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Abstract: A Lyapunov-function-based control algorithm is proposed for timed continuous Petri
Net (contPN) systems working under infinite servers semantics. A timed contPN is a switched
linear system and its control signal must be non-negative and upper bounded by a function of
system states. An input variable transformation is applied to convert the system to a set of
integrators plus static constraints. Then, a low-and-high gain algorithm is proposed for step-
tracking. To improve transient performance, planning of the reference target is further discussed.

NOMENCLATURE

R
+: the set of non-negative real numbers; R

k: the Euclid-
ean space of dimension k; N = {1, · · · , n} and n is the
number of places; M = {1, · · · , m} and m is the number
of transitions; G = {1, · · · , g} and g is the number of nets
configurations; Ω = {1, · · · , ω} and ω is the number of
intermediate states; For a given a\ab∈ R

k, ai\ab,i is the
i-th element of a\ab; For a given A\Ab ∈ R

k×l, ai\ab,i is
the i-th row of A\Ab except special indication; Given a1,
a2 ∈ R

k, the i-th element of min{a1,a2} is min{a1,i, a2,i};
a1 ≤ a2 means, ∀i ∈ {1, · · · , k}, a1,i ≤ a2,i; Given a finite
set S, |S| is the size of the set S.

1. INTRODUCTION

Petri Nets (PNs) are powerful mathematical tools with
appealing graphical representations for discrete even sys-
tems. However, discrete PNs suffer from the so called state
explosion problem. One way to tackle this problem is to
fluidify the discrete models. The resulting continuous PN
(contPN) systems have the potential for the applications of
analytical techniques developed for continuous and hybrid
systems. Steady state control for timed contPN systems
has been studied in Mahulea et al. [2005]; assuming
all transitions can be fired, it can be formulated as a
linear programming problem. A Lyapunov-function-based
dynamic control method was proposed in Xu et al. [2006]
for Join-Free (JF) timed contPNs, which can ensure global
convergence of both system states and input signals. How-
ever, the application is only limited to JF cases. Hence,
dynamic control of a general timed contPN still needs
further investigations and great improvements.

The first peculiarity for timed contPN control is that,
due to the synchronization, i.e. minimum operator used in
the flow definition, a timed contPN system under infinite
servers semantics switches within different configurations.
The switching is completely defined by system states, and
it does not depend on time explicitly. Secondly, there are

certain input constraints, i.e. the control signal must be
non-negative and upper bounded by a function of system
states. Hence, the main challenge in our work is to develop
control laws under the switched dynamics and the special
input constraints to obtain global tracking convergence.

Since switching within stable systems may result in insta-
bility, lots of work have been done on the control law design
of switched linear systems. However, it is always assumed
that the eigenvalues can be arbitrarily assigned for every
subsystem. For timed contPN systems, this assumption
is not valid due to the input constraints. Hence, how to
construct control algorithms for switched linear systems
with input constraints is still an open problem. The input
constraints can be treated as input saturations which has
been thoroughly discussed. However, the common assump-
tions are that the lower saturation bounds are negative
constants and the upper ones are positive constants. To
deal with the special input constraints in timed contPNs,
a modified LQ-theory-based low-gain controller was pro-
posed in Xu et al. [2006]. Nevertheless, only JF cases were
discussed there, which are non-switched linear systems.

In this paper, general timed contPN systems working un-
der infinite servers semantics are considered and a new
low-and-high gain control scheme is proposed for tracking
step targets. The presented algorithm can ensure global
asymptotical convergence of both markings and control
signals in presence of the switched dynamics and the
input constraints. An input variable transformation is con-
structed first to convert the system into a set of integrators
plus static input constraints. Analogous to the work of
Xu et al. [2006], to ensure the global convergence and the
smoothness of control signal, a new reference trajectory is
developed to take the place of a pure step target. Based on
the new model and the modified tracking trajectory, a low-
and-high gain controller is proposed. Moreover, to improve
the transient performance, the trajectory planning prob-
lem is briefly discussed. The paper is organized as follows.
Section 2 introduces the basic concepts of contPNs. The
control problem is formulated in Section 3. The tracking
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trajectory design is outlined in Section 4. Section 5 focuses
on control the law design and global convergence analysis.
An illustrative example is given in Section 6. The tracking
reference planning is further discussed in Section 7.

