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Abstract: This paper presents new LMI characterizations for stability, H2 and H∞ norms of
discrete-time descriptor systems. Based on these characterizations, an iterative design procedure
for multiobjective and structurally constrained feedback control are proposed. The first key
idea of the iterative design procedure is embedding the previously designed feedback gain K̂
in the descriptor representation of the closed-loop system. The second key idea of the iterative
design procedure is linearizing the products terms of the actual controller parameter K and the
auxiliary variables by the assignment of variables instead of the ‘change of variables’ technique.
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1. INTRODUCTION

The aim of this paper is to propose LMI characterizations
of discrete-time descriptor systems. This paper also pro-
poses an iterative design procedure based on the proposed
characterizations.

The dilated (or extended) LMI characterizations enable us
to use parameter-dependent Lyapunov functions for robust
system analysis and synthesis (de Oliveira et al., 1999;
Peaucelle et al., 2000; Apkarian et al., 2001; de Oliveira
et al., 2002) and independent Lyapunov functions for
multiobjective control synthesis problems (Shimomura et
al., 2001; Ebihara and Hagiwara, 2004). These results
have promoted the great advance of the control theory.
It should be also mentioned that Chen (2004) has pointed
out that the dilated LMI characterizations are the LMI
characterizations for adequate descriptor representation
with redundant state variables.

On the other hand, there have been many attempts to
improve the performance by iterative designs (Arzelier
and Peaucelle, 2002; Ebihara et al., 2004; Shimomura and
Fujii, 2005; Saeki, 2006). Although the iterative designs
are effective, the procedures are rather specific for each
combination of objective functions.

For continuous-time systems, the other dilated LMI char-
acterizations for iterative design of multiobjective and
structurally constrained feedback control are derived
(Sebe, 2007). The key idea is dividing the system matrices
into some pieces and reconstructing a descriptor system

⋆ This research was supported in part by the Ministry of Education,
Culture, Sports, Science and Technology, Japan, under the Grant-
in-Aid for Scientific Research (B) No.19360192.

with the previously designed controller parameter. The
proposed embedment of controller parameter ensures the
improvement of achievable performance by iterative de-
sign. As the proposed procedure is based on the stability
and performance characterizations of descriptor systems,
any combination of the performance specifications and
structural constraints on controllers can be dealt with.
Contrary to the continuous-time case, the relation between
the dilated LMI conditions for the stability and the sta-
bility (rigorously the admissibility) of descriptor systems
is not so clear for the discrete-time systems. Therefor the
iterative design procedure proposed by Sebe (2007) can
not be applied for discrete-time systems.

In this paper, new LMI characterizations for the stability,
H2 and H∞ norms of discrete-time descriptor systems are
derived. Based on these characterizations, an iterative de-
sign procedure for multiobjective control and structurally
constraint controller designs is proposed. Parallel to the
continuous-time case, the proposed procedure embeds the
previously designed feedback gain K̂ in the descriptor
representation of the closed-loop system. The proposed
procedure linearizes the products terms of the actual con-
troller parameter K and the auxiliary variables by the
assignment of variables instead of the ‘change of variables’
technique (Scherer et al., 1997; I. Masubuchi, 1998). The
assignment of auxiliary variables for discrete-time systems
is different from that for continuous-time systems. This
paper also demonstrates the effectiveness of the proposed
design procedure through numerical examples.

We use the following notations. I and O denote the
identity and zero matrix, respectively. For a matrix M ,
M−1 and MT are the inverse and transpose matrix of
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M , respectively. He{M} is a shorthand notation for M +
MT. σ̄(M) is the maximum singular value of M . In some
partitioned symmetric matrices, the symbol ’⋆’ denotes
each of its symmetric block.

2. STABILITY CONDITION FOR DISCRETE-TIME
DESCRIPTOR SYSTEMS

2.1 Preliminaries

Let us consider a discrete-time state space system

x(k + 1) = Ax(k) (1)

where x(k) ∈ ℜn. A well-known stability condition for the
system (1) is given as follows.

