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Abstract: This paper presents a novel approach to control layout for longitudinal guidance
of platoons with a limited number of vehicles. It accounts for both the reduction of spacing
errors and a limitation in velocities and accelerations of following vehicles to avoid saturations.
All criteria can be expressed using a mixed H2/H∞ problem formulation. The objectives are
formulated as one set of linear matrix inequalities that are solved for the controller. The
optimization is presented for different control structures and the effectiveness of reducing
overshoots in velocities or accelerations is shown through simulation results. This work also
considers structural constraints concerning the information available to the controller and
evaluates a sequential control algorithm applying the same layout method. Finally, the effects
of changing parameters of the vehicle’s drivetrain are analyzed and robustness of the presented
controllers is investigated.
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1. INTRODUCTION

Automated Highway Systems (AHS) and vehicle platoon-
ing have attracted a lot of research interest over the last
two decades. A lot of work has been done especially for
isolating and determining the right criteria to evaluate a
platoon control law. One of the very important criteria
is string stability of a platoon, describing the property
that upper limits on system variables don’t depend on
the platoon length and especially still hold for infinitely
long vehicle platoons. Most of the work concentrated on
spacing errors and string stability in terms of declining
errors along the platoon. To cite just some of the important
work we refer to Swaroop and Hedrick [1996] and Lu et al.
[2004]. Mostly, the upstream amplification of velocities
and accelerations and their upper limits have not been
addressed. The importance of them is profound though
since saturations in both velocities or accelerations are
typically not included into the controller layout. Especially
for critical longitudinal maneuvers with high (positive or
negative) accelerations this becomes very important.
This paper focusses on a control layout explicitly ac-
counting for declining errors and a minimization of upper
limits for velocities and accelerations of following platoon
vehicles. This work was done within the ongoing project
”KONVOI” which aims at the control of small-scale (up
to 4 vehicles) platoons of heavy-duty trucks with constant
spacing. Due to the limited platoon size a dynamic com-
munication structure with every vehicle having access to
all other vehicles’ longitudinal data is possible. For the
introduction into traffic only close-to-production technical
equipment is used.

⋆ The work presented in this paper has been developed within
the project ”KONVOI” which is supported by the German Federal
Ministry of Economics and Technology (BMWi).
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Fig. 1. Platoon setup with leading vehicle and n following
vehicles.

1.1 Platoon Model

The complexity of drivetrain models governing the longi-
tudinal dynamics is well known in literature. It was shown
though that by lower level controls this dynamics can be
approximated by a linear first order filter for the accel-
eration, see Ha et al. [1989] and Lu and Hedrick [2004].
The trucks of our project are equipped with acceleration
controls by different suppliers and the above assumption
could be verified by measurements.

According to figure 1 the time behavior of the platoon can
then be described by the error dynamics of each vehicle
i where the error is defined as the difference between the
actual distance to the predecessor and a (fixed) reference
distance: ei(t) = di(t) − dref,i(t). It holds

ëi = ai−1 − ai, (1)

ȧi =−1/Ti · ai + 1/Ti · ui (2)

while the error of the first follower is described by ë1 =
aL − a1, with aL being the leading vehicle’s acceleration.
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Table 1. System variables and parameters.

Symbol Description

di distance of vehicle i to predecessor
dref,i reference distance for vehicle i
ei distance error between vehicle i − 1 and i
ai acceleration of vehicle i
vi longitudinal velocity of vehicle i
ui control output of vehicle i
Ti time constant for drivetrain dynamics
n number of following vehicles
x state vector for the whole platoon

All variables refer to the nomenclature given in table
1. The acceleration dynamics is mainly governed by the
drivetrain’s time constant Ti which varies depending on
the engine’s operating point, the different dynamics of
brakes and engine and finally the underlying controls given
by the suppliers. This work does only focus on the upper
level platoon control using ui as reference acceleration - for
a more detailed description of the whole control topology
see Maschuw et al. [2007]. For convenience we summarize
the vehicles’ states as platoon state vector

x = (· · · , ei, ėi, ai, · · ·)
T , x ∈ R

3n. (3)