2. CONTINUOUS PETRI NET SYSTEMS

2.1 Untimed Continuous Petri Net Systems

A contPN system is a pair 〈N ,m0〉, where N =
〈P,T,Pre,Post〉 specifies the net structure (P and T
are disjoint (finite) sets of places and transitions, and
Pre and Post are incidence matrices on non-negative real
numbers), and m0 is the initial marking. N is always
assumed to be connected, while P and T have n and
m elements, respectively. Hence, the marking m ∈ R

+n,
Pre ∈ R

n×m and Post ∈ R
n×m. For w ∈ P ∪ T, the set

of its input and output nodes are denoted as •w, and w•

respectively. A PN is conservative iff ∃y > 0, such that
yC = 0, where C = Post − Pre is the token flow matrix
and y is called P-semiflow. A PN is consistent iff ∃x > 0
such that Cx = 0, where x is T-semiflow. In this work,
only conservative and consistent PNs will be considered.

Proposition 1. (Silva and Recalde [2002]) Let N be a
consistent contPN and all its transitions can be fired.

1.1 m ≥ 0 is reachable in 〈N ,m0〉, iff ∃σ ∈ R
+m ≥ 0 such

that m = m0 + Cσ.

1.2 If N is consistent and conservative, m = m0 + Cσ
(σ ≥ 0) is equivalent to Ym = Ym0, where Y is a basis
of P-semiflows.

2.2 Timed Continuous Unforced Petri Net Systems

A timed contPN system can be represented as 〈N , λ,m0〉,
where λ ∈ R

+m
> 0 are the firing rates of transitions. The

state equation is m(τ) = m0 + Cσ(τ), where τ is time.
Hence, ṁ(τ) = Cf(τ) can be obtained, where f(τ) = σ̇(τ)
are the flows of transitions. For notation simplicity, τ will
be omitted in the rest of the paper. Different semantics
have been introduced for the definition of f and the most
important ones are infinite servers and finite servers.
Define m[p] as the marking of place p, λ[t] as the firing
rate of transition t and Pre[p, t] as the element in Pre
corresponding to place p and transition t. Under infinite

server semantics, f = Φ(m)m, where Φ(m)[t, p] = λ[t]
Pre[p,t]

if p ∈ •t and m[p]/Pre[p, t] is minimum for all p ∈ •t,
Φ(m)[t, p] = 0 otherwise. Thus,

ṁ = Cf = CΦ(m)m. (1)

Note that the value of Φ(m) changes when the sys-
tem switches its configuration. Therefore, an autonomous
timed contPN system (1) can be interpreted as a switched
linear system. Assume a timed contPN has g configura-

tions. Define Φl ∈ R
+m×n

, l ∈ G, to denote all the
possible values of Φ(m). Moreover, let Φ0 = Φ(m0) and
Φd = Φ(md), where md is the desired marking.

Next, a timed contPN system will be given as an illustra-
tion example throughout the whole paper.

Example 1: Consider the net in Figure 1 with λ = [3, 1, 1]T

and m0 = [4, 8, 5, 3]T . Here,

Fig. 1. Timed ContPN System.

T = {t1, t2, t3}, P = {p1, p2, p3, p4};
Pre = [2, 0, 0; 0, 1, 0; 0, 0, 1; 2, 1, 0];
Post = [0, 1, 1; 1, 0, 0; 1, 0, 0; 0, 0, 3];
C = [−2, 1, 1; 1,−1, 0; 1, 0,−1;−2,−1, 3];
A basis of P-semiflows: [1, 1, 1, 0; 1, 0, 4, 1];
A basis of T-semiflows: [1; 1; 1].
Under infinite semantics, g = 4. Moreover,
Φ1 = [1.5, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0];
Φ2 = [1.5, 0, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0];
Φ3 = [0, 0, 0, 1.5; 0, 1, 0, 0; 0, 0, 1, 0];
Φ4 = [0, 0, 0, 1.5; 0, 0, 0, 1; 0, 0, 1, 0].
Let md = [1, 10, 6, 2]T , Φ0 = Φ3 and Φd = Φ2.

Property 1. Let 〈N , λ,m0〉 be a timed contPN system
with a desired marking md. Assume m1 and m2 are two
reachable markings. Then, (a). Φ(m1)m1 ≤ Φ(m2)m1,
(b). minl∈G{Φl min{m0,md}} = min{Φ0m0,Φdmd}.

