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Abstract: An accurate and low-cost level measurement method based on acoustic resonance is presented.
The method is useful in the cases that measurements are noisy which might be due to environment noise or
due to low-cost instruments used in the measurement process. An iterative nonlinear filtering algorithm,
called the “Unscented Kalman filter” (UKF) has been employed to obtain a good estimate of the noisy
measurements. Simulation and experimental tests have been carried out indicating that the UKF greatly

improves the accuracy of the measured level.

1. INTRODUCTION

Various classic and modern methods have been used for
determining the level of liquids. These methods are useful in
many industries such as chemical, petrochemical, water and
food industries. Most level measurement methods are based
on mechanical, conductivity, capacitive, wave and
microwave reflection phenomena but the most presented
methods are established on the wave reflection and operate in
the sound and ultrasound regions (Angrisani L., 2006a,b;
Burak Dalci K.; Isonaga S.; Meribout M.; Tanaka, S.). The use
of ultrasound waves are generally limited due to the problem
of parasitic reflections caused by foams, residues, surface
ripple and deposits; however, there are some improvements
which reduce this problem (Angrisani L. 2006a,b; Burak
Dalci K.). Problem with the parasitic reflection in acoustic
gauge can be reduced using long acoustic waves, since the
wavelength of these waves is much longer than potential
residue or deposit (Donlagic D.). But there is still a problem
in the existing acoustic based techniques. This problem is the
lack of accuracy which originates from the uncertainties in
transmitter, receiver and temperature sensor. In addition,
noise and shape distortions generally affect the transmitted
signal and make the true level difficult to achieve. To
overcome these limitations affecting the sound and
ultrasound based techniques, iterative filtering algorithms
such as “Kalman filter” (KF), “Extended Kalman filter”
(EKF) and “Unscented Kalman filter” (UKF) can be
employed (Angrisani L. 2006a,b; Tanaka S.). In general, the
UKF can provide a better alternative for nonlinear filtering
than the conventional EKF since it avoids errors associated
with linearization (Julier S. J.). In this paper an accurate
industrial level measurement method using UKF is proposed
which can be used, especially in noisy environments or in the
cases in which low-cost instruments such as low-cost
microphone and speaker have been used. The proposed
method can also reduce the effect of parasitic reflections
caused by foam, residue, etc more than the existing methods.
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2. THEORY AND BASIC SETUP

2.1 Basic setup

Fig. 1 shows the construction of the acoustic level gauge. It
consists of an upright tube extending into a storage tank, a
transmitter and a receiver of acoustic waves at the top of the
tube (a loudspeaker and a microphone) to emit the sound
waves into the tube and to receive the echo signals, a
temperature sensor to measure the temperature of the air
inside the tube during the measurement process and a
controller. The controller transmits a sine wave to drive the
speaker and the speaker emits the signal vertically toward the
liquid surface. Then the microphone receives the echo or the
reflected acoustic wave and sends the received signal to the
controller (Donlagic D.).

When the speaker vibrates near the tube, there are certain
frequencies at which the tube will amplify the sound from the
speaker. These frequencies are called resonant frequencies,
and occur because the dimensions of the tube are such that, at
these frequencies, a maximum transfer of energy is
accomplished between the speaker and the tube.

The resonant frequencies of the level gauge, can be found
from the well-known equation

,n=012 .. (1)

where A, is the wavelength of the n™ resonance and L is the

distance from the top of the tube to the end which is the
surface of liquid as shown in Fig. 1.
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Fig. 1. The construction of the acoustic level gauge.

The value of A is calculated through the following equation

L _c 33144067 @

f f

where / and ¢ are the frequency and the speed of sound,
respectively and T is the temperature in Celsius.

It should be noted that the sound speed is highly dependent
on the temperature and on the composition of air inside the
tube, and also on its pressure. So the temperature of the air
should be measured continuously during the Ilevel
measurement process to detect its variations with respect to
time.

