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Abstract: An accurate and low-cost level measurement method based on acoustic resonance is presented. 
The method is useful in the cases that measurements are noisy which might be due to environment noise or 
due to low-cost instruments used in the measurement process. An iterative nonlinear filtering algorithm, 
called the “Unscented Kalman filter” (UKF) has been employed to obtain a good estimate of the noisy 
measurements. Simulation and experimental tests have been carried out indicating that the UKF greatly 
improves the accuracy of the measured level.  

 

1. INTRODUCTION 

Various classic and modern methods have been used for 
determining the level of liquids. These methods are useful in 
many industries such as chemical, petrochemical, water and 
food industries. Most level measurement methods are based 
on mechanical, conductivity, capacitive, wave and 
microwave reflection phenomena but the most presented 
methods are established on the wave reflection and operate in 
the sound and ultrasound regions (Angrisani L., 2006a,b; 
Burak Dalci K.; Isonaga S.; Meribout M.; Tanaka, S.). The use 
of ultrasound waves are generally limited due to the problem 
of parasitic reflections caused by foams, residues, surface 
ripple and deposits; however, there are some improvements 
which reduce this problem (Angrisani L. 2006a,b; Burak 
Dalci K.). Problem with the parasitic reflection in acoustic 
gauge can be reduced using long acoustic waves, since the 
wavelength of these waves is much longer than potential 
residue or deposit (Donlagic D.). But there is still a problem 
in the existing acoustic based techniques. This problem is the 
lack of accuracy which originates from the uncertainties in 
transmitter, receiver and temperature sensor. In addition, 
noise and shape distortions generally affect the transmitted 
signal and make the true level difficult to achieve. To 
overcome these limitations affecting the sound and 
ultrasound based techniques, iterative filtering algorithms 
such as “Kalman filter” (KF), “Extended Kalman filter” 
(EKF) and “Unscented Kalman filter” (UKF) can be 
employed (Angrisani L. 2006a,b; Tanaka S.). In general, the 
UKF can provide a better alternative for nonlinear filtering 
than the conventional EKF since it avoids errors associated 
with linearization (Julier S. J.). In this paper an accurate 
industrial level measurement method using UKF is proposed 
which can be used, especially in noisy environments or in the 
cases in which low-cost instruments such as low-cost 
microphone and speaker have been used. The proposed 
method can also reduce the effect of parasitic reflections 
caused by foam, residue, etc more than the existing methods. 

2. THEORY AND BASIC SETUP 

2.1 Basic setup 

Fig. 1 shows the construction of the acoustic level gauge. It 
consists of an upright tube extending into a storage tank, a 
transmitter and a receiver of acoustic waves at the top of the 
tube (a loudspeaker and a microphone) to emit the sound 
waves into the tube and to receive the echo signals, a 
temperature sensor to measure the temperature of the air 
inside the tube during the measurement process and a 
controller. The controller transmits a sine wave to drive the 
speaker and the speaker emits the signal vertically toward the 
liquid surface. Then the microphone receives the echo or the 
reflected acoustic wave and sends the received signal to the 
controller (Donlagic D.). 

When the speaker vibrates near the tube, there are certain 
frequencies at which the tube will amplify the sound from the 
speaker. These frequencies are called resonant frequencies, 
and occur because the dimensions of the tube are such that, at 
these frequencies, a maximum transfer of energy is 
accomplished between the speaker and the tube. 

The resonant frequencies of the level gauge, can be found 
from the well-known equation 

42
nnnL

λλ
+=  , =n  0, 1, 2, …           (1)  

where nλ is the wavelength of the nth resonance and L is the 
distance from the top of the tube to the end which is the 
surface of liquid as shown in Fig. 1. 
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Fig. 1. The construction of the acoustic level gauge. 

The value of λ is calculated through the following equation 

f
T

f
c 6.04.331 +
==λ                           (2) 

where f  and c  are the frequency and the speed of sound, 
respectively and T  is the temperature in Celsius. 

It should be noted that the sound speed is highly dependent 
on the temperature and on the composition of air inside the 
tube, and also on its pressure. So the temperature of the air 
should be measured continuously during the level 
measurement process to detect its variations with respect to 
time. 