Proof: (a): According to the definition of Φ(m), it can
be derived straightforwardly.

(b): As min
l∈G

{Φl min{m0,md}} = min
l∈G

{min{Φlm0,Φlmd}},
from the result of (a), ∀l ∈ G, Φ0m0 ≤ Φlm0 and
Φdmd ≤ Φlmd. Hence, (b) can be obtained.

3. PROBLEM FORMULATION

For concise expression, “timed contPN” will be written as
“contPN”. The control action to PN systems is to slow
down their firing flows. From (1), a contPN system with a
control action becomes

ṁ = C(Φ(m) − u)
△
= A(m)m − Bu, (2)

0 ≤ u ≤ f ,

where A(m) = CΦ(m), B = C and u ∈ R
+m

. Define
w = Φ(m)m − u. (2) can be further rewritten as

ṁ = Bw, (3)

0 ≤ w ≤ f . (4)

Considering the definition of f , (4) is equivalent to

0 ≤ w ≤ Φlm (∀l ∈ G). (5)

The controller design will be based on (3) and (5). How-
ever, u can be obtained directly from w.

Our control objective is to construct control laws such that
both m and u converge to a desired reachable marking
md and a desired control action ud asymptotically. From
Proposition 1, md must fulfill that Ymd = Ym0. Due to
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the input constraints, 0 ≤ ud ≤ Φdmd must be satisfied.
Define Ad = CΦd. As md are constants, according to (2),

0 = Admd − Bud. (6)

Assumption 1. ∀i ∈ N , m0,i > 0 and md,i > 0.

∀i ∈ N , md,i > 0 is usually the case of optimal steady
states in practical systems. If some elements of m0 are
zero, either there is a transition that will never be fired
(and so it can be removed), or a firing sequence exists such
that m0[σ > m and m > 0 (Silva and Recalde [2002]).

4. DESIGN OF TRACKING REFERENCE

To ensure global convergence and the smoothness of con-
trol signals, a pure step target md is replaced by the follow-
ing step-ramp-mixed reference trajectory mr(τ) ∈ R

+n
.

mr(τ) =

{

mr0 +
md − mr0

h
τ, τ ∈ [0, h]

md, τ ∈ [h,∞)
, (7)

where mr0 is the initial step, that is, mr0 = m0 + δ(md −
m0) with 0 ≤ δ < 1, and h > 0 is the time when mr(τ)
reaches md. It has to be proved that, for given mr0 and
md, control action wr ∈ R

m exists such that

ṁr = Bwr =

{

md − mr0

h
, τ ∈ [0, h−]

0, τ ∈ [h+,∞)

=

{

β(md − m0), τ ∈ [0, h−]
0, τ ∈ [h+,∞)

, (8)

0 ≤ wr ≤ Φlmr(τ) ∀l ∈ G, (9)

where β = 1−δ
h . Since min{m0,md} ≤ mr(τ) and

Φl min{m0,md} ≤ Φlmr(τ) (∀l ∈ G), (9) can be rewrit-
ten as follows

{

0 ≤ wr ≤ Φl min{m0,md} ∀l ∈ G, τ ∈ [0, h−]
0 ≤ wr ≤ Φdmd, τ ∈ [h+,∞)

.(10)

Proposition 2. Let m0 > 0 and let md > 0 be a reachable
marking. Then, β > 0 can always be found such that wr

satisfying (8) and (10) exists.

Choose

wr =

{

βσ, τ ∈ [0, h−]
Φdmd − ud, τ ∈ [h+,∞).

(11)

The proof for Proposition 2 is same as the proof of
Proposition 1 in Xu et al. [2006]. Moreover, to obtain
a faster system response, the calculation of β can be
formulated as follows (Xu et al. [2006]):

max β s.t. : md = m0 + Bσ

0 ≤ βσ ≤ min{Φ0m0,Φdmd}
β > 0. (12)

Remark 1. Because of consistency, there is at least one
zero-element in both σ and min{Φ0m0,Φdmd} − βσ.

For the design of mr(τ), β is calculated first based on
(12). Then δ will be further decided. A larger δ leads to a
smaller h. However, it also results in a larger initial error,
which may destroy the tracking convergence. The design
of δ will be addressed in Section 5.3.