Proposition 1. The discrete-time system (1) is stable if
and only if there exists a matrix P such that

P − ATPA > O, (2)

P = PT > O. (3)

Here are the dilated LMI conditions proposed by Oliveira
et al. (1999) and Peaucelle et al. (2000).

Proposition 2. (de Oliveira et al., 1999) The discrete-time
system (1) is stable if and only if there exist matrices G
and P such that

[

P −(GA)T

−GA G + GT − P

]

> O, (4)

P = PT > O. (5)

Proposition 3. (Peaucelle et al., 2000) The discrete-time
system (1) is stable if and only if there exist matrices F ,
G and P such that

[

P − (FA + ATFT) F − (GA)T

FT − GA G + GT − P

]

> O, (6)

P = PT > O. (7)

In these propositions, the matrix P is the actual Lyapunov
matrix for the system(1), and the matrices G and F are
the auxiliary variables.

Let us consider a discrete-time descriptor system

Ẽx̃(k + 1) = Ãx̃(k) (8)

where x̃(k) ∈ ℜl. If the matrix Ẽ is singular, the system
might have impulsive modes. Therefor the admissibility of
the system i.e., the regularity, impulse-free property and
stability, should be considered. The rigorous definitions of
these properties are found in Hsiung and Lee (1999).

Proposition 4. (Hsiung and Lee, 1999; Xu and Yang, 1999)
The system (8) is admissible if and only if there exists a

symmetric matrix X̃ ∈ ℜl×l such that

ẼTX̃Ẽ − ÃTX̃Ã > O, (9)

ẼTX̃Ẽ ≥ O. (10)

2.2 Relation between the dilated LMI characterization and
descriptor system

The relation between the stability conditions with dilated
LMIs and the stability condition for descriptor system is
now considered. Let us consider a descriptor system

[

I O
O O

]

x̃(k + 1) =

[

O I
A −I

]

x̃(k) (11)

where x̃(k) = [x(k)T x(k + 1)T]T. This descriptor system
is equivalent to the system (1). Let the Lyapunov matrix

X̃ ∈ ℜ2n×2n be

X̃ =

[

X̃11 X̃12

X̃T
12 X̃22

]

(12)

where X̃ij ∈ ℜn×n and X̃ii = X̃T
ii . From Proposition 4,

the stability conditions of the descriptor system (11) are
[

X̃11 O
O O

]

−

[

O AT

I −I

] [

X̃11 X̃12

X̃T
12 X̃22

] [

O I
A −I

]

> O, (13)

X̃11 = X̃T
11 ≥ O. (14)

Furthermore, the strict positivity of the (1, 1) block in (13)
implies

X̃11 > ATX̃22A ≥ O. (15)

If we choose

X̃11 = P > O, X̃12 = G, X̃22 = O, (16)

then the conditions are reduced to those in Proposition 2.
This implies that Proposition 2 is a sufficient condition for
Proposition 4. Let us assign the matrices F , G and P as

P = X̃11 > O,

[

F
G

]

=







O
1

2
AT

I −
1

2
I







[

X̃12

X̃22

]

, (17)

then (6) and (7) hold. Thus, Proposition 4 is a sufficient
condition for Proposition 3. As Propositions 2 and 3 are
equivalent, Proposition 4 with (11) is also equivalent to
those propositions.

The stability condition proposed by Peaucelle et al. (2000)
has advantages:

• There does not exist product terms of the Lyapunov
matrix P and the system matrix A. Thus the condi-
tions with parameter dependent Lyapunov functions
are readily applicable for the robust stability analysis
and state feedback synthesis of systems with poly-
topic uncertainties.

• There are no indefinite quadratic terms of the sys-
tem matrix A. This fact makes the controller design
problem as LMIs.

• There are large number of decision variables, which
may reduce the conservativeness in controller design.

From these reasons, the dilated LMI characterizations are
powerful tools for controller designs of robust control,
multiobjective control and structural constraint control.

Unfortunately, these dilated LMI characterizations are the
stability conditions for the descriptor system (11), and are
not for general descriptor systems. Thus, the conditions
can not be applied to the iterative design procedure
proposed by Sebe (2007).