2.2 The algorithm of Level measurement  

The resonator is excited from a frequency Lf  to a higher 
frequency Hf . The speaker transmits a sine wave with a 
wavelength of LL fc=λ and waits for acoustic amplitude to 
settle. The controller samples the signals received via the 
microphone and stores the wavelengths and the amplitudes of 
the received signals in memory. This process is repeated over 
the entire frequency range with a frequency step of fΔ . Fig. 
2 shows the envelope of a typical acquired signal received 
through the microphone for a 3-meter long tube in the 
frequency range of 1525 Hz to 1675 Hz with the frequency 
step of 1 Hz. When the frequency range is totally scanned, the 
controller searches for local maxima and extracts the resonant 
wavelengths nλ  to Nn+λ  where 1+N  is the number of 
resonant wavelengths in the entire frequency range. It is seen 
in Fig. 2 that there are three resonant frequencies in this range 
which are 1548=nf  Hz, 16071 =+nf  Hz and 16672 =+nf  
Hz. 

 

Fig. 2.  The signal received through the microphone for a 3-
meter long tube in the frequency range of 1525 Hz to 1675 
Hz. 

2.3 Problem Formulation 

The objective of this subsection is to present a relation between the 
length L  and the resonant wavelengths nλ  to kn+λ . 

If nλ , 1+nλ and 2+nλ  are the resonant wavelengths for n , 
1+n and 2+n  in (1), then the system equations can be 

written as 

42
nnnL λλ

+=               (3) 

42
)1( 11 ++ ++= nnnL λλ

             (4) 

42
)2( 22 ++ ++= nnnL λλ

             (5) 

Substituting (3) into (4) and solving for the length L , we 
obtain 

)(2 1

1

+

+
−

=
nn

nnL
λλ

λλ
.             (6) 

Hence, the value of L can be calculated using two resonant 
wavelengths nλ and 1+nλ . In addition, the system dynamics 
can be written using (3), (4) and (5) as follows 

1

1
2 2 +

+
+ −

=
nn

nn
n λλ

λλ
λ .                          (7) 

It is seen that (7) is a second-order nonlinear difference 
equation. Instead of working directly with this second order 
difference equation for state estimation, it is convenient to 
convert it into a first order nonlinear equation (Meditch J. S.) 
as follows: 
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The price we have paid to convert (7) into (8) is that of 
introducing a new vector which has twice as many elements 
as the original state vector. 

Since the noise outside the tube affects continually the 
amplitude and the phase of the stationary waves in the tube 
(especially in noisy environments such as factories) and on 
the other hand, the measurements of λ  are not accurate and 
there are some uncertainties in the measurements through 
speaker, microphone, system noise, parasitic reflections, etc 
(especially for low-cost instruments such as low-cost 
microphone and speaker), a stochastic filter should be used to 
estimate the measured data. Here the UKF, which is a proper 
choice for state estimation in nonlinear systems such as (8), is 
applied. 

2.4 The Unscented Kalman filter: 

Kalman filter is an optimal, minimum mean square error 
estimator for linear systems. When system dynamics are 
intrinsically nonlinear, extended Kalman filter (EKF) has 
customarily been used. In general, the EKF performs a 
truncated first-order Taylor linearization on the system 
equations about the current state, to which the linear filter 
equations are applied. The EKF has been used extensively; 
however, it suffers from possible divergence problems 
because the linearization does not always capture the correct 
dynamics of the underlying system. As a result, several new 
filtering methods have recently been introduced on the basis 
of the Kalman filter. The UKF is a powerful nonlinear 
estimation technique and has been shown to be a superior 
alternative to the EKF in a variety of applications including 
state estimation (Julier S. J.). Unlike the EKF, the UKF does 
not explicitly approximate the nonlinear process and 
measurement models; it uses the true nonlinear models and 
approximates the distribution of the state random variable. 
The basic idea underlying the UKF is that “it is easier to 
approximate a probability distribution than it is to 
approximate an arbitrary nonlinear function or 
transformation” (Julier S. J.). Instead of linearizing using 
Jacobian matrices, a set of input domain points, which are 
referred to as sigma points, along with a proper collection of 
weights are deterministically chosen in such a way that a 
defined number of their central moments match those of input 
random variables (Van der Merwe R.). 