1.2 Control Objectives

The goal of platoon control typically is the minimization
of distance errors and especially the avoidance of collisions
while keeping the control effort low. This so far can
be considered as a problem of linear optimal control.
Additionally, some structural conditions of the controlled
platoon have to be met. One of the most important ones
is string stability for the whole platoon - apart from the
individual stability (which is a necessary but no sufficient
condition). For linear systems string stability in terms of
non-amplifying control errors can be expressed by their
transfer functions or impulse responses. With the transfer
function

Gi(s) =
ei(s)

ei−1(s)
(4)

relating the distance errors of two following vehicles i − 1
and i and its impulse response gi(t) it holds

||ei(t)||∞ ≤

∞
∫

0

|g(τ)|dτ · ||ei−1(t)||∞. (5)

For the ||·||1-Norm of the impulse response given in integral
form above it follows

||Gi(s)||∞ ≤ ||gi(t)||1 ≤ γe

!

< 1 (6)

in order to achieve string stability - the additional relation
for the || · ||∞-Norm of the transfer function follows from
linear system theory, see Lu et al. [2004]. Among others
Swaroop and Hedrick [1999] proved that string stability
can be achieved for control laws using information on
distance and relative velocity from all preceding vehicles
or equivalently the position and velocity from the leading
vehicle.

Opposed to distance errors a decline of maximum values
along the platoon is not possible for velocities or accel-
erations when constant spacing policies are used. This
becomes clear when one considers that distance errors
are the integral of reference velocities - an initial velocity
difference between two succeeding vehicles has to result

in a velocity overshoot of the follower to make the inte-
gral zero again (a similar result holds for accelerations).
Nevertheless, with the property of string stability it is
possible to prove that there is an upper limit for velocities
and accelerations of followers which is independent of the
platoon length (see appendix). Another objective is then
to minimize the upper bound for both variables. For this,
we now extend the formulation of transfer functions to the
description of velocities and accelerations. For the evalua-
tion of critical velocities or accelerations the predominant
excitation of the system described in (1)-(2) comes from
the acceleration of the leading vehicle aL. The control
objective is the reduction of overshoots in velocity related
to the leading vehicle vi(t) − vL(t) and acceleration ai(t).
For the transfer functions

Fv,i(s) =
(vi − vL)(s)

aL(s)
and Fa,i(s) =

ai(s)

aL(s)
(7)

a relation for the impulse response analogous to equation
(5) holds (we are only giving the one for the accelerations
here):

||ai(t)||∞ ≤

∞
∫

0

|fa,i(τ)|dτ · ||aL(t)||∞. (8)

Hence, in order to keep accelerations for all followers below
a certain level γa · ||aL||∞ the objective writes as

||Fa,i(s)||∞ ≤ ||fa,i(t)||1
!

< γa. (9)

Besides the mentioned objectives we have to account
for structural constraints concerning control information
and finally robustness concerning unknown or varying
parameters Ti of the drivetrain model. Both issues will
be considered separately in the last two sections.

2. CONTROL DESIGN

According to the control objectives identified in the pre-
vious section the performance criteria can be expressed
in terms of system norms. The optimal control weighing
distance errors and control effort is a minimization of their
quadratic time integrals or similarly the optimization of
the corresponding H2-norms. If we define a mapping of
the leading vehicle’s acceleration aL to errors and control
effort as

H : aL 7→ (e1, .., en, u1, .., un)T (10)

the optimal control problem is similar to minimizing
||H||2. The additional objectives expressing string stability
and upper bounds for velocities and accelerations were
formulated in equations (6) and (9). Although the relation
for the H∞-norm of the transfer functions is only a
necessary condition for the criteria to be met, we will show
that it is possible to directly influence upper bounds on
velocities or accelerations by minimizing this system norm.
Thus, all performance criteria formulated for platoon
control can be expressed as mixed H2/H∞ problem:

min α · ||F ||∞ + β · ||H||2 s.t. (11)

||Gi||∞ < 1 ∀i, (12)

||Fi||∞ < γ ∀i. (13)

