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Abstract: Consequences of non-linearities in sfc, i.e. specific fuel consumption, of a heavy
truck combustion engine are studied. A quasi-static analysis gives valuable insights into the
intrinsic properties of the studied problem, i.e. minimization of fuel consumption on small
gradients. Two objective functions are shown to give different optimal velocity trajectories on a
constant gradient due to non-linearities in sfc. When a constraint is set to keep to a final time,
switching between two speeds is optimal. Instead, if consumed time is part of the objective
function, in addition to fuel consumption, keeping to one constant speed is optimal. However,
the different optimal solutions still show similarities. For a certain significant non-linearity a
specific speed range is shown to be unreachable, independent of objective function. Also under
more realistic conditions, a dynamic analysis, implemented by a numerical optimizer, confirms
that an alternating speed profile is optimal for the case of fixed final time.

Keywords: Fuel-optimal control; Non-linear engine control.

1. INTRODUCTION

1.1 Background

Consider the problem of driving a heavy truck on small
gradients in a fuel optimal way, that also respects the
trip time. Many researchers have looked into fuel optimal
driving, and one early work is [SL77]. According to other
previous works, eg. [FHN06] and [CM05], constant speed
is optimal on roads with small gradients given that the
engine torque is an affine function of speed and fueling. A
small gradient, α, is defined to be a gradient in which the
vehicle is able to keep a constant speed, as in [FHN06].
An extension to that work is to consider engines where
the assumption of an affine engine map is not valid.
One example of an engine map with non-linearities is
shown in Figure 1 where the sfc, specific fuel consumption
[g/kWh], of a combustion engine of a heavy truck is
plotted. Intuitively the mapped data gives the appearance
that certain points are more beneficial than others. To give
some perspective to the fuel map, the tractor with trailer
that will be studied in this paper, has a total mass of 40
000 kg, and it requires a torque of approximately 38% of
the maximum torque on level road at the highest gear.

In a traditional combustion engine, without any electric
control system, the sfc map typically has a convex shape.
The characteristic peaks in sfc of modern engines, shown in
Figure 1, emerge because of control strategies that today
are possible to implement. After treatment of exhaust
gases, optimization of gas flows and engine cooling control
are now common for combustion engines of heavy trucks.

In this paper the fuel consumption for a given driving mis-
sion on small gradients is calculated for different velocity
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Fig. 1. Curves showing sfc [g/kWh] of a heavy truck com-
bustion engine. The adverse speed 1500 rpm requires
a higher sfc than 1300 or 1700 rpm.

profiles. Fuel consumption and trip time are two important
factors in the economy of a heavy truck long haulage
driving mission. It has been noted in the predictive fuel
and time optimal control achieved in simulations according
to [HFN06], using a non-linear sfc map, that a significant
adverse speed is never obtained. This is true regardless of
how heavily total time of the driving mission is weighed
into the objective function. The reason to this is looked
into in the paper at hand. The consequences of the peaks
and valleys in sfc will be studied as well as how the optimal
velocity profile depends on the used objective function.
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2. PROBLEM FORMULATION

2.1 Model

The truck model used here is a basic longitudinal model.
However, it captures the important characteristics to be
able to predict fuel consumption correctly. The foundation
for the modeling work is found in [KN05, San01].

The model represents a stiff driveline with engine, trans-
mission, final gear, wheels and chassis, based on Newton’s
second law of motion (1). The braked engine torque is
denoted Te, the vehicle speed, v, and the total driving
resistance, Fres. The radius of the wheel is denoted r
and the total transmission ratio i, which is assumed to
be constant. This assumption is based on results from
simulations according to [HFN06]. Thus,

mv̇ =
i

r
Te − Fres (1)

where Fres is a sum of rolling resistance (Fr), air drag (Fa)
and gravitational force (Fg). These forces are modelled as

Fr(α) = crmg cosα (2)

Fg(α) = mg sin α (3)

Fa(N) =
1

2
cwAaρav2 (4)

where cr and cw are constants, m is the total mass of the
vehicle, Aa is the maximum vehicle cross section area, ρa

is the air density and g is the gravitational acceleration.