5. TRACKING CONTROL OF CONTPN SYSTEMS

The control signal w for (3) is designed as follows:

w = sat(wlg + whg) + wr − Φde, (13)

where wlg is the low-gain part, whg is the high-gain term,
wr is defined as in (11) and e = mr(τ) − m. ∀ a ∈ R

m,

sat(a)
△
= [sat(a1), · · · , sat(am)]T and ∀j ∈ M , sat(aj) is

defined as sat(aj) =

{

aj,upper, if aj ≥ aj,upper

aj , if aj,lower < aj < aj,upper

aj,lower, if aj ≤ aj,lower

,

where aj,upper = λj min
pi∈

•tj

(
mi

Pre(pi, tj)
) + φd,je − wr,j and

aj,lower = φd,je−wr,j . Note that (13) ensures 0 ≤ w ≤ f .

wlg is constructed under the input constraints in such a
way that the closed loop system is stable. Hence, w =
wlg + wr − Φde can guarantee the realization of control
objective already. Since 0 ≤ w ≤ f , the constraints for wlg

are:

−wr + Φde ≤ wlg ≤ f − wr + Φde. (14)

5.1 System Error Dynamics

From (3), (7) and (13), we have

ė =



















md − mr0

h
− B(wr − Φde)

−Bsat(wlg + whg) τ ∈ [0, h−]
−B(wr − Φde)

−Bsat(wlg + whg) τ ∈ [h+,∞)

. (15)

As wr is the solution of (8),

ė = Ade− Bsat(wlg + whg). (16)

ContPNs with at least one P-semiflow are non-controllable
and a transformation matrix can be constructed to sepa-
rate it into controllable and non-controllable parts. The
transformation matrix is chosen as H ∈ R

n×n, where the
first r rows is a basis of P-semiflows, i.e. Y, and the remain-
ing rows are completed with elementary vectors such that
H is full rank (Mahulea et al. [2005]). Define ē = He. The
error dynamics becomes ˙̄e = Ādē−B̄sat(wlg+whg), where
Ād = HAdH

−1 and B̄ = HB. Considering YC = 0,
˙̄ei = 0 (i = 1, · · · , r) can be derived. From Ymd = Ymr0,
∀i ∈ {1, · · · , r}, ēi(0) = 0 can be obtained. Therefore,
∀τ ∈ [0,∞), ēi(τ) = 0 (i = 1, · · · , r) and the errors
of the uncontrollable part are always zero. Moreover, the
controllable part can be rewritten as:

˙̄ec = Ādcēc − B̄csat(wlg + whg), (17)

where ēc
△
= [ēr+1, · · · , ēn]T ∈ R

n−r, Ādc ∈ R
(n−r)×(n−r)

and B̄c ∈ R
(n−r)×m. It is valid that

e = Sēc, (18)

where S ∈ R
n×(n−r) is H−1 without first r columns.

Example 2: For the contPN system in Figure 1,
H = [1, 1, 1, 0; 1, 0, 4, 1; 0, 0, 1, 0; 0, 0, 0, 1];
Ādc = [−1, 1.5; 3,−4]; B̄c = [1, 0,−1;−2,−1, 3].
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5.2 Design of wlg

From (18), the definitions of f and wr and min{m0,md} ≤
md, if τ ∈ [0, h−], (14) can be rewritten as follows:

−βσ ≤ wlg − ΦdSēc and

wlg + (Φl − Φd)Sēc ≤ −βσ + Φl min{m0,md} l ∈ G.

Similarly, if τ ∈ [h+,∞), we have

−(Φdmd − ud) ≤ wlg − ΦdSēc and

wlg + (Φl − Φd)Sēc ≤ (Φl − Φd)md + ud l ∈ G.