2.2 The algorithm of Level measurement

The resonator is excited from a frequency f; to a higher
frequency fy . The speaker transmits a sine wave with a
wavelength of A; = ¢/ f; and waits for acoustic amplitude to
settle. The controller samples the signals received via the
microphone and stores the wavelengths and the amplitudes of
the received signals in memory. This process is repeated over
the entire frequency range with a frequency step of Af . Fig.
2 shows the envelope of a typical acquired signal received
through the microphone for a 3-meter long tube in the
frequency range of 1525 Hz to 1675 Hz with the frequency
step of 1 Hz. When the frequency range is totally scanned, the
controller searches for local maxima and extracts the resonant
wavelengths 4, to A, where N +1 is the number of
resonant wavelengths in the entire frequency range. It is seen
in Fig. 2 that there are three resonant frequencies in this range
which are f, =1548 Hz, f,.; =1607 Hz and f,,, =1667

Hz.
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Fig. 2. The signal received through the microphone for a 3-
meter long tube in the frequency range of 1525 Hz to 1675
Hz.

2.3 Problem Formulation

The objective of this subsection is to present a relation between the
length L and the resonant wavelengths 4, to 4, -

If A4,,4,,1and 4, , are the resonant wavelengths for n,

n+land n+2 in (1), then the system equations can be
written as

L:n%'u%" 3)
p) p)

L:(n+1)—"2+1 +—';+1 4)

L:(n+2)’1”T+2+’IjT+2 (5)

Substituting (3) into (4) and solving for the length L, we
obtain

A,
— n’'n+1 . (6)
2(ﬂ“n - j“nJrl)
Hence, the value of L can be calculated using two resonant
wavelengths 4, and 4,1 . In addition, the system dynamics

can be written using (3), (4) and (5) as follows

_ /In/q“n-%-l 7

n+2 — 21 1 . ( )
n~ “'n+l

It is seen that (7) is a second-order nonlinear difference
equation. Instead of working directly with this second order
difference equation for state estimation, it is convenient to
convert it into a first order nonlinear equation (Meditch J. S.)
as follows:
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y in+1
|:in+l :| = )“n/q’n+1 . (8)
n+2 2/7% _ﬂ’n-%—l

The price we have paid to convert (7) into (8) is that of
introducing a new vector which has twice as many elements
as the original state vector.

Since the noise outside the tube affects continually the
amplitude and the phase of the stationary waves in the tube
(especially in noisy environments such as factories) and on
the other hand, the measurements of A are not accurate and
there are some uncertainties in the measurements through
speaker, microphone, system noise, parasitic reflections, etc
(especially for low-cost instruments such as low-cost
microphone and speaker), a stochastic filter should be used to
estimate the measured data. Here the UKF, which is a proper
choice for state estimation in nonlinear systems such as (8), is
applied.

2.4 The Unscented Kalman filter:

Kalman filter is an optimal, minimum mean square error
estimator for linear systems. When system dynamics are
intrinsically nonlinear, extended Kalman filter (EKF) has
customarily been used. In general, the EKF performs a
truncated first-order Taylor linearization on the system
equations about the current state, to which the linear filter
equations are applied. The EKF has been used extensively;
however, it suffers from possible divergence problems
because the linearization does not always capture the correct
dynamics of the underlying system. As a result, several new
filtering methods have recently been introduced on the basis
of the Kalman filter. The UKF is a powerful nonlinear
estimation technique and has been shown to be a superior
alternative to the EKF in a variety of applications including
state estimation (Julier S. J.). Unlike the EKF, the UKF does
not explicitly approximate the nonlinear process and
measurement models; it uses the true nonlinear models and
approximates the distribution of the state random variable.
The basic idea underlying the UKF is that “it is easier to
approximate a probability distribution than it is to
approximate an  arbitrary  nonlinear  function or
transformation” (Julier S. J.). Instead of linearizing using
Jacobian matrices, a set of input domain points, which are
referred to as sigma points, along with a proper collection of
weights are deterministically chosen in such a way that a
defined number of their central moments match those of input
random variables (Van der Merwe R.).

