λmax(Γ−1)

}

(31)

c2 =
σσ

2
σ2 +

σm

2
m2 +

σφ

2
φ2 +

σW

2
‖W ∗‖2 (32)

Multiplying (30) by ec1t yields,

d

dt
(V (t)ec1t) ≤ c2e

c1t (33)

Integrating (33) over [0, t] leads to the following equation:

0 ≤ V (t) ≤
[

V (0) − c2

c1

]

e−c1t +
c2

c1
(34)

where

V (0) =
1

2
mr2(0) +

1

2kσ
σ̃2(0) +

1

2km
m̃2(0)+

1

2kφ
φ̃2(0) +

1

2
W̃T (0)Γ−1W̃ (0)

(35)

(i) Uniform Boundedness (UB)

From (34), we have

0 ≤ V (t) ≤
[

V (0) − c2

c1

]

e−c1t +
c2

c1
≤ V (0) +

c2

c1
(36)

From (22) and (36), we have

|r| ≤

√

2V (0) + 2c2

c1

m
,

|σ̃| ≤
√

(2V (0) +
2c2

c1
)kσ, |m̃| ≤

√

(2V (0) +
2c2

c1
)km,

|φ̃| ≤
√

(2V (0) +
2c2

c1
)kφ, ‖W̃‖ ≤

√

2V (0) + 2c2

c1

λmin(Γ−1)

(37)

Since σ̃ = σ̂−σ, m̃ = m̂−m, φ̃ = φ̂−φ and W̃ = Ŵ −W ∗,
we have

|σ̂| − |σ| ≤ |σ̂ − σ| ≤
√

(2V (0) +
2c2

c1
)kσ

|m̂| − |m| ≤ |m̂ − m| ≤
√

(2V (0) +
2c2

c1
)km

|φ̂| − |φ| ≤ |φ̂ − φ| ≤
√

(2V (0) +
2c2

c1
)kφ

‖Ŵ‖ − ‖W ∗‖ ≤ ‖Ŵ − W ∗‖ ≤

√

2V (0) + 2c2

c1

λmin(Γ−1)

(38)

i. e. ,

|σ̂| ≤ |σ| +
√

(2V (0) +
2c2

c1
)kσ

|m̂| ≤ |m| +
√

(2V (0) +
2c2

c1
)km

|φ̂| ≤ |φ| +
√

(2V (0) +
2c2

c1
)kφ

‖Ŵ‖ ≤ ‖W ∗‖ +

√

2V (0) + 2c2

c1

λmin(Γ−1)

(39)

From the definition of r in (8), we have

ė = −λe + r (40)

Solving this equation results in

e = e−λte(0) +

t
∫

0

e−λ(t−τ)|r|dτ (41)

Combining with (37), the following equation is obtained:

|e| ≤ |e(0)| + 1

λ

√

2V (0) + 2c2

c1

m
(42)

From (8), we have

|x| ≤ max
[0,t]

|xd| + |e(0)| + 1

λ

√

2V (0) + 2c2

c1

m
(43)

(ii) Uniformly Ultimate Boundedness (UUB)

From (22) and (34), we have

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2541



|r| ≤

√

2[V (0) − c2

c1

]e−c1t + 2c2

c1

m
,

|σ̃| ≤
√

[

2(V (0) − c2

c1
)e−c1t +

2c2

c1

]

kσ,

|m̃| ≤
√

[

2(V (0) − c2

c1
)e−c1t +

2c2

c1

]

km,

|φ̃| ≤
√

[

2(V (0) − c2

c1
)e−c1t +

2c2

c1

]

kφ,

|W̃‖ ≤

√

2[V (0) − c2

c1

]e−c1t + 2c2

c1

λmin(Γ−1)

(44)

Let us analyze the property of |r| first. If V (0) = c2/c1,

then |r| ≤
√

2c2

mc1

, ∀t ≥ 0. If V (0) 6= c2/c1, from (44), we

can conclude that given any µr > 2c2

mc1

, there exists Tr ,

such that for any t > Tr, we have |r| ≤ µr. Specially, given
any µr

µr =

√

2[V (0) − c2

c1

]e−c1Tr + 2c2

c1

m
,V (0) 6= c2

c1

Tr = − 1

c1
ln

( µ2
em − 2c2

c1

2[V (0) − c2

c1

]

)

lim
t→∞

|r| =

√

2c2

mc1

(45)

Similar analysis can be made about |σ̃|, |m̃|, |φ̃|, ‖W̃‖,
and limt→∞ |σ̃| =

√

2c2kθ

c1

, limt→∞ |m̃| =
√

2c2km

c1

,

limt→∞ |φ̃| =
√

2c2kφ

c1

, limt→∞ ‖W̃‖ =
√

2c2

λmin(Γ−1)c1

.

4. SIMULATION STUDIES

To demonstrate the effectiveness of our proposed control
design, we perform simulations on the plant model which is
described in (1),(3) and (4) under the following choices of

the parameter values: m = 1.0, σ0 = 105, σ1 =
√

105, σ2 =
0.4, ẋs = 0.001, fc = 1, fs = 1.5, d(t) = 0.1 sin(20t). The
proposed control is mainly investigated for the purpose of
trajectory tracking in which the output x is required to
follow the reference trajectory xd = sin(5t).

For the neural network ŴT S(x, ẋ), the centers for S(x, ẋ)
has been considered to be evenly spaced in a regular lattice
in R2. Employing five nodes for each input dimension, it
ends up with 52 = 25 nodes. The design parameters in
control (15) and adaption laws (18)-(21) are chosen as:
λ = 1.0, k = 10.0, kθ = 1.0, kφ = 1.0, km = 1.0, σθ =
0.1, σφ = 0.1, σm = 0.1, Γ = diag{1.0}, σw = 1.0.
The initial conditions are taken as: x(0) = ẋ(0) = 0.0,

Ŵ (0) = 0.0, θ̂(0) = φ̂(0) = m̂(0) = 0.0.

The simulation results are detailed in Figs 1-5. From Fig.
1, it can be seen that the tracking performance has been
improved compared with conventional PID control. The
bounededness of control signals u are shown in Fig. 2, while
norm of NN weights ‖W‖, and the estimated parameters

θ̂, φ̂ and m̂, are shown in Fig. 3 and Fig. 4, respectively.

To illustrate the effect of parameter λ on the tracking
performance, the comparison studies of different λ values

are shown in Fig. 5. It can be observed that the larger
the value of λ, the smaller the tracking errors can be
achieved. However, if the λ is chosen too small, the control
gain becomes very large, which is not expected in the
application. Therefore, there is a compromise between the
tracking performance and the control efforts. Here, we
recommend that λ is chosen between 0.1 and 15.

5. CONCLUSION

In this paper, robust adaptive NN control for mobile hard
disk drive system has been presented. All the signals in
the closed-loop have been ensured semi-globally uniformly
ultimately bounded and the output can track a desired tra-
jectory to a neighborhood of zero. Simulation results show
that the proposed robust adaptive NN control is effective
for compensation of hysteresis friction nonlinearities and
the external disturbances.
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Fig. 1. Output tracking performance comparison
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Fig. 3. NN weights norm ‖W‖

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

E
s
ti
m

a
te

d
 p

a
ra

m
e

te
rs

m̂

θ̂
φ̂

Fig. 4. Estimated parameters trajectories

0 0.5 1 1.5 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.5 1 1.5 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time

T
ra

c
k
in

g
 e

rr
o

r

λ=1

λ=5

λ=7

λ=0.5

λ=15

λ=0.1

λ=10

Fig. 5. Tracking errors with different λ values

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2543