Hence, the constraints of wlg can be rewritten as follows:

−min{βσ,Φdmd − ud} ≤ wlg − ΦdSēc and

wlg + (Φl − Φd)Sēc ≤ min{−βσ + Φl min{m0,md},
(Φl − Φd)md + ud} l ∈ G. (19)

Define two instrumental vectors: c1 = min{βσ,Φdmd −
ud} and c2l = min{Φl min{m0,md}−βσ, (Φl−Φd)md +
ud}, (l ∈ G). wlg has to verify

wlg − ΦdSēc ≥ −c1 and wlg + (Φl − Φd)Sēc ≤ c2l.(20)

wlg is designed to minimize J(ēc(0)) =
∫ ∞

0
(ēT

c Qēc +

γuTRu)dt, where Q is a diagonal positive definite matrix,
R = diag(r1, · · · , rm) is positive definite and γ > 0. Let
wlg = Kēc where K is the feedback gain and is calculated
according to the properties of c1 and c2l (l ∈ G).

From Remark 1, c1 has at least one zero-element and
there always exists k ∈ G such that c2k has at least
one zero-element. Define G0 ⊂ G represent the set of
c2l with at least one zero-element. Moreover, if c2l,z = 0
(l ∈ G0 and z ∈ M), from the definition of c2l, considering
Φdmd ≤ Φlmd (Property 1.a) and Property 1.b, it can be
derived that φl,z = φ0,z or φl,z = φd,z.

To clearly explain the basic idea, the following case will
be considered here: 1) only one element of c1, i.e. c1,z1

(z1 ∈ M), is zero; 2) ∀l ∈ G0, the zero-element in c2l is
the z2-th element ( z2 ∈ M). However, the extension to
general cases is straightforward.

Let z1 �= z2 and the design K is classified into three cases.

Case 1. ∀l ∈ G0, c2l,z2
= 0 ⇒ φl,z2

= φd,z2

Define ∆Φd ∈ R
m×n and ∆B̄c ∈ R

(n−1)×m. The z1-th
rows of ∆Φd and Φd are same and the remaining ones of
∆Φd are 0. The z1-th and the z2-th columns of ∆B̄c are
same as those of B̄c and the remaining ones of ∆B̄c are 0.

Part A. (Ādc − B̄c∆ΦdS, B̄c − ∆B̄c) is stabilizable

Let K = K1 +K2, where K1 = 1
γ R−1(B̄c−∆B̄c)

T W and

K2 = ∆ΦdS. The solution of W is found from

W(Ādc − B̄c∆ΦdS) + (Ādc − B̄c∆ΦdS)T W

− 1

γ
W(B̄c − ∆B̄c)R

−1(B̄c − ∆B̄c)
T W + Q = 0.(21)

From the definition of ∆B̄c and ∆Φd, it can be derived
that kz1

= φd,z1
S and kz2

= 0.

Part B. (Ādc − B̄c∆ΦdS, B̄c − ∆B̄c) is not stabilizable

Let K = 1
γ R−1B̄T

c W and W is found from

WĀdc + ĀT
dcW − 1

γ
WB̄cR

−1B̄T
c W + Q = 0. (22)

Case 2. ∀l ∈ G0, c2l,z2
= 0 ⇒ φl,z2

= φ0,z2

Define ∆Φ = ∆Φ′
d − ∆Φ0. The z1-th and the z2-th rows

of ∆Φ′
d are same as those of Φd and the remaining ones

are 0. The z2-th row of ∆Φ0 is same as that of Φ0 and the
remaining ones are 0. Replacing ∆Φd by ∆Φ, the design
of K in this case is exactly same as that in Case 1.

Case 3. ∃ l1 ∈ G0, l2 ∈ G0 so that c2l1,z2
= 0 ⇒ φl1,z2

=
φ0,z2

, c2l1,z2
= 0 ⇒ φl1,z2

= φd,z2
and φ0,z2

�= φd,z2
.

Same as the Part B of Case 1.

Finally, if z1 = z2, it is same as the Part B of Case 1.

5.3 Design of δ

ǫ(W, ρ) = {ēc : ēT
c Wēc ≤ ρ}, where ρ = ēT

c (0)Wēc(0). δ
is designed off-line such that ∀ēc ∈ ǫ(W, ρ),

K′ēc ≥ −c1 and K′′
l ēc ≤ c2l (l ∈ G), (23)

where K′ △
= K − ΦdS, and K′′

l

△
= K + (Φl − Φd)S. Note

that (23) is equivalent to (20).

Proposition 3. Let 〈N , λ,m0〉 be conservative and consis-
tent. Given Q, R and γ. Define W and K as in Subsection
5.2. Then it is possible to find δ such that ∀ēc ∈ ǫ(W, ρ),
K′ēc ≥ −c1 and K′′

l ēc ≤ c2l for all l ∈ G.