The vehicle speed [m/s], v, is a direct function of the engine
speed [rpm], N , assuming no slip or elasticities

v =
r2π

i60
N (5)

The consumed fuel mass per meter [mg/m], 1
v
ṁf , is a

function of the engine fueling [mg/stroke], δ. The fueling is
in the problem at hand chosen to be modeled as a function
of sfc and Te according to

1

v
ṁf =

δncyli

nrr2π
(6)

δ =
sfcTenr2π

ncyl3600
(7)

where the number of cylinders is denoted ncyl and the
revolutions per stroke is denoted nr. The specific fuel
consumption of the engine is a function of Te and N as

sfc = fsfc(Te, N) (8)

and is only valid for Te > 0. The function fsfc(Te, N) is
either a model of the mapped data in Figure 1 or the engine
map itself. In Section 3 only positive Te is considered. In
Section 4 the full range of torque, from drag torque to
maximum torque is optimized over, and for Te < 10%, δ
instead of sfc is received from mapped measured data.

The reduction of fuel consumption, ∆mf is defined as

∆mf =
mf,v0

− mf

mf,v0

(9)

where mf,v0
is the fuel consumption for a constant speed

trajectory and mf is the fuel consumption of the alterna-
tive speed profile.

2.2 Objective functions

Two different objective functions are used for optimization
in this paper. Objective function I is commonly used,
eg. in [FHN06]. Objective function II gives a simpler
optimization and is used in eg. [HFN06].

Objective function I The first objective function is ac-
cording to (10) with constraints (11) and (12)

J =

∫ s

0

1

v
ṁfds (10)

tf =

∫ s

0

1

v
ds =

s

v0
(11)

s =

∫ s

0

ds (12)

where (10) represents total amount of consumed fuel
and (11) is the constraint that ensures that the final time,
tf , will be kept.

Objective function II The second objective function is
according to

J =

∫ s

0

(

1

v
ṁf + β

1

v

)

ds (13)

where the integrals from (10) and (11) are combined.
Instead of having the final time, tf , as a constraint it is
here weighted into the objective function with a weighing
constant, β.

The advantage of this objective function is that it reduces
the number of states by one and the fact that low-order
systems are less time consuming to optimize. However,
objective function (13) will only give the optimal trade-
off between fuel consumption and time (given a certain
β).

3. QUASI-STATIC ANALYSIS USING SFC MODEL

The quasi-static analysis in this section assumes that the
changes in speed are instantaneous, which implies that
neither acceleration nor deceleration is included. This is
a good approximation if the studied road stretch is long.
The road inclination is assumed to be constant, and the
driving scenario of a 0.94% road gradient will be used as
an example.

A quasi-static analysis using a model of the sfc-map
gives valuable insights into the intrinsic properties of
the problem. It turns out that objective function I gives
rise to a solution where switching between two speeds is
optimal, if the sfc-map is significantly non-linear. Even
though objective function II leads to one optimal speed
in stationary conditions, also here two velocities play a
crucial role in defining an unreachable velocity range.
Further on, it is seen that if there are no significant non-
linearities in the sfc-map, then the solution turns into that
these two velocities are the same, i.e. constant velocity
is optimal as known prior to this work, see eg. [FHN06]
and [CM05], and there is no longer any speed range that
is unreachable. Finally, optimization is performed with the
same conditions, except that mapped sfc from measured
data is used instead of the sfc model. That last subsection
is a validation that the sfc model is good enough to use in
an analytical optimization.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3369



3.1 Model based optimization

In the stationary conditions that are considered in this
section the acceleration, v̇, in (1) is equal to zero. The
equations (1) - (5) thereby result in torque as a quadratic
polynomial of speed. The sfc model that is chosen to
approximate the mapped sfc is a rational function. The
sfc is assumed to be a function of speed, N , alone, i.e.
fsfc(Te, N) = fsfc(N). This assumption is based on the fact
that the torque, Te, is a function of speed only and that the
solution to the problem will render only small variations
of torque. The function sfc(N) is symmetric around Nsfc0
(i.e. the speed when the maximum sfc, sfc0, is achieved)
according to

sfc(N) =
Cd

1 + Ci(N − Nsfc0)
2

+ (sfc0 − Cd) (14)

where Cd, Ci and sfc0 are constant model parameters for
a certain constant road gradient.