Consider a discrete time nonlinear dynamic system with 
additive noise in process and measurement 

kkkk UXFX ω+=+ ),(1       (9)  

kkkk VUXHY += ),(          (10) 

where kω ( 1×l ) and kV ( 1×m ) are the process and 
measurement noise vectors with covariances ωR  and VR ; 

kU  is the input vector; kY  is an 1×m  measurement vector 

and kX  is an 1×l  random vector with mean ][ kk XEX =  
and covariance kXP  where E  is the expectation operator. 

The algorithm of the UKF for this system can be performed 
as follows (Van der Merwe R.) 

Let 000 ][ˆ XXEX == , 

])ˆ)(ˆ[( 00000
T

X XXXXEP −−=                       (11) 

then for n = 1, … , k : 

the random vector 1−kX  is approximated by 12 +l  sigma 
points and their weights iW  based on the given values of 

1
ˆ

−kX  and covariance 1−kXP : 

( ) 101
ˆ

−− = kk Xχ   

( ) ( )
ikXkik PX 111 )(ˆ

−−− ++= κχ l , 
 
i=1,…, l

 

( ) ( )
ikXkik PX 111 )(ˆ

−−− +−= κχ l ,   i= l +1,…, 2 l  

κ
κ
+

=
l

0W  

)(2
1
κ+

=
l

iW ,  i=1,…, l  

)(2
1
κ+

=
l

iW ,  i= l +1,…, 2 l        (12) 

where ( )iP  is the i th column of the matrix square root of 

P  and iW  is the weight associated with the i th sigma point. 
The scalar κ is a scaling parameter that is usually set to 

l−3 . In general, other choices of κ  would lead to better or 
worst results, depending on specific characteristics of the 
problem. 

(12) can be written in a simplified vector form as below 

1111 )(ˆˆ[ −−−− ++= kXkkk PXX κχ l   

  ])(ˆ
11 −− +− kXk PX κl           (13) 

where 1
ˆ

−kX  is an 1×l  vector and 11 )(ˆ
−− +± kXk PX κl  is 

an ll×  matrix. Consequently the dimensions of sigma point 
matrix 1−kχ is )12( +× ll . 

Then the sigma points are transformed through the function 
F defined in (9) 

),( 11
*

1| −−− = kkkk UF χχ          (14) 

and a priori state estimate and a priori state covariance are 
given by  
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The sigma points should be augmented with additional points 
derived from the matrix square root of the process noise 
covariance VR , in order to incorporate the effect of process 
noise on the sigma points. This requires changing the size of 
augmented sigma points from )12( +× ll  to )14( +× ll  
and recalculating the weights iW , accordingly. 

( ) ωκχχχ Rkkkkkk )([ 0
*

1|
*

1|1| ++= −−− l

   ( ) ])(0
*

1| ωκχ Rkk +−− l        (17) 

Therefore the augmented sigma point 1| −kkχ  is an 

)14( +× ll  matrix which can be transformed through the 
measurement function defined in (10) as follows 

)( 1|1| −− =Υ kkkk H χ          (18) 

( )∑ −
− =

l4

0
1|

ˆ
ikkik YWY           (19) 

and the predicted measurement covariance matrix 
kYP  and 

the cross covariance matrix 
kkYXP are calculated accordingly 

( )( ) V
T

kikk
i

kikkikY RYYYYWP +−−= −
−
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−∑ ˆ)(ˆ)( 1|
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l

. (21) 

Now we can estimate a posteriori state estimation through the 
following equation where kK  is the Kalman gain defined in 
(23) 

)ˆ(ˆˆ −− −+= kkkkk YYKXX          (22) 

1−=
kYkYkXk PPK           (23) 

and a posterior estimate of error covariance is calculated 
using the following equation. 