For convenience we write F as mapping from aL to either
the velocities (Fv), accelerations (Fa) or both.
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2.1 LMI formulation

The problem formulation above can be expressed in terms
of linear matrix inequalities (LMI). Together with a con-
vex objective function they form a convex optimization
problem with the advantage that very efficient numeri-
cal solvers exist for this type of problem. For the LMI
formulation the transfer functions given in equation (11)
can be represented as state space model of a generalized
plant drawn in figure 2. The system’s states x are defined
according to our model from equation (1)-(2).

P

K

z
2

z
¥w

u x

Fig. 2. Generalized Plant with input and output signals.

As mentioned earlier, the condition of string stability can
be satisfied already by using information of all preceding
vehicles. Thus, in this work we do not include this con-
dition explicitly. The generalized inputs w and outputs
z are defined such that the same i/o-relation as for the
mapping H and F holds. To formulate the mixed H2/H∞

approach we would have w=aL, z2=(e1, .., en, u1, .., un)T

and z∞=(a1, .., an)T to bound amplifications of accelera-
tion for example.
The state space description for the generalized plant is
then

ẋ = Ax + B1 · w + B2 · u, (14)

z∞ = C∞ · x + D∞,1 · w + D∞,2 · u, (15)

z2 = C2 · x + D2,1 · w + D2,2 · u. (16)

The control law we are considering for the longitudinal
guidance uses feedback of all vehicles’ states, i.e. the
control law is given by

u = K · x. (17)

At first we assume full information on all vehicles (no
constraints on K), later we analyze the control layout
for constraints on the availability of information. The
optimization with LMI constraints that corresponds to
equation (11)-(13) can then be stated as

min α · γ2 + β · trace(Q) s.t. (18)

[

(A + B2K)X + X(A + B2K)T B1 X(C∞ + D∞2K)T

BT
1

−I DT
∞1

(C∞ + D∞2K)X D∞1 −γ2I

]

< 0

[

Q (C2 + D22K)X

X(C2 + D22K)T X

]

> 0

Here, the matrices Q, X, Y = KX and γ2 are the opti-
mization variables - the feedback matrix is then solved for
by K = Y X−1, see Boyd et al. [1994] and Apkarian et al.
[1996] for an exhaustive description of LMI formulations.

2.2 Results

For control optimization and simulation we analyze a truck
platoon with one leading and three following vehicles. The

Table 2. Maximum gains for system variables.

||fv,3||1 ||fa,3||1 ||fe,1||1

H2, (K)
α = 0.0, β = 1 2.28 1.70 2.58
H2/H∞, (K)
α = 0.5, β = 1 1.67 1.34 2.85

H2/H∞, (K1, K2)
α = 0.5, β = 1 0.62 1.29 0.56
H2/H∞, (LBT)
α = 0.5, β = 1 0.61 1.30 0.44

solution to problem (18) is a 3-by-9 matrix K mapping the
states to the synthetic control outputs ui of the following
vehicles according to control law (17). For all vehicles the
nominal time constant is Ti=0.5s. It should be mentioned
that although not explicitly stated in the optimization
problem string stability was achieved for all controllers
due to the information from front vehicles.
To analyze the control performance the platoon response
to a velocity step of the leading vehicle is simulated.
In figure 3 distance errors and velocities of all following
vehicles are plotted for a pure H2 optimization, i.e. α was
set to zero in equation (18).
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Fig. 3. Platoon response to a velocity step of 1m/s by the
leading vehicle using H2 optimization.