This model interprets, for a given driving scenario, an
intersection of the engine map. For the studied driving
scenario, the intersection is along the thick line in Figure 1
for an interesting speed range.

Objective function I In this subsection the objective
function in use is according to (10). If (6) and (7) are
used for describing the consumed fuel mass per meter, it
is realized that minimizing fuel consumption is equal to
minimizing the integral of sfc multiplied with Te over the
distance (since i

r3600 is constant). The control variables
are thus u = [N1 N2] where N1 and N2 will be used to
propel the truck over the distances s1 and s2 respectively.
Objective function I can accordingly be rewritten to

J = sfc(N1)Te(N1)s1 + sfc(N2)Te(N2)s2 (15)

tf =
s1

v1
+

s2

v2
=

s

v0
(16)

s = s1 + s2 (17)

where s1 and s2 are non-negative.

The problem can be formulated as an optimal control
problem, see eg. [BH75]. Hence, the objective function is
augmented with the constraints using Lagrange method
resulting in

H = sfc(N1)Te(N1)s1 + sfc(N2)Te(N2)s2+

+ λ1

(

s

v0(N0)
−

s1

v1(N1)
−

s2

v2(N2)

)

+

+ λ2 (s − s1 − s2) − µ1s1 − µ2s2 (18)

where λ1, λ2, µ1 and µ2 are Lagrange multipliers and
µi ≥ 0 if si = 0, µi = 0 if si > 0 for i = 1, 2. The
necessary conditions for a stationary value are

∂H

∂Ni

= 0 (19)

∂H

∂si

= 0 (20)

∂H

∂λi

= 0 (21)

∂H

∂µi

= 0 (22)

where (22) is relevant only when the inequality constraints
are active (i.e. si = 0, i = 1, 2). When the inequality
constraints are inactive (19) – (20) are according to

Fig. 2. Optimal speeds and distances for varying N0 for
the driving scenario α = 0.94% (Nsfc0=1400 rpm).
The shaded area shows the unreachable speed range
in optimal driving.

sfc′(Ni)Te(Ni) + sfc(Ni)T
′

e(Ni)+

+λ1
1

vi(Ni)2
v′i(Ni) = 0 (23)

sfc(Ni)Te(Ni) −
λ1

vi(Ni)
− λ2 = 0 (24)

for i = 1, 2. The optimal control N∗

1 and N∗

2 is solved
from (23) – (24). If, instead, k control variables, i.e.
u = [N1 N2 N3 ... Nk], would have been used, the
solution to the 2k equations would still result in only two
optimal speeds, equal to N∗

1 and N∗

2 . The same solution
is found for all final times, tf = s

v0(N0)
, giving a mean

average speed, N0, according to, N∗

1 ≤ N0 ≤ N∗

2 .

When the optimal speeds have been found, the corre-
sponding distances, s1 and s2, can be determined from the
constraints (21). To fulfill the constraints, the distances, s1

and s2, are adjusted. When N0 → N∗

i then si → s.

A valid stationary point for the studied driving scenario
is N∗

1 =1314 and N∗

2 =1492 rpm. The fuel consumption
is reduced by -0.72%, if the road is travelled with N∗

1 for
51.5% of the road stretch and N∗

2 for 48.5% of the road
stretch instead of constant speed, N0=Nsfc0=1400 rpm. It
can be shown that this solution is a minimum, generating
the lowest fuel consumption.