T
kkYkkkXkX KPKPP −= −1| .        (24) 

        

The system dynamics for the acoustic level gauge is 
presented in (8) and the measurement equation is as follows 
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 is the measurement noise 

vector. In addition, P  and VR  are 22×  matrices. 

It can be seen that (8) and (25) are in the proper forms of (9) 
and (10) and consequently they can be applied to the UKF to 
improve the accuracy of the measurement process. 

3. SIMULATION & EXPERIMENTAL RESULTS 

Simulation and experimental tests aimed at validating the 
proposed method were carried out for different values of L . 
Simulations show that the estimation has good results not 
only for low noise measurements ofλ , but also for very 
noisy measurements as shown in Fig. 3.  

 
Fig. 3(a) 

 
Fig. 3(b) 
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Fig. 3(c) 

Fig. 3. Simulation results for a 3-meter long tube in the 
presence of a zero mean white noise added to the measured 
resonant wavelengths. Simulation has been accomplished for 
different measurement noise covariances which are 1.5e-7, 
2.9e-6 and 9.8e-6 for Fig. 3(a), Fig. 3(b) and Fig. 3(c), 
respectively.  

An advantage of using UKF is its independence from large 
transient errors in measured wavelengths. For instance, if a 
temporary sound source is located near the microphone, then 
the controller will not find the true acoustic resonance 
because the sound source can change the location of the 
resonance wavelength or it can make an impulse which may 
be distinguished as a resonant wavelength by the controller. 
Fig. 4 shows a case that the three initial measurements have 
large errors (which are not zero mean), but it is seen that the 
UKF can eliminate the effect of these errors. The UKF can 
also eliminate the effect of these large errors, while these 
noisy wavelengths are anywhere in the frequency range. 

 
Fig. 4. A simulation result for a 3-meter long tube while 
some measured wavelengths have large transient error.  

Fig. 5 shows the experimental result for a 5.3-meter long 
tube. In this case, the frequency range of the transmitted 
signal is from 1480 Hz to 2480 Hz. It is seen that there are 
approximately 30 resonant wavelengths in this frequency 
range. The minimum and maximum measured lengths are 
5.212 m and 5.406 m, respectively, which yield to 2 % error 
in length measurement; but the minimum and maximum 
values of estimated lengths are 5.294 and 5.305 for N>10 
(after transient). So it is seen that the estimated lengths have 
just 0.11% error.  

 
Fig. 5. Experimental result for a 5.3-meter long tube. 

Several experiments have been performed for each value of 
L  to find a maximum estimation error (worst case) in each 
case and to show the efficiency of the proposed method. The 
maximum estimation error is calculated according to the 
maximum difference between the true length and the 
estimated length for each L (after the transient) as shown in 
table 1. It should be noted that in most cases, the estimation 
error is smaller that the error given in table 1. 

 

Table 1. Experimental results for different values of L  

Experiment 
No. 

True L  
(cm) 

Max. estimation 
error (cm) 

Relative 
error (%) 

1 170 0.40 0.23 
2 200 0.31 0.15 
3 230 0.45 0.19 
4 260 0.30 0.11 
5 290 0.31 0.11 
6 320 0.39 0.12 
7 350 0.44 0.13 
8 380 0.48 0.12 
9 410 0.42 0.10 

10 440 0.34 0.07 
11 470 0.60 0.13 
12 500 0.33 0.07 
13 530 0.60 0.11 
14 560 0.57 0.10 
15 590 0.90 0.15 
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It can be seen that the maximum value of error for this 
method (in the case that low-cost microphone, speaker and 
temperature sensor have been used) is 0.9 cm for 590=L cm 
which is accurate enough for many applications. 

4. CONCLUSIONS 

A level measurement method based on acoustic resonance 
has been proposed in this paper. Since the environment noise 
and the noise in measurements through speaker, microphone, 
parasitic reflection, etc affect the amplitude of the received 
signal, a nonlinear filter called the “Unscented Kalman filter” 
was used which greatly improved the accuracy of the 
measured level. As a result, this method can be used for level 
measurement especially in noisy environments or in the cases 
that low-cost instruments such as cheap microphone and 
speaker have been used. 
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