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Abstract: In this study, we propose a nonlinear model-following control for underactuated
systems. A model-following control design is based on the virtual constrains. The concept of
virtual constraints control proposed by Shiriaev et. al. The model-following control is useful
to realize the tracking system to a given reference model. In underactuated systems, a model-
following control for fullactuated systems cannot be not utilized because there are limitations of
coordinate transformation such as exact linearization. Thus this study deals with underactuated
mechanical nonlinear systems. The design strategy is explained by taking a cart-pendulum as
an example for this study. A cart-pendulum is controlled so that a virtual spring-mass-damper
property is implemented to a pendulum. Some numerical simulations are performed to verify
the effectiveness of the proposed method.

Keywords: virtual constraints, model-following control, projection method, underactuated
nonlinear system

1. INTRODUCTION

Mechanical systems with many functions have been de-
veloped in recent years, and these systems work well in
various areas. The manipulator is a typical example of such
mechanical systems. Manipulators are utilized in so many
factories as industry robots. One of important motions of a
manipulator is to touch the external environment, and the
impedance control is often used to avoid the destruction of
the external environment by applying excess forces. The
manipulator with the impedance control can behave as
mass-spring-damper systems, and can realize soft touch-
ing. In order to improve the adaptivity and the flexibility,
some control methods utilizing the virtual impedance be-
tween a manipulator and the external environment before
contact have been proposed in Tsuji and Kaneko [1999],
Tsuji et al. [2004]. If virtual characteristics are added to
mechanical systems, various functions can be realized.

When desired virtual characteristics are implemented to
some mechanical systems, the virtual characteristics are
realized if the orbit of a target system follow the orbit
of a reference system. In order to realize such control
law, a model-following control is effective. Most of me-
chanical systems are nonlinear systems. Moreover, these
systems may be underactuated systems. Particularly, in
underactuated systems, a model-following control for ful-
lactuated systems cannot be not utilized because there
are limitations of coordinate transformation such as exact
linearization.

Therefore, in this paper, we propose a nonlinear model-
following control for underactuated system. In this study,
we took a hint from the virtual constraint approach pro-
posed by A.Shiriaev et al. [2005] , Shiriaev et al. [2006].
The virtual constraints control is a control method in
which the orbit of a system should satisfy the given virtual
constraints. A. Shiriaev et al proposed a stabilization con-
trol for underactuated systems. In the case of stabilizing
a pendulum, an orbit of a pendulum is constrained to a
limit cycle by using virtual constraints control. In other
control methods which can attach virtual conditions to
a target system, a control method which uses Controlled
Lagrangian (A.M.Bloch et al. [2003], M.Kinoshita et al.
[2006]) is proposed.

In our study, a virtual system can be considered as a
reference model. A real system is a target system which
is controlled. To track the output of the real system to
the output of the virtual system , we introduce virtual
holonomic constraints which denote the output of a real
system and the output of a virtual system are coincident.
These constraints are realized by designing control inputs
which make the output of a real system and the output of
virtual system coincident. An augmented system such as
a model-following controller proposed by K.Komiya and
K.Furuta [1982] is utilized in designing control inputs.

The model-following controller requires both model of the
real system and the reference virtual system, and then
the Projection Method is useful to derive these models.
The Projection Method is a powerful modeling method,
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and we can find many works on the Projection Method
in the literature: Blajer and Arczewski.K [1996], Blajer
[2001], Ohata et al. [2004], Blajer [1992], Blajer [1995],
H.Ohsaki et al. [2007]. The Projection Method takes the
physical constraint conditions among sub-systems compos-
ing the entire system into account explicitly. The united
model of the sub-systems can be derived by some algebraic
calculations based on the described constraint conditions.
Thus, the Projection Method permits us introducing vir-
tual characteristics such as virtual forces easily.