Consider a discrete time nonlinear dynamic system with
additive noise in process and measurement

X =F(X, Up) + oy 9
(10)

Yk ZH(Xk,Uk)+Vk

where @, (¢x1) and V;(mx1l) are the process and
measurement noise vectors with covariances R, and Ry ;

U, is the input vector; Y is an mx1 measurement vector

and X is an ¢x1 random vector with mean X = E[X}]

and covariance Py, where E is the expectation operator.

The algorithm of the UKF for this system can be performed
as follows (Van der Merwe R.)

Let X = E[Xo]= X,
Py, = E[(Xg = Xo)(Xo = X)" ] (11)
thenforn=1, ..., k:

the random vector X _; is approximated by 2¢/+1 sigma

points and their weights W, based on the given values of

Xy and covariance Py, , :

(Zk—l )o = Xk—l

(Zk—l )l' = )A(k—l +(‘,(€+K)PXk—l )i, i=1,.., 0
(i) = % - [T+ 0Py ),-’ i=0+1,.., 20

K
W, =—
0 {+K
w—— 1 =1, (
2(0 +x)
WI-:;, i=0+1..,2/0 (12)
2(4 +K)

where (\/F ),- is the i ™ column of the matrix square root of

P and W, is the weight associated with the i ™ sigma point.

The scalar xis a scaling parameter that is usually set to
3—/ . In general, other choices of ¥ would lead to better or
worst results, depending on specific characteristics of the
problem.

(12) can be written in a simplified vector form as below

T =X X+ 0+ K) Py,
Xioy = [+ 0Py, | ]
where )A(k_l isan ¢x1 vector and )%k—l + JU+K)Py, | s

an ¢ x ¢ matrix. Consequently the dimensions of sigma point
matrix y;_jis £x(20+1).

(13)

Then the sigma points are transformed through the function
F defined in (9)
*
Zie—1 = F(xk-1,Uj—1) (14)

and a priori state estimate and a priori state covariance are
given by
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2
Xy = ZWi(ﬂ(kvc—l ),-
i=0

(15)

2
Py, = ZVVi((ZHk—l)i - X X(Zkvc—l)i - XE)T
i=0
+R,,

(16)

The sigma points should be augmented with additional points
derived from the matrix square root of the process noise

covariance R),, in order to incorporate the effect of process

noise on the sigma points. This requires changing the size of
augmented sigma points from /x(20+1) to £x(4/+1)

and recalculating the weights I, accordingly.

Xkk-1 = [ZZ\k—l (ZZ\k—l )0 +y(+ 1R,
(zisr), ~ T+ 00R,

Therefore the augmented

amn

sigma point g is an
x(4¢+1) matrix which can be transformed through the

measurement function defined in (10) as follows

Y1 = H(X-1) (18)

Y

Y = ZVVi(YMk—l ),- (19)
0

and the predicted measurement covariance matrix PYk and

the cross covariance matrix Py y_are calculated accordingly

41 N L\
Py, = ZVVi((Yklk—l)i Y X(Yklk—l)i Y ) +Ry  (20)
i=0

41 i R
Py = ZWi((Xch—l)i —XEX(Yk\kq)i —ka)r- (21)
i=0

Now we can estimate a posteriori state estimation through the
following equation where K is the Kalman gain defined in
(23)

Xy =Xi +K (Y -Y)) (22)

Ky =Py, PY;: (23)

and a posterior estimate of error covariance is calculated
using the following equation.