While distance errors are eliminated quickly and decline
along the platoon the maximum velocities increase along
the platoon before they settle down to the nominal values
of the leading vehicle. The worst case amplification γ
can be determined by the || · ||1 norm for velocities
and accelerations respectively. For the 4-truck-platoon the
worst case amplification always appears for the last (3rd)
vehicle for whom the upper bound amplification is given
as ||fv,3||1 and ||fa,3||1 respectively in table 2. Opposed to
that, the maximum spacing errors occur for the front (1st)
vehicle and decline along the platoon, worst case errors
related to aL can be determined similarly and are given as
||fe,1||1 in the table above.

Now additional H∞ conditions for amplifications in the
velocity are used. The weighting of the H2 and H∞ norm
is set to α=0.5 and β=1. The platoon response in figure
4 changes to far lower velocities of following vehicles, on
the other hand the settling time for errors and velocities
increases. The tuning of both norms can be used as trade-
off between both effects. Table 2 shows the reduction
of upper gains when the mixed optimization is used.
For example, the worst case amplification of acceleration
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Fig. 4. Platoon response to a velocity step of 1m/s by the
leading vehicle using additional H∞ criteria.

settles down from 70% to 34% of the leading vehicles
acceleration. Maximum gains for errors (here e1) increase
a little though.

To further reduce the upper gains on velocities and accel-
erations we analyze a changed control structure

u = K1 · x + K2 · aL (19)

with additional information on the leading vehicle’s ac-
celeration. The basic structural advantage is the faster
control action. The LMI formulation presented in equation
(18) can still be used - to parameterize this control, only
the terms B1 and D∞,1 are changed to B1+B2K2 and
D∞,1+D∞,2K2 due to the additional feedback of aL=w.
To analyze the solution for K1 and K2 the 4-truck-platoon
is simulated for step changes in aL now. An emergency
braking of the leading vehicle with aL = −7m/s2 at time
t = 1s from 80km/h to halt is considered which is close to
the possible limits of heavy-duty trucks. Again, the results
for simple H2 and mixed optimization with additional H∞

criteria for velocities are compared.
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Fig. 5. Platoon response to an acceleration maneuver of
the leading vehicle using H2 criteria.

The results for spacing errors ei and velocity differences
to the leading vehicle vi − vL are given in figure 5 (for
H2 optimization) and in figure 6 (for H∞ optimization).

For the first case, spacing errors go up to 14.1m and
the maximum velocity differences go up to 7.5m/s during
that maneuver. Using the additional feedback information
tuned with the second approach both errors and velocity
differences go down to 3.5m and 2.1m/s respectively. Due
to the constant acceleration a spacing error has to remain
in all cases.

0 1 2 3 4 5 6 7 8
−4

−3

−2

−1

0

Spacing error to preceding vehicle

time [sec]

e
i [

m
]

 

 

e
1

e
2

e
3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Differences in Velocity

time [sec]
v

i−
v

L
 [

m
/s

e
c
]

 

 

v
1
−v

L

v
2
−v

L

v
3
−v

L

Fig. 6. Platoon response to an acceleration maneuver of
the leading vehicle using additional H∞ criteria.

The maximum gains in table 2 show that worst case ampli-
fications are now 29% of the leading vehicles acceleration.
Please note that due to the inequality in equation (8)
the upper bound is very conservative - the simulations
for acceleration steps in figure 6 show amplifications of
accelerations with less than 15%. Simulations with explicit
acceleration saturations (at -7m/s2) showed that maxi-
mum errors below 6m could still be achieved with this
control approach.