Proof: ∀j ∈ M , max
ēc∈ǫ(W,ρ)

|k′
j ēc| =

√
ρ(k′

jW
−1k′T

j )1/2 and

max
ēc∈ǫ(W,ρ)

|k′′
l,j ēc| =

√
ρ(k′′

l,jW
−1k′′T

l,j )
1/2

(∀l ∈ G) are valid

(Wredenhage and Bélanger [1994]). Hence, we have to
prove

√
ρ(k′

jW
−1k′T

j )1/2 ≤ c1,j , (24)

√
ρ(k′′

l,jW
−1k′′T

l,j )
1/2 ≤ c2l,j ∀l ∈ G. (25)

Let z1 �= z2. The design of δ also has three cases.

Case 1. ∀l ∈ G0, c2l,z2
= 0 ⇒ φl,z2

= φd,z2

Part A. (Ādc − B̄c∆ΦdS, B̄c − ∆B̄c) is stabilizable

k′
jW

−1k′T
j and k′′

j W
−1k′′T

j do not depend on δ. Smaller δ

will lead to smaller ēc(0) and ρ. Thus, as c1,j (j �= z1) and
c2l,j (when l ∈ G0, j �= z2) are strictly positive constants,
δ > 0 small enough can always be found such that (24)
(when j �= z1) and (25) (when l ∈ G0, j �= z2) are valid.

Since k′
z1

= klg,z1
− φd,z1

S, considering klg,z1
= φd,z1

S,
k′

z1
= 0 can be derived. On the other hand, ∀l ∈ G0,

c2l,z2
= 0 and ∆φl,z2

−φd,z2
= 0 can be derived. Then, as

klg,z2
is 0, k′′

l,z2
= klg,z2

+ (∆φl,z2
− φd,z2

)S = 0.

Therefore, ∀j ∈ M , (24) and (25) are valid.

Part B. (Ādc − B̄c∆ΦdS, B̄c − ∆B̄c) is not stabilizable

Let δ = 0. (24) and (25) are valid for all j ∈ M .

Case 2. ∀l ∈ G0, c2l,z2
= 0 ⇒ φl,z2

= φ0,z2
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Replacing ∆Φd by ∆Φ, the analysis is same as Case 1.

Case 3. ∃ l1 ∈ G0, l2 ∈ G0 so that c2l1,z2
= 0 ⇒ φl1,z2

=
φ0,z2

, c2l1,z2
= 0 ⇒ φl1,z2

= φd,z2
and φ0,z2

�= φd,z2
.

Same as the Part B of Case 1, i.e. δ = 0

Finally, if z1 = z2, it is same as the Part B of Case 1.

Remark 2. Let us re-consider Case 1. As c1,z1
= 0, to

meet (24), ρ = 0 or k′
z1

= 0, which needs δ = 0 or
kz1

= φd,z1
S. Hence, to obtain δ > 0, kz1

= φd,z1
S.

Similarly, as c2l,z2
= 0 (l ∈ G0), to achieve δ > 0, kz2

= 0.
If (Ādc − B̄c∆ΦdS, B̄c − ∆B̄c) is stabilizable, K with
kz1

= φd,z1
S and kz2

= 0 can be found and hence δ > 0.
Otherwise, δ can only be zero.

To achieve faster system response, the design of δ can be
formulated as follows:

max δ (26)

s.t. : 0 < δ ≤ 1, γ > 0,

ēT
c (0)Wēc(0)k′

jW
−1k′T

j ≤ c2
1,j ∀j ∈ M,

ēT
c (0)Wēc(0)k′′

l,jW
−1k′′T

l,j ≤ c2
2l,j j ∈ M, ∀l ∈ G(27)

W(Ādc − B̄c∆Φ∗S) + (Ādc − B̄c∆Φ∗S)T W

− 1

γ
W(B̄c − ∆B̄c)R

−1(B̄c − ∆B̄c)
T W + Q = 0

K =
1

γ
R−1(B̄c − ∆B̄c)

TW + ∆Φ∗S

K′ = K − ΦdS,K′′ = K + (Φl − Φd)S (28)

where ∆Φ∗ stands for either ∆Φd (in Case 1) or ∆Φ (in
Case 2). For (27), we only need to consider the cases when
φl,j (l ∈ G and j ∈ M) are different from each other and
the number of the constraints can be reduced accordingly.