2.3 Main results

In this subsection, the generalized stability condition for
descriptor systems is given. The H2 and H∞ norm con-
ditions for descriptor systems are also given. Let a given
discrete-time descriptor system be

Ẽx̃(k + 1) = Ãx̃(k) + B̃w̃(k), (18a)

z̃(k) = C̃x̃(k) + D̃w̃(k) (18b)
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where x(k) ∈ ℜl, w(k) ∈ ℜm, z(k) ∈ ℜp. The transfer
function from w(k) to z(k) is defined by

G(z) = C̃(zẼ − Ã)−1B̃ + D̃. (19)

Assume that

rank Ẽ = r. (20)

There always exist two non-singular matrices Ũ and Ṽ
such that

Ũ ẼṼ = diag {E,O} (21)

where E ∈ ℜr×r is non-singular. Note that these two
matrices Ũ and Ṽ can be found by the singular value de-
composition, which is numerically stable. Let us partition
the matrices Ũ and Ṽ as

Ũ =

[

Ũ1

Ũ2

]

, Ṽ =
[

Ṽ1 Ṽ2

]

(22)

where Ũ1 ∈ ℜr×l, Ũ2 ∈ ℜ(l−r)×l Ṽ1 ∈ ℜl×r, Ṽ2 ∈ ℜl×(l−r).
Then, the following theorem holds.

Theorem 5. The given descriptor system (18) is admissible

if and only if there exist matrices P ∈ ℜr×r and F̃ ∈
ℜl×(l−r) such that

(Ũ1Ẽ)TP (Ũ1Ẽ) − (Ũ1Ã)TP (Ũ1Ã) + He{F̃ Ũ2Ã} > O,
(23)

P = PT > O. (24)

Remark 6. If the matrices Ẽ and Ã are chosen as (11),
Theorem 5 coincides with Proposition 3.

Theorem 7. The given descriptor system (18) is admissible
and ‖G(z)‖∞ < γ∞ if and only if there exist matrices

P ∈ ℜr×r and F̃ ∈ ℜ(l+m)×(l−r) such that
(

Ũ1[Ẽ Õ]
)T

P
(

Ũ1[Ẽ Õ]
)

−
(

Ũ1[Ã B̃]
)T

P
(

Ũ1[Ã B̃]
)

+ He
{

F̃ Ũ2[Ã B̃]
}

+

[

O
γ2
∞

I

]

− [C̃ D̃]T[C̃ D̃] > O,

(25)

P = PT > O. (26)

Remark 8. Theorems 5 and 7 do not use Ṽ . This fact
implies that these theorems do not require the information
of right null space of Ẽ.

Theorem 9. The given descriptor system (18) is admissible
and ‖G(z)‖2 < γ2 if and only if there exist matrices

P ∈ ℜr×r, Q ∈ ℜm×m, F̃ ∈ ℜl×(l−r) and G̃ ∈ ℜ(l+m)×(l−r)

such that

γ2
2 > trace Q (27)

(Ũ1Ẽ)TPŨ1Ẽ − (Ũ1Ã)TPŨ1Ã + He{F̃ Ũ2Ã} − C̃TC̃ > O
(28)

Ṽ T
2e

(

[O I]TQ[O I] − (Ũ1[Ã B̃])TP (Ũ1[Ã B̃])

−[C̃ D̃]T[C̃ D̃] + He{G̃Ũ2[Ã B̃]}
)

Ṽ2e > O, (29)

P = PT > O, Q = QT > O (30)

where Ṽ2e = diag{Ṽ2, I}.

Remark 10. Inequality (29) can be replaced by

[O I]TQ[O I] − (Ũ1[Ã B̃])TP (Ũ1[Ã B̃]) − [C̃ D̃]T[C̃ D̃]

+ He{G̃1Ũ2[Ã B̃]} + He{G̃2Ũ1[Ẽ O]} > O. (31)

This condition (31) is independent to Ṽ , as in Theorems
5 and 7. On the other hand, the size of matrix inequality

is larger than that of (29). Therefor, the condition (29) is
preferable from the view point of computational cost.