In Figure 2 it is shown how the optimal control, N∗

1 and
N∗

2 , depends on N0. It can be concluded that if the non-
linearity is significant enough (as it is in the studied engine
map), then the speed range (N∗

1 ,N∗

2 ) becomes unreachable
for optimal driving. To fulfill the constraint of final time,
the bottom subfigure shows how the distance on each speed
is adjusted.

Objective function II By combining (13) and (6) – (7)
objective function II is rewritten to

J =

∫ s

0

(

C0sfcTe + β
1

v

)

ds (25)

where C0 = i
r3600 . The variables sfc, Te and v are

all functions of N . This objective function results in
one optimal speed, in the stationary conditions that are
considered. The stationary solutions of (25) are given by
dJ
dN

= 0. Since stationary conditions are considered, the
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Fig. 3. Stationary solutions, N̂ , and global minimum, N∗,
of objective function II at 0.94% inclination.

stationary solutions to the objective function can also be
found by studying the minimum of the integrand of the
objective function (denoted I, i.e. (25) is J =

∫ s

0
Ids).

Thereby, the necessary condition is dI
dN

= 0 which gives

C0 (sfc′(N)Te(N) + sfc(N)T ′

e(N))−

− β
1

v(N)2
v′(N) = 0 (26)

The stationary solution of (26), N̂ , is a function of β
if studied locally, see Figure 3. For a given β far from
the non-linearity there is one single stationary solution.
But, if β is close to the non-linearity there exists three
solutions to (26). One of these stationary solutions is a
local maximum and two are local minima. This is studied
by differentiating (26) with respect to β which leads to

d2I

dN2

dN̂

dβ
=

1

v2
v′ (27)

Since 1
v2 v′ is always positive, both d2I

dN2 and dN̂
dβ

must

always be either positive or negative. This means that
whenever the derivative of the function N̂(β) in Figure 3 is
positive, there is a local minimum of the objective function.

The thick lines in Figure 3 show the global minimum, N∗.
The discontinuity in speed that appears in the global min-
imum means that it is impossible to achieve a speed within
that range when using objective function II. There is no
β that can weigh up for the increased fuel consumption
for speeds in this gap. The unreachable speed range for
objective function II is denoted (NA, NB).

3.2 Analyzing model based optimization

Similarities between objective functions The unreachable
speed ranges that arise with objective function I (N∗

1 , N∗

2 )
and II (NA, NB) are analyzed here. For objective function
II, if f(N) = sfc(N)Te(N), the equations that give NA and
NB can be summarized as

C0f
′(NA)−

−β
1

vA(NA)2
v′A(NA) = 0 (28)

C0f
′(NB)−

−β
1

vB(NB)2
v′B(NB) = 0 (29)

C0f(NA) +
β

vA(NA)
= C0f(NB) +

β

vB(NB)
(30)

where (28) and (29) aim to find two stationary solutions
(NA and NB) for the same β and the last equation says
that these solutions shall give the same objective function
value.

The same set of equations (but with N∗

1 = NA and N∗

2 =
NB) is achieved if (23) – (24) is rewritten with f(Ni) =
sfc(Ni)Te(Ni), β = −λ1C0 and λ2 is eliminated. This
means that the unreachable speed ranges for the different
objective functions are equal. Anyhow, the behavior of
the systems will differ depending on the chosen objective
function. The solution of objective function II is always a
stationary speed, that will not give a final time comparable
with any speed within the adverse speed range, (NA, NB).
Objective function I requires a certain final time, which
leads to a solution that switches between two speeds, N∗

1
and N∗

2 , if the final time is comparable to a mean velocity,
N0, between N∗

1 and N∗

2 .

Characteristics of sfc This subsection aims to answer
the question ’How large must the non-linearity of sfc be to
generate an unreachable velocity range’. The optimal way
of driving is calculated based on the sfc model. The non-
linearity in sfc is described by the model parameter ratio
Cd

sfc0
. This is chosen as an important ratio since Cd = sfc0−

sfc(|N − Nsfc0 | → ∞). The model parameter Ci is also
of great interest and it will be shown that the critical

parameter ratio
(

Cd

sfc0

)

crit
that gives an unreachable speed

range is a function of Ci.