3. STRUCTURAL CONSTRAINTS

The motivation to analyze structural constraints of our
platoon control is a security aspect. We have to consider
the low reliability of radio communication networks for ve-
hicle control. Possible strategies to overcome network fail-
ure and information loss have been presented in Maschuw
et al. [2007] already. Restricting the control to only in-
formation from front vehicles guarantees decoupling from
following vehicles at least for the critical braking maneu-
vers, i.e. errors occurring in the back of a platoon do not
influence spacing errors of preceding vehicles. For the state
feedback control from equation (17) this type of constraint
can be described by restricting the feedback matrix K to
lower block triangular (LBT) form. This constraint cannot
be formulated in terms of LMIs directly though. The
approaches made so far concern Youla parametrization
and sequential control layout. Both have been widely used
for platoon control with pure H2 optimization already, see
e.g. Yagoubi and Chevrel [2005] and Claveau and Chevrel
[2005].
We follow the approach of sequential control design but use
the mixed H2/H∞ optimization for the control law u =
K1 · x + K2 · aL (K2 does not have to meet any structural
conditions since aL is only transmitted from the front to
the back). The sequential application of the formulation in
equation (18) leads to a K1 with LBT form and suboptimal
performance concerning integral errors and control effort
and additionally meets upper bounds for maximum gains
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in velocities or accelerations. The simulation result for an
acceleration step of the leading vehicle with -7m/s2 is given
in figure 7.
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Fig. 7. Platoon response to an acceleration maneuver of the
leading vehicle using control with LBT constraints on
the feedback matrix.

It is obvious that the response of spacing errors and
velocity differences almost resembles the results of the
unconstrained optimization before. The maximum gains in
table 2 even show a slight reduction of maximum velocity
differences and maximum errors.
To compare all control approaches discussed so far the
platoon response to acceleration maneuvers of the leading
vehicle is given in figure 8. The plots correspond to simple
H2 design, mixed H2/H∞ design, additional feedback of
the leading vehicles acceleration and finally the sequential
design. Since maximum spacing errors occur in the front
and maximum velocity overshoots in the back only e1 and
v3 − vL are plotted for the 4-truck-platoon. It can be seen
clearly that the control performance improves a lot using a
mixed criteria formulation with either an unconstrained or
constrained feedback matrix. Both the spacing errors and
velocity differences decrease to roughly 25% of the values
achieved when only H2 criteria are formulated.
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Fig. 8. Comparison of platoon responses to an acceleration
maneuver of the leading vehicle using different control
layouts.

4. ROBUSTNESS

The given vehicle model in equation (2) lacks from the
fact that the drivetrain dynamics can only be identified
to a certain extent by a first order filter. In fact the time
constant Ti strongly depends on the actual operating point
of the engine. Moreover, time constants for braking are
much smaller than for accelerating due to the different
actuators - the non-symmetry leads to faster (better)
performance concerning small gaps arising in (the critical)
braking maneuvers compared to positive accelerations.
From measurements with our trucks we could derive a
maximum range of 0.1s< Ti <1s.
This section is dedicated to the test of robust stability
for the controls derived in the previous sections and an
explicit robust control design, both can be done using the
formulation of LMIs again. Therefore we represent the
generalized plant as affine model depending linearly on
the parameters pi = 1/Ti. Since every following vehicle
may have a different time constant we have to consider
the parameters pi for each vehicle. For the case of three
following vehicles with independent time constants the
parameters p1, p2 and p3 span a box in R

3. Due to
the dependence on operating conditions we assume the
parameters to be time varying (in worst case infinitely
fast). Since both matrices A and B2 from equation (14)
depend on pi we can write the closed-loop system matrix
Ā = A + B2K1 in affine form

Ā(p) = Ā0 + p1(t)Ā1 + p2(t)Ā2 + p3(t)Ā3 (20)

with Āi = Ai + B2,iK1. For the closed-loop system we
are seeking a quadratic Lyapunov function V (x) = xT Px
with a symmetric positive definite matrix P to guarantee
asymptotic stability at all possible trajectories pi(t) that
lie within the prescribed box. For the affine description
it is sufficient to satisfy a set of LMIs at each corner of
the parameter box denoted by Πj , see Sommer [2001] and
Gahinet et al. [1995]:

PĀ(Πj) + Ā(Πj)
T P < 0, with j = 1, .., 8. (21)

The additional LMI condition can either be used a priori
for a robust control layout or a posteriori to check robust
stability of the designed control law. For all controllers of
the previous sections that were optimized for a nominal
time constant Ti =0.5s the above condition was fulfilled
for infinitely fast varying time constants in the range
0.1s< Ti <1s. The closed-loop system is even stable for
time constants above Ti =1s. The critical time constants
marking the stability margin of the closed loop are given
in table 3 for the different control layouts.