Remark 11. Similar to the result in Masubuchi (2006),
Theorems 7 and 9 do not require any conditions on
the direct term D̃ like σ̄(D̃) < γ and are realization
independent.

The outlines of the proofs are given in Appendix.

3. ITERATIVE CONTROLLER SYNTHESIS

3.1 Descriptor representation of closed-loop system

In this section, let us apply the idea in Sebe (2007) to
the discrete-time H2/H∞ static feedback design. Note that
fixed order dynamic controllers can be similarly designed
with augmented matrices given in Iwasaki and Skelton
(1994). Furthermore, the design procedure proposed here
can also deal with multiobjective control problems with
any combinations of objective functions and structural
constraints on controllers.

Let us consider a generalized plant

x(k + 1) = Ax(k) + B0w0(k) + B1w1(k) + B2u(k),

z0(k) = C0x(k) + D00w0(k) + D01w1(k) + D02u(k),

z1(k) = C1x(k) + D10w0(k) + D11w1(k) + D12u(k),

y(k) = C2x(k) + D20w0(k) + D21w1(k) + D22u(k).
(32)

Let Ti (i = 0, 1) denote the transfer functions from wi to
zi. Assume γ∞ is a given scalar. Then, the problem is to
find a static feedback u = Ky which minimizes γ2 = ‖T0‖2

under the constraint ‖T1‖∞ < γ∞.

As this paper aims to propose an iterative design proce-
dure, let us assume that a previously designed feedback
gain K̂ is given. With this designed K̂ and the feedback
K to be designed, the explicit descriptor representation of
the closed-loop system, which is used for controller designs,
is proposed as follows:

Ẽx̃(k + 1) = Ãx̃(k) + B̃w̃(k), (33a)

z̃(k) = C̃x̃(k) + D̃w̃(k) (33b)

where Ẽ = block diag{I, O},

[

Ã B̃

C̃ D̃

]

=









Ã11 Ã12 B̃10 B̃11

Ã21 Ã22 B̃20 B̃21

C̃01 C̃02 D̃00 D̃01

C̃11 C̃12 D̃10 D̃11









=







A BL B0 B1

O −I O O
C0 O D00 D01

C1 O D10 D11







+

















B2

O
D02

D12






K̂ +







O
BR

D02

D12






(K − K̂)











× [ C2 O D20 D21 ] , (33c)

B2 = BLBR, ξ = BRu, (33d)

x̃ =

[

x
ξ

]

, w̃ =

[

w0

w1

]

, z̃ =

[

z0

z1

]

. (33e)

The idea of the decomposition of B2 in (33d) is first
proposed in Saeki (2006) and is also discussed in Sebe
(2007). Mostly the recommended decomposition is

BL = UB2Σ
1

2

B2, BR = Σ
1

2

B2V
T
B2 (34)
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where UB2ΣB2V
T
B2 is the singular value decomposition of

B2.

Applying Theorems 7 and 9 to the descriptor system (33),
the H2/H∞ control problem can be formulated as an
optimization problem below.

Problem 12. Find positive definite matrices P2, P∞, Q,
and matrices K, F̃ , G̃, H̃ such that

minimize γ2

subject to γ2
2 ≥ trace Q, (35)

[

M1 ⋆

[C̃01 C̃02] I

]

> O, (36)

[

M2 ⋆

[C̃02 D̃00] I

]

> O, (37)

[

M3 ⋆

[C̃11 C̃12 D̃11] I

]

> O, (38)

M1 =

[

P2 O
O O

]

−

[

ÃT
11

ÃT
12

]

P2[Ã11 Ã12] + He
{

F̃ [Ã21 Ã22]
}

,

(39)

M2 =

[

O O
O Q

]

−

[

ÃT
12

B̃T
10

]

P2[Ã12 B̃10] + He
{

G̃[Ã22 B̃20]
}

,

(40)

M3 =





P∞ O O
O O O
O O γ2

∞
I



 −





ÃT
11

ÃT
12

B̃T
11



 P∞[Ã11 Ã12 B̃11]

+ He
{

H̃[Ã21 Ã22 B̃21]
}

. (41)

Similar to the the conventional dilated LMI character-
izations, there are no product terms of the Lyapunov
variables P∗ and the controller parameter K in the above
conditions. On the other hand, the product terms of the
auxiliary variables F̃ , G̃, H̃ and the controller parameter
K exist. Thus, linearization is required to make the prob-
lem tractable.