This paper is organized as follows. In the preliminary sec-
tion, the Projection Method is summaries briefly. The next
section outlines virtual constraints control proposed by
A.Shiriaev briefly. After that, a nonlinear model following
control for underactuated systems is shown in the section
3. To verify the effectiveness of the proposed method, some
numerical simulation are performed. Finally, we give some
remarks in the conclusion.

2. PRELIMINARY

This study focuses on a type of the model-following
control for nonlinear underactuated mechanical systems.
The model-following controller requires both model of the
real system and the reference virtual system. This section
outlines The Projection Method.

The Projection Method is a powerful modeling method,
and many studies on the Projection Method can be found
nowadays (K.Watanabe et al. [2007], S.Terashima et al.
[2003]). The Projection Method has the advantage that
it can derive both the equations of motion and internal
constrains of systems. This advantage allows us deriving
easily a model which has virtual characteristics such as
virtual forces.

The outline of the modeling procedure based on the
Projection Method is summarized as follows:

(1) Set the coordinate system.
(2) Define q as a generalized coordinate, and vq as a

generalized velocity which sometimes includes quasi-
velocities.

(3) Write down equations of motion of each component
composing some system. Practically each component
has a connection among other components to com-
pose the entire system, however, the equation of mo-
tion of unconnected (free) component is considered in
this step.

(4) Define Mq as the generalized mass matrix, and h as
the generalized force according to the equations of
motion in the previous step.

(5) Derive the holonomic and non-holonomic constraints
showing the relation among components as Cqvq = 0
using the constraint matrix Cq.

(6) Decompose the generalized velocity vector vq to the
tangent velocity v, which decides the degree of free-
dom of the constrained entire system, and the left
velocity vector.

(7) Define Dq as the orthogonal complement matrix to
Cq fulfilling vq = Dq v̇ and CqDq = 0.

(8) Derive the equations of motion of the constrained
entire system by some algebraic calculation using Dq.

3. VIRTUAL CONSTRAINTS CONTROL

In this study, we utilize virtual constraints control pro-
posed by A.Shiriaev et al. We explain a control method
for realizing virtual holonomic constraints to a system.

A motion equation of general mechanical systems is rep-
resented by (1).

M(q)q̈ + C(q, q̇)q̇ +G(q) = u (1)
where the dimension of generalized coordinates q is n.
M(q), C(q, q̇), G(q) are appropriate dimensions. And the
dimension of inputs u is n − 1 which is fewer than the
degree of freedom of a system by one.

Then, defining new independent variable θ, (2) defines
virtual holonomic constraints which is worked to the
system (1).

q1 = ψ1(θ), · · · , qn = ψn(θ). (2)

By defining new variables y1, · · · , yn, the errors between
virtual holonomic constraints and generalized coordinates
are defined as

y1 = q1 − ψ1(θ), · · · , yn = qn − ψn(θ). (3)
Then, introduce new coordinates y as follows:

y = [y1, · · · , yn−1, θ]T . (4)

qn can be represented by

qn = ψn(θ) + h(y1, · · · , yn−1, θ), (5)
so one and two differentiation of generalized coordinates
q can be represented by one and two differentiation of
new coordinates y. q̇ and q̈ are shown in equations (6)(7)
respectively.

q̇ =Lẏ (6)

q̈ =Lÿ +N, (7)
where

L=
[

In−1 0(n−1)×1

grad h

]
+ [0n×(n−1),Ψ′] (8)

N =Lẏ (9)

Ψ′ = [ψ′
1, ψ

′
2, · · · , ψ′

n]. (10)

A motion equation shown in (1) can transform to a motion
equation (11) by using the relations (6)(7). ((q) and so on
are abbreviated)

MLÿ +MN + CLẏ +G = u | q1 = y1 + ψ1

.

.

.

qn = yn + ψn

. (11)

By solving (11) for ¨̃y = [ÿ1, · · · , ÿn−1]T , (13) is obtained.