5.4 Calculation of whg

whg = khgB̄
T
c Wēc, where khg > 0.

5.5 Asymptotical Convergence Analysis

Theorem 1. Let 〈N , λ,m0〉 be conservative and consis-
tent. Given m0, md and ud. The proposed low-and-high
gain algorithm can ensure the global asymptotical conver-
gence of both the system markings and the control signals.

Proof: From Proposition 3, δ exists such that, ∀ēc ∈
ǫ(W, ρ), k′

j ēc ≥ −c1,j and k′′
l,j ēc ≤ c2l,j (∀l ∈ G).

Case I. δ > 0

Define V = ēT
c Wēc. Hence,

V̇ = ˙̄eT
c Wēc + ēT

c W ˙̄ec. (29)

The error dynamics (17) can be rewritten as

˙̄ec = [(Ādc − B̄c∆Φ∗S) − (B̄c − ∆B̄c)K1]ēc − B̄c

(sat(wlg + whg) − K1ēc) − ∆B̄cK1ēc + B̄c∆Φ∗Sēc

△
= [(Ādc − B̄c∆Φ∗S) − (B̄c − ∆B̄c)K1]ēc − B̄cv, (30)

where v = sat(wlg + whg) − Kēc. Substituting (30) into
(29) and considering the relationship of (21), we have

V̇ ≤−ēT
c Qēc − 2

m
∑

j=1

ēT
c Wb̄c,jvj (31)

where vj = sat(wlg,j +whg,j)−kjēc. ∀j ∈ M , let us discuss
the term ēT

c Wb̄c,jvj in (31).

(I). aj,lower < wlg,j + whg,j < aj,upper

ēT
c Wb̄c,jvj = ēT

c Wb̄c,j(kj ēc + khgb̄
T
c,jWēc − klg,j ēc)

= khg(ē
T
c Wb̄c,j)

2 ≥ 0. (32)

(II). wlg,j + whg,j ≤ aj,lower

ēT
c Wb̄c,jvj = ēT

c Wb̄c,j(φd,jSēc − wr,j − kj ēc)

= ēT
c Wb̄c,j(−wr,j − k′

j ēc). (33)

From the definitions of c1,j and wr, c1,j ≤ wr,j . Hence,

k′
j ēc ≥ −c1,j ≥ −wr,j ⇒ −wr,j − k′

j ēc ≤ 0. (34)

On the other hand, wlg,j + whg,j ≤ aj,lower leads to

khgb̄
T
c,jWēc ≤ −wr,j − k′

j ēc. (35)

From (34) and (35), b̄T
c,jWēc < 0. Hence, according to

(33) and (34), ēT
c Wb̄c,jvj > 0 can be derived.

(III). wlg,j + whg,j ≥ aj,upper

Similar to (II), ēT
c Wb̄c,jvj > 0 can be ensured.

Therefore, V̇ ≤ −ēT
c Qēc and ǫ(W, ρ) is an invariant

region. ēc(0) ∈ ǫ(W, ρ) ensures ēc(τ) ∈ ǫ(W, ρ) (τ ≥ 0).
Thus, ēc, ē and e converge to zero. The convergence of ēc

leads to the convergence of w and u to wr and ud.

Case II. δ = 0

The convergence analysis is similar to Case I. The only
difference is that (22) is considered instead of (21).

Given m0, md and ud. The design steps are:

Step 1. According to (12), calculate the value of β.

Step 2. Calculate c1 and c2l. Find δ and γ to satisfy (24)
and (25). If δ > 0, δ and γ can be obtained from (28).

Step 4. wr is calculated according to (11).

Step 5. Design wlg and whg as in Subsections 5.2 and 5.4.

6. ILLUSTRATIVE EXAMPLE

For Example 1, to maximize the flows of the steady state,
ud = [0, 0.5, 4.5]T . The solutions of (12) are σ = [2, 0, 1]T

and β = 3
4 . Calculate c1 and c2l, it can be found that this

design belongs to Case 1 and (Ādc−B̄c∆ΦdS, B̄c−∆B̄c)
is stabilizable. Let Q = I2×2 and R = I3×3. Solving (26),
δ = 0.2126 and γ = 0.3487. Then, h = 1.0499s. Choose
khg = 6. Figure 2 and 3 show the convergence of markings
and control signals respectively.