Here, the conceptual iterative design procedure is summa-
rized. The actual linearization will be mentioned in the
next subsection.

Algorithm 1. Let K(i) be the feedback gain which is de-
signed at the i-th design iteration.

(i) Find a static feedback K which satisfies ‖T1‖∞ < γ∞.
Set K(0) = K and i = 1.

(ii) Set K̂ = K(i−1) in (33). Solve Problem 12 with
the linearized conditions of (36), (37) and (38). (We
will mention the actual linearization in the next
subsection.) Set K(i) = K where K is the solution.

(iii) If a stopping criterion is satisfied, exit. Otherwise, set
i = i + 1 and go to Step (ii).

With this iterative design procedure, let us define some

variables. Let γ
(i)
2g be the guaranteed upper bound, i.e.,

the optimized value γ2 in Problem 12, and γ
(i)
2a be the

actually achieved H2 norm of the closed-loop system with

the designed K(i). Evidently, γ
(i)
2a ≤ γ

(i)
2g . The matrices P

(i)
2a

and P
(i)
∞a denote the Lyapunov variables which evaluate the

H2 and H∞ norms of the closed-loop system with K(i),

respectively. Note that these matrices are different from
the solutions P2 and P∞ at the i-th design iteration.

3.2 Linearization by assignment of variables

In many controller design methods based on LMI charac-
terizations, the ‘change of variables’ technique is used to
linearize the product terms of the Lyapunov or auxiliary
variables and the controller parameter at the expense of
the unification of the Lyapunov or auxiliary variables.
The unification induces conservative results. Instead of the
‘change of variables’ technique, the assignment of variables
is proposed to linearize the product terms by Sebe (2007)
for the continuous-time systems. Similar to the continuous-

time case, linearization with the Lyapunov variables P
(i−1)
2a

and P
(i−1)
∞a is proposed in this subsection.

As mentioned before, there exist the product terms of the
auxiliary variables F̃ , G̃, H̃ and the controller parameter
K. Obviously, the problem becomes linear, if the auxiliary
variables are fixed. Thus we now propose to linearize the
conditions (36), (37) and (38) by fixing these auxiliary
variables. Explicit assignments are given below.

F̃ = −[Ã11 Ã12]
TP

(i−1)
2a BL, (42a)

G̃ = −[Ã12 B̃10]
TP

(i−1)
2a BL, (42b)

H̃ = −[Ã11 Ã12 B̃11]
TP (i−1)

∞a BL. (42c)

Then, the next theorem holds.

Theorem 13. Assume the conditions (36), (37) and (38)
be linearized by the variable assignments (42). Then, the

inequality γ
(i)
2g ≤ γ

(i−1)
2a holds.

Proof. Let K = K̂ = K(i−1), P2 = P̂2 = P
(i−1)
2a , P∞ =

P̂∞ = P
(i−1)
∞a and substitute (42) into the constraints (36),

(37), (38), then the inequalities become




P2 − (∗)TP2(A + B2K̂C2) O ⋆

O BT
L P̂2BL O

C0 + D02K̂C2 O I



 > O, (43)





BT
L P̂2BL O O

O Q − (∗)T(B0 + B2K̂D20) ⋆

O D00 + D02K̂D20 I



 > O, (44)

[

N3 ⋆

[C1 + D12K̂C2 O D11 + D12K̂D21] I

]

> O, (45)

N3 =





P̂∞ O O

O BT
L P̂2BL O

O O γ2
∞

I





− [ ∗ ]TP̂∞[A + B2K̂C2 O B1 + B2K̂D21]. (46)