The exact value of the critical parameter ratio is calculated
by requiring necessary conditions for stationary solutions
of objective function II, dI

dN
= 0. With a decreasing

Cd

sfc0
, the maximum of the cost function (close to Nsfc0)

becomes a minimum, i.e. the nonlinearity turns into being
insignificant. This happens when the model parameter
ratio has decreased to its critical value.

For this critical parameter setting, the three solutions
shown in Figure 3 become a triple root (shown in Fig-

ure 4). Continuity is achieved in the function, N̂(β). If the
equation dI

dN
= 0 has a triple root it follows that also the

second and the third derivative of the cost function has to
be equal to zero. Summarized, the equations to be solved
are according to

dI

dN
= 0,

d2I

dN2
= 0,

d3I

dN3
= 0 (31)

In these equations there are five unknowns (Cd, Ci, sfc0, N
and β) for a given driving mission with a constant gradient.

N and β are solved for and the critical ratio
(

Cd

sfc0

)

crit
is

presented as a function of Ci.
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The critical parameter ratio
(

Cd

sfc0

)

crit
is dependent on e.g.

the load except for Ci. The higher the load, i.e. α, the
lower is the critical ratio. The dependency of the critical
ratio to Ci for the studied driving scenario is according to
Figure 5. If the model parameters are above the curve, the
non-linearity is significant and constant speed close to the
non-linearity is not optimal.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
i

C
d
/s

fc
0
 [

%
]

Fig. 5. The curve shows the critical model parameter
settings. The ∗ above the curve points out the model
parameters, Cd

sfc0
and Ci of the studied driving sce-
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3.3 Optimization based on use of engine map

In this subsection the engine map itself is used instead
of a model to describe the sfc. Objective function I is
used and the optimization is implemented by the use of
Matlab [Mat07] and its function fmincon.

The solution is N∗

1 =1292 and N∗

2 =1500 rpm for the
driving mission α = 0.94%, which is quite close to the
result that was obtained when the sfc model was used.
The fuel reduction of −0.76% is also similar to what was
expected when the sfc model was used. In Figure 1 it is
shown how the sfc and Te changes by driving the truck
with the optimal speeds N∗

1 and N∗

2 (marked by ◦) instead
of constant speed N0 (marked by ∗), a speed that gives a
high sfc. Hence, the fact remains that it is not optimal
to drive with a constant speed that gives a significantly
higher sfc compared to the sfc in the surroundings of the
engine map.

The same optimal control, N∗

1 and N∗

2 , is achieved, for
a given driving mission, for all required final times that
correspond to a constant average speed, N0, within the
speed range (N∗

1 , N∗

2 ). This is analogous to the result
shown in Figure 2, confirming that the sfc model is relevant
to use in the analytical optimization.

4. DYNAMIC ANALYSIS USING MAPPED DATA

In this section, objective function I is utilized, i.e. the
final time is constrained. Accelerations and decelerations
are not neglected and there are no restrictions on the
speed trajectories, except restrictions that originate from
the dynamics of the system or the resolution of the
control variables. To include all possible working points,
mapped data is used instead of a model, and a numerical
optimization is performed. Similarly as in Subsection 3.3
the non-linear optimizer fmincon is used.

The control variables are gathered in a vector, u, which
includes the n discrete torque variables, with a certain
resolution, ∆s, over the road stretch with a total distance
s, (

∑n

1 ∆s = s). The control vector, u, also includes the
velocity at the start of the driving mission.

The altitude profile used in Figure 6 follows the standards
of the Swedish Road Administration for vertical curves,
see [okV04]. An optimization is performed for a 2100 m
driving mission starting with an uphill gradient (α =
0.94%) followed by a downhill gradient (α = −0.94%),
with a resolution of ∆s = 30 m. The alternating speed
profile decelerates in uphill gradients and accelerates in
downhill gradients. At the top of the altitude profile, the
speed is at its lowest level. The fuel consumption reduction
in this example is ∆mf = −2.57%.