7. TRACKING REFERENCE PLANNING AND
CONTROL LAW DESIGN

In Section 4, the new reference design mainly depends on
m0 and md, and hence the ramp part directly goes from

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3196



0 1 2 3

1

2

3

4

Time (S)

m
r,

1 &
 m

1

0 1 2 3
8

8.5

9

9.5

10

Time (S)

m
r,

2 &
 m

2

0 1 2 3
5

5.2

5.4

5.6

5.8

6

Time (S)

m
r,

3 &
 m

3

0 1 2 3

2

2.2

2.4

2.6

2.8

3

Time (S)

m
r,

4 &
 m

4

m
r,1

m
1

m
r,2

m
2

m
r,3

m
3

m
r,4

m
4

Fig. 2. Convergence of markings.
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Fig. 3. Control signals.

mr0 to md. This ramp limits the response speed. In order
to improve system transient performance, intermediate
states can be added to the tracking reference. Denote
the intermediate states as mint,q, where q ∈ Ω. mint,q is
designed such that the time it takes from m0 → mint,1 →
· · · → mint,ω → md is less than the time it takes from
m0 → md directly. The control algorithm proposed in
Section 5 will be implemented to track the intermediate
states consequently and the controller parameters are
denoted with subscript q. It means mint,1 will be the
first tracking target and a controller can be constructed
accordingly. When the error between m and mint,1 is
small enough, mint,2 will be applied as the second tracking
target. Step by step, md will the final tracking target.

By employing a larger ω, more intermediate states can be
introduced, which leads to faster system response. How-
ever, as one intermediate state results in one discontinu-
ous point in the control signal, a larger ω implies more
discontinuous points. Hence, there is a tradeoff between
system settling time and the smoothness of the control
signal. Let δq = 0 (q = 1, · · · , ω + 1), the time that it

takes from m0 → md is h =
∑ω+1

q=1
1
βq

. Based on this h,

δq (q = 1, · · · , ω + 1) can be designed to further fastern
the system response. Therefore, to determine ω, calculate
∑ω+1

q=1
1
βq

with different ω as follows:

Table 1. Control with Intermediate States.

ω mint,q δq γq tsettle

0 None δ1 = 0.05 γ = 1 4.4s

1 mint,1 = [2.7, 8.9, 5.4, 2.7]T δ1 = 0 γ1 = 1 2.2s

δ2 = 0.31 γ2 = 1

2 mint,1 = [7.6, 5.9, 3.5, 5.4]T δ1 = 0.17 γ1 = 0.9 1.6s

mint,2 = [3.0, 9.0, 5.0, 4.0]T δ2 = 0.19 γ2 = 10
δ3 = 0.07 γ3 = 9

min

ω+1
∑

q=1

1

βq
(36)

s.t. : mint,1 = m0 + Bσ1

mint,q = mint,q−1 + Bσq (q = 2, · · · , ω)

md = mint,ω + Bσω+1

0 ≤ β1σ1 ≤ min{Φ0m0,Φ(mint,1)mint,1}
0 ≤ βqσq ≤ min{Φ(mint,q−1)mint,q−1,

Φ(mint,q)mint,q} (q = 2, · · · , ω)

0 ≤ βω+1σω+1 ≤ min{Φ(mint,ω),Φdmd}
Then, considering system performance requirments, an
approporiate ω can be chosen.

Based on Theorem 1, the global convergence of m and u
can be derived. However, the details will not be given here.

7.1 Illustrative examples

Consider Fig. 1 again with m0 = [13, 3, 1, 10]T , but same
Q, R and khg. Let ω = 0, 1 and 2. The controller
parameters and control performance are given in Table
1. As ω increases, the settling time (tsettle in Table 1)
becomes smaller. However, the control signals are less
smooth.

8. CONCLUSION

The step-tracking control for general timed contPN sys-
tems under infinite server semantics has been studied.
The proposed control approach can guarantee the global
tracking convergence in presence of the switched system
dynamics and the special input constraints. By introducing
intermediate states, a trajectory planning algorithm has
been given to further improve the transient performance.
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