The inequalities (43) and (44) are the H2 constraints and
the inequality (45) is the H∞ constraint of the closed-loop

system with K̂, respectively. As the matrices P̂2 and P̂∞

are the Lyapunov matrices which evaluate the H2 and H∞

norms, the optimal value is γ
(i−1)
2a . �

3.3 Remarks on implementation

Similar to the continuous-time case in Sebe (2007), we can

modify the term BT
L P

(i−1)
∗ BL in the assignments (42). The
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(2, 1) blocks of the auxiliary variables F̃ , G̃, H̃ can be
replaced by RF , RG, RH , respectively, where

RF >
1

2
BT

L P
(i−1)
2a BL, (47a)

RG >
1

2
BT

L P
(i−1)
2a BL, (47b)

RH >
1

2
BT

L P (i−1)
∞a BL. (47c)

Even with these modifications, Theorem 13 still holds.

Let us consider more restrictive generalization

F̃ = −[Ã11 βÃ12]
TP

(i−1)
2a BL (β >

1

2
) (48)

and consider only M1 > O in H2 constraint (36), i.e.,
the stability condition of the closed-loop system. With the
assignment (48), (1,2) block of M1 becomes

β{B2(K − K̂)C2}
TP̂BL − (A + B2K̂C2)

T(P − P̂ )BL,
(49)

where P̂ = P
(i−1)
2 and K̂ = K(i−1). Roughly speaking,

the smaller this off-diagonal block is, the less conservative
design can be achieved. As discussed in Sebe (2007), the

parameter β balances the magnitude of (P − P̂ ) and (K −

K̂) and determines the convex approximation of the actual
admissible parameter space. One of the recommended
choice is

β =
σ̄((A + B2K̂C2)

TP̂BL)

σ̄((B2K̂C2)TP̂BL)
. (50)

If we ignore A, β = 1 is a simple and recommended choice.

Here, let us also mention about the relation to the method
proposed in Arzelier and Peaucelle (2002). Roughly speak-
ing, the procedure in Arzelier and Peaucelle (2002) sets

K̂ = O and alternately optimizes the performance

• with variables P , F̃ and fixed K,
• with variables P , K and fixed F̃ .

Current semidefinite programing (SDP) solvers such as
SeDuMi (Sturm, 1999) and LMI toolbox in MATLAB are
based on the interior-point method. These SDP solvers
tend to give very large auxiliary variables R∗ in (47)
when K is fixed in first step. The problem is that the
large R∗ prevent to update the controller parameter K
in second step. As long as using SDP solvers based on
the interior-point method, adequate assignments of R∗

are important for convergence and achieved performance.
It should be also mentioned that Arzelier and Peaucelle
(2002) proposed to use Ã22 in (33) as an optimization
variable. This proposal seems to be effective and should
be investigated in detail.

4. NUMERICAL EXAMPLES

Two examples demonstrate the efficiency of the proposed
method. All the examples are carried out by Robust
Control Toolbox in MATLAB (Release 2007a) on a PC
(Pentium 4, 3.2GHz with 2GB RAM). For all examples,
the decomposition of B2 is BL = B2 and BR = I, and the

stopping criterion is |γ
(i−1)
∗a − γ

(i)
∗a | < 1 × 10−5.

Example 14. (H2/H∞ control). Let us consider the H2/H∞

control problem in Oliveira et al. (2002). The state space
data of the generalized plant are







A B0 B1 B2

C0 D00 D01 D02

C1 D10 D11 D12

C2 D20 D21 D22






=

































2 0 1 0 0 1 1 0 1
1 0.5 0 1 0 0 0 0 0
0 1 −0.5 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0

































.

The problem is to find a strictly proper output feedback
controller which minimizes ‖T0‖2 under the H∞ con-
straints ‖T1ii‖∞ < γ∞ (i = 1, 2, 3), where T1ii are the
diagonal elements of T1 and γ∞ is a given value.