Table 3. Time constants of drivetrain at the
stability margin of the closed loop.

Ti for stability margin
H2,(K)

α = 0.0, β = 1 2.4s
H2/H∞,(K)

α = 0.5, β = 1 2.6s
H2/H∞,(K1, K2)

α = 0.5, β = 1 2.5s
H2/H∞,(robust)
α = 0.5, β = 1 2.9s

To include condition (21) into the optimization problem
and solve for K1 and K2 with guaranteed robustness, the
condition needs to be formulated in different terms. If
X = P−1 the above relation is equivalent to

Ā(Πj)X + XĀ(Πj)
T < 0, with j = 1, .., 8. (22)
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If we plug in Ā = A + B2K1, eight additional LMI
conditions for the optimization variables X and Y = K1X
can be directly added to the setup of equation (18).
The a priori inclusion of condition (22) leads to closed-
loop systems with slightly better stability margins. For
the mixed H2/H∞ control with additional robustness
conditions the platoon’s closed-loop eigenvalues are given
in figure 9. The eigenvalues are plotted as grid for different
time constant starting at 0.1s and going up to 2s - a
shading from dark to light is used for increasing time
constants.
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Fig. 9. Closed-loop eigenvalues for robust H2/H∞ layout
with α =0.5, β =1; 0.1s< T <2s.

It can be seen that stability always becomes critical
for great time constants with two pairs of eigenvalues
wandering towards the imaginary axis. Table 3 shows
that the (explicit) robust layout for a nominal plant with
Ti =0.5s leads to an upper time constant of Ti =2.9s at
the stability margin which is slightly better than the one
for controls with an a posteriori test of robust stability. It
should be noted that robust control design is also possible
for larger time constants by simply choosing a bigger
nominal time constant (this will diminish performance for
smaller time constants though).

5. CONCLUSION

This paper presents a direct LMI formulation for mini-
mization of velocity and acceleration amplifications and
finally robustness with respect to the drivetrain dynamics;
it herewith enlarges the actual LMI concepts in longi-
tudinal vehicle guidance concentrating on spacing errors
so far. The advantages of additional H∞ criteria were
shown clearly. So far, only two heavy-duty trucks have
been equipped and tested with the automation hard- and
software. To validate the results of this paper, road trials
with four vehicles are planned for the close future.
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Appendix A. PROOF FOR AN UPPER BOUND

We will only show the existence of upper limits for acceler-
ations, a similar approach is valid though for the velocities.
As stated earlier we assume that for all vehicles

||gi(t)||1 ≤ γe < 1 (A.1)

holds. The maximum acceleration of a vehicle at position
i + k can be expressed in terms of the acceleration at
position i using the triangular inequality:

||ai+k||∞ ≤ ||ai||∞ +

k
∑

j=1

||ai+j − ai+j−1||∞. (A.2)

For the transfer function relating the acceleration differ-
ences it holds

(ai − ai−1)(s)

(ai−1 − ai−2)(s)
=

ei(s)

ei−1(s)
= Gi(s). (A.3)

Hence, using the inequality from (A.1) we can write

||ai − ai−1||∞ ≤ γe||ai−1 − ai−2||∞ (A.4)

an plug this into equation (A.2) to get

||ai+k||∞ ≤ ||ai||∞ +
k−1
∑

j=0

γj
e ||ai+1 − ai||∞. (A.5)

Since γe < 1 the limit of the infinite geometric series exists
and for k → ∞ we have the upper limit

||a∞||∞ ≤ ||ai||∞ +
1

1 − γe

||ai+1 − ai||∞ (A.6)

that only depends on a certain vehicle i but not on the
platoon length.
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