T
PXk =PXk‘k—1 _KkPYkKk . (24)

(]

The system dynamics for the acoustic level gauge is
presented in (8) and the measurement equation is as follows

(25)

|:Yn+1 :| _ |:ﬁn+l :| +|:Vn+1 :|
Yn+2 ln+2 Vn+2

ﬂ“n+1 Vn+1 . .
where X, = 1 and is the measurement noise
n+2 n+2

vector. In addition, P and Ry are 2x2 matrices.

It can be seen that (8) and (25) are in the proper forms of (9)
and (10) and consequently they can be applied to the UKF to
improve the accuracy of the measurement process.

3. SIMULATION & EXPERIMENTAL RESULTS

Simulation and experimental tests aimed at validating the
proposed method were carried out for different values of L .
Simulations show that the estimation has good results not
only for low noise measurements of A, but also for very
noisy measurements as shown in Fig. 3.
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Fig. 3. Simulation results for a 3-meter long tube in the
presence of a zero mean white noise added to the measured
resonant wavelengths. Simulation has been accomplished for
different measurement noise covariances which are 1.5¢-7,
2.9¢-6 and 9.8e-6 for Fig. 3(a), Fig. 3(b) and Fig. 3(c),
respectively.

An advantage of using UKF is its independence from large
transient errors in measured wavelengths. For instance, if a
temporary sound source is located near the microphone, then
the controller will not find the true acoustic resonance
because the sound source can change the location of the
resonance wavelength or it can make an impulse which may
be distinguished as a resonant wavelength by the controller.
Fig. 4 shows a case that the three initial measurements have
large errors (which are not zero mean), but it is seen that the
UKF can eliminate the effect of these errors. The UKF can
also eliminate the effect of these large errors, while these
noisy wavelengths are anywhere in the frequency range.
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Fig. 4. A simulation result for a 3-meter long tube while
some measured wavelengths have large transient error.

Fig. 5 shows the experimental result for a 5.3-meter long
tube. In this case, the frequency range of the transmitted
signal is from 1480 Hz to 2480 Hz. It is seen that there are
approximately 30 resonant wavelengths in this frequency
range. The minimum and maximum measured lengths are
5.212 m and 5.406 m, respectively, which yield to 2 % error
in length measurement; but the minimum and maximum
values of estimated lengths are 5.294 and 5.305 for N>10
(after transient). So it is seen that the estimated lengths have
just 0.11% error.
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Fig. 5. Experimental result for a 5.3-meter long tube.

Several experiments have been performed for each value of
L to find a maximum estimation error (worst case) in each
case and to show the efficiency of the proposed method. The
maximum estimation error is calculated according to the
maximum difference between the true length and the
estimated length for each L (after the transient) as shown in
table 1. It should be noted that in most cases, the estimation
error is smaller that the error given in table 1.

Table 1. Experimental results for different values of L

Experiment | True L | Max. estimation | Relative
No. (cm) error (cm) error (%)
1 170 0.40 0.23
2 200 0.31 0.15
3 230 0.45 0.19
4 260 0.30 0.11
5 290 0.31 0.11
6 320 0.39 0.12
7 350 0.44 0.13
8 380 0.48 0.12
9 410 0.42 0.10
10 440 0.34 0.07
11 470 0.60 0.13
12 500 0.33 0.07
13 530 0.60 0.11
14 560 0.57 0.10
15 590 0.90 0.15
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It can be seen that the maximum value of error for this
method (in the case that low-cost microphone, speaker and
temperature sensor have been used) is 0.9 cm for L =590 cm
which is accurate enough for many applications.

4. CONCLUSIONS

A level measurement method based on acoustic resonance
has been proposed in this paper. Since the environment noise
and the noise in measurements through speaker, microphone,
parasitic reflection, etc affect the amplitude of the received
signal, a nonlinear filter called the “Unscented Kalman filter”
was used which greatly improved the accuracy of the
measured level. As a result, this method can be used for level
measurement especially in noisy environments or in the cases
that low-cost instruments such as cheap microphone and
speaker have been used.
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