Three design methods are used to design controllers for
comparison, the common Lyapunov variable design by
Scherer et al. (1997), the dilated LMI characterization by
Oliveira et al. (2002) and the proposed method.

First, let us compare the three design methods from the
viewpoint of the feasible H∞ norm constraints. Without
H2 norm optimization, the problem becomes the simulta-
neous H∞ optimization problem to find a controller which
minimizes the worst H∞ norm of T1ii. Table 1 shows the
minimum feasible γ∞ for each design method. Please note
that worst H∞ norm achieved by the optimal (non-robust)
H2 controller is 21.757 (=γ̄). The H2 optimal controller is
optimal for H2/H∞ control problem with γ∞ ≥ γ̄. In other
words, it is meaningless to specify H∞ constraint with
γ∞ ≥ γ̄. The minimum feasible γ∞ for Scherer’s method
is larger than γ̄, and that for Oliveira’s is slightly smaller
than γ̄. This fact implies that these two methods do not
provide efficient design results for this example. For the
proposed procedure, the controller designed by Oliveira’s
method is selected as an initial controller. Then, after
8 iterations, the minimum feasible γ∞ for the proposed
method is 10.865 and is much smaller than γ̄. The state
space data of the designed controller for γ∞ = 10.865 is

[

AK BK

CK DK

]

=







−1.2192 −3.9646 0.2890 −0.1017
0.9316 −0.9926 0.0632 2.4815
0.0040 0.0387 −0.5029 −0.9873

−1.6088 −3.9381 1.2711 0






.

Next, let us examine the guaranteed and achieved H2

norms. For the proposed method, the simultaneous H∞

controller above is selected as an initial controller. Then,
Figure 1 shows the relation between the H∞ constraint γ∞
and the guaranteed and achieved H2 norms. As the guar-
anteed and achieved H2 norms by the proposed method
are same, only the guaranteed norm is shown. It is easy
to see that the proposed method provides efficient design
results. For example, only the proposed method can solve
the problem with γ∞ = 15, and the state space data of
the designed controller is

[

AK BK

CK DK

]

=







−0.7692 3.1366 0.1370 0.1377
−0.9702 −0.6705 −0.0309 2.0843
−0.0096 −0.1001 −0.5000 −0.9205

1.2565 −3.4486 0.8083 0






.

which achieves ‖T0‖2 = 32.434. This controller is obtained
after 16 iterations.
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Table 1. Feasible H∞ constraint and actual
H∞ norm (Example 14).

Method feasible H∞ constraint actual H∞ norm

Scherer et al. 29.081 16.854
Oliveira et al. 20.958 15.153
proposed 10.865 10.865
H2 optimal — 21.757
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Fig. 1. Guaranteed and achieved H2 norm (Example 14).

Example 15. (Decentralized H2 control). The proposed
method is applied to a decentralized H2 controller design.
The generalized plant is also borrowed from Oliveira et al.
(2002) and its state space data are

A =







0.8189 0.0863 0.0900 0.0813
0.2524 1.0033 0.0313 0.2004

−0.0545 0.0102 0.7901 −0.2580
−0.1918 −0.1034 0.1602 0.8604






,

B0 =







0.0953
0.0145
0.0862

−0.0011






, B2 =







0.0045 0.0044
0.1001 0.0100
0.0003 −0.0136

−0.0051 0.0936






,

C0 =

[

1 0 −1 0
0 0 0 0
0 0 0 0

]

, D02 =

[

0 0
1 0
0 1

]

,

C2 = I, D00 = O.

The problem is to find a decentralized state feedback
which minimizes ‖T0‖2. Let the initial decentralized state
feedback K(0) be

K(0) =

[

−2.5841 −5.0228 0 0
0 0 1.9632 −8.6826

]

which is designed by Oliveira et al. (2002). After 11
iterations, we obtained a decentralized state feedback

K(11) =

[

−0.4723 −0.3001 0 0
0 0 −0.3782 −0.1848

]

,

which attains γ
(11)
2 = 0.2728. Figure 2 shows the conver-

gence of the achieved H2 norm.