In [HIÅN07] an MPC control was implemented in a truck
and test runs were made over a road segment between
Södertälje and Norrköping, Sweden. This road stretch
has significant hills and fuel consumption reduction could
therefore be achieved by reducing the need for braking and
gear shifting. Anyhow, one part of this road stretch (south
of Nyköping) mainly has small gradients. A 3350 m part of
that road segment has been simulated both with constant
speed and optimal control (which has been computed with
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∆s=50 m) and the results are shown in Figure 7. Even
in this real road segment, the strategy of accelerating in
negative gradients and decelerating in positive gradients
can be seen in the optimal control.

This section has shown that it is possible to save fuel when
more realistic conditions are considered. A general result
from the dynamic analysis is that it is beneficial to vary
the speed around an adverse speed (if the requirement is
to finish the driving mission in a set time that correlates to
this adverse speed). Hence, the dynamic analysis correlates
to the quasi-static results.

5. CONCLUSIONS

It has been shown how the non-linearities in sfc of modern
engines influence the fuel optimal way of driving a heavy
truck on small gradients. Two objective functions have
been studied. In a quasi-static analysis a model of the sfc
is used to analyze driving missions with constant gradient.
Objective function I, that minimizes the fuel consumption
while keeping to a constraint on the final time, gives that
it is optimal to switch between two speeds, N∗

1 and N∗

2 ,
on each side of the sfc-peak, if the non-linearity in sfc is
significant enough. It is also seen that the solution (N∗

1
and N∗

2 ) persists even if the required final time is changed.
Instead, the distances, s1 and s2, traveled with each speed
are adjusted to reach the end of the distance in the
required final time. If the required final time correlates to
a constant speed that is not in the speed range (N∗

1 , N∗

2 ),
then the optimal control is constant speed.

Objective function II, that weighs in both fuel consump-
tion and final time in the criterion, generates a stationary
optimal speed on constant gradients regardless of the ap-
pearance of the sfc map. For this objective function, the
weighing constant β determines the optimal speed, N∗.
However, even for this objective function, there is a speed
range (NA, NB) around significant non-linearities in sfc
that can never be reached. There is no β that can weigh
up for the increased fuel consumption within this speed
range. The optimal speed will either be above or below
the speed range. The unreachable speed ranges of the two
objective functions are found to correlate to each other
according to NA = N∗

1 and NB = N∗

2 .

The characteristics of sfc has also been studied, and in
particular at what point a non-linearity in sfc gives a
speed range that is unreachable in optimal driving, i.e.
a significant non-linearity. The optimal control changes if
the non-linearity becomes significant, as described above.

A dynamic analysis has also been performed by the use of
a numerical optimizer that utilizes objective function I and
mapped data from engine measurements. The same char-
acteristics of optimal control is achieved by this optimizer.
If there exists significant non-linearities in sfc around a
required speed, an alternating speed trajectory turns out
to be beneficial.
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[FHN06] A. Fröberg, E. Hellström, and L. Nielsen. Ex-
plicit fuel optimal speed profiles for heavy
trucks on a set of topographic road profiles.
Number 2006-01-1071 in SAE World Congress
2006, 2006.

[HFN06] E. Hellström, A. Fröberg, and L. Nielsen.
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L. Nielsen. Look-ahead control for heavy trucks
to minimize trip time and fuel consumption. 5th
IFAC Symposium on Advances in Automotive
Control, California, USA, 2007.

[KN05] U. Kiencke and L. Nielsen. Automotive Control
Systems, For Engine, Driveline, and Vehicle.
Springer Verlag, 2nd edition, 2005.

[Mat07] MathWorks. Optimization toolbox - fmincon,
2007.
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Vägar och gators utformning - linjeföring.
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