¨̃y = [In−1, 0]L−1M−1u

− [In−1, 0]L−1M−1(MN + CLẏ +G) (12)

=Ku−R. (13)
Thus, when a control input u is defined following equation
:
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u = K−1(vy −R), (14)
equation (13) can be written in partly linear form (15).

¨̃y = vy. (15)
Therefore, virtual constraints are realized to the system
by using the state feedback which [ỹ, ˙̃y] converges to 0.

4. VIRTUAL CONSTRAINT BASED
MODEL-FOLLOWING CONTROL FOR NONLINEAR

SYSTEMS

A model-following controller based on the concept of
virtual constraints is shown in this section. the model-
following control is a control method which makes outputs
of the real/reference system coincident. The reference
system is considered as a virtual system in this paper.
The virtual system has virtual characteristics which should
be implemented to the real system. the controller shown
in this paper requires that all states of the real system
are known. The model-following control is realized by
designing control inputs which make the outputs of the
real/reference system coincident. An augmented system
which consists of the real system and the virtual system
is utilized to design the control inputs which make virtual
constraints which denote the outputs of the real/reference
system are coincident.

4.1 Augmented system which consists of the real system
and the virtual system

We utilize the state dependent riccati equations proposed
by J.R.Cloutier [1997], Cloutier and Cockburn [2001] for
designing the control inputs. The state dependent linear
representation is required to represent the real system and
the virtual system.

A state dependent linear representation of the real system
which is written by (16) is (17).

ẋa = f(xa) + g(xa)u

ya = h(xa) (16)

⇔
ẋa =A(xa)xa +B(xa)ua

ya =C(xa)xa. (17)
Similarly, a state dependent linear representation of the
virtual system is (18).

ẋm =A(xm)xm +B(xm)um

ym =C(xm)xm, (18)
where xa, xm, ua, um, ya, ym are the state , the input
and the output for the real system and the virtual system
respectively.

Then, an augmented system which consists of the real
system and the virtual system is defined as (19).[

ẋa

ẋm

]
=

[
Aa(xa)

Am(xm)

] [
xa

xm

]
+[

Ba(xa)
Bm(xm)

] [
ua

um

]
⇔ ẋ=A(x)x+B(x)u. (19)

4.2 The virtual constraints which coincide the output of
the real system and the virtual system

The augmented system written by (19) consists of the real
system and the virtual system. Thus, if the real system is
constrained virtually so that the output of the real system
and the output of the virtual system are coincident, the
output of the real system follows to the output of the
virtual system. The virtual constraint can be obtained as
(20) by the output equations of the real system and the
virtual system.

ya = ym ⇔ Ca(xa)xa = Cm(xm)xm (20)

4.3 Transform to error coordinates

Error coordinates ε are defined as (21).

ε = Ca(xa)xa − Cm(xm)xm (21)

If Ca(xa) is the column full rank matrix, the state x of
the augmented system can be transformed to a new state
z = [ε , xm]T which includes the virtual system state xm

and error coordinates ε. This transform can be represented
as follows using pseudo inverse matrix of Ca(xa).[

xa

xm

]
=

[
Ca(xa)† Ca(xa)†Cm(xm)

O I

] [
ε
xm

]
(22)

⇔ x=L(x)z . (23)
In a similar way , a transform equation between ẋ and ż
is represented as follows.[

ẋa

ẋm

]
=

[
Ca(xa)† Ca(xa)†Cm(xm)

O I

] [
ε̇
ẋm

]
+

[
d Ca(xa)†

dt
ε+

d Ca(xa)†

dt
Cm(xm)xm+

O

Ca(xa)†
d Cm(xm)

dt
xm

]
(24)

⇔ ẋ=L(x)ż +N(x, ẋ) . (25)

If Ca(xa) is not column full rank matrix, the state x should
be divided as observable state xa2 and non-observable
state xa1. A state transformation equation can be obtaind
by