Ebihara et al. (2004) propose an alternating projection
method for structural constraint controller designs. Al-
though their method is effective, their method does not
ensure the monotonic decrease of the performance index.
Table 2 shows the computational expense of Ebihara’s
and the proposed methods. The proposed method is much
effective from the viewpoint of computational expense.
Furthermore, Ebihara’s method requires bisection method

Table 2. Achieved H2 norm and computational
expense (Example 15).

Method H2 norm iteration time [s]

centralized 0.2707 – –
Oliveira et al. 0.6509 – –
Ebihara et al. 0.2735 62 34.44
proposed 0.2728 11 1.82

(The results by Ebihara et al. are taken from their
paper and they use PC with Pentium 4, 2.53GHz.)
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Fig. 2. Achieved H2 norm (Example 15).

to obtain the optimal controller and it takes 62 iterations
for a given γ2 = 0.2735.

5. CONCLUSIONS

This paper introduces new dilated LMI characterizations
for discrete-time descriptor systems. Based on the charac-
terizations an iterative design procedure is proposed for
multiobjective control and structurally constrained con-
troller designs for discrete-time systems.
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Appendix A. OUTLINES OF PROOFS

A.1 Proof of Theorem 5

Lemma 16. (Kuijiper, 1994) The given descriptor system
(18) is regular and impulse-free, if and only if

ImẼ + ImÃ(KerẼ) = ℜn. (A.1)

Proof of Theorem 5. Necessity. From Proposition 4,
there exists a symmetric matrix X̃ which satisfies

ẼTX̃Ẽ − ÃTX̃Ã > O, (A.2)

ẼTX̃Ẽ ≥ O. (A.3)

if the given descriptor system (18) is admissible. Let us

define Ỹ as

Ỹ = Ũ−TX̃Ũ−1 =

[

Ỹ11 Ỹ12

Ỹ T
12 Ỹ22

]

. (A.4)

With this Ỹ and multiplying Ṽ T and Ṽ , (A.2) and (A.3)
become

[

E
O

]T

Ỹ

[

E
O

]

− (Ũ ÃṼ )TỸ (Ũ ÃṼ ) > O, (A.5)

ETỸ11E > O. (A.6)

Similar to (15), the strict positivity of (A.6) can be shown.
The inequality (A.5) can be rewritten as

[

ET

O

]

Ỹ11 [ E O ] − (Ũ1ÃṼ )TỸ11(Ũ1ÃṼ )

− (Ũ ÃṼ )T
[

O Ỹ12

Ỹ T
12 Ỹ22

]

(Ũ ÃṼ ) > O. (A.7)

Then, the assignments

P = Ỹ11, F̃ = (Ũ Ã)T

[

Ỹ12
1

2
Ỹ22

]

(A.8)

accomplish the necessity.

Sufficiency. Multiplying Ṽ T and Ṽ , the condition (23)
becomes

(Ũ1ẼṼ )TP (Ũ1ẼṼ ) − (Ũ1ÃṼ )TP (Ũ1ÃṼ )

He{Ṽ TF̃ Ũ2ÃṼ } > O. (A.9)

Let

Ũ ÃṼ =

[

A11 A12

A21 A22

]

. (A.10)

From Lemma 16, if the system is not impulse-free, there
exist a vector p(�= o) which satisfies Ã22p = o. Multiplying
[oT

p
T]T and its transpose to (A.9), the left hand side of

the inequality becomes 0. This contradicts the negativity
of (A.9). Thus the system is regular and impulse-free, and

Ã22 is non-singular. Applying the elimination lemma, the
inequality (A.9) is equivalent to

(A11 − A12A
−1
22 A21)

TP (A11 − A12A
−1
22 A21) − ETPE < O.

(A.11)

This shows the stability of exponential modes of the
system. �

A.2 Outlines of the other proofs

Once the conditions for the admissibility of discrete-time
descriptor systems are obtained, the conditions for H2 and
H∞ norm of the systems can be derived directly from the
results in Stykel (2006) and Hsiung and Lee (1999) .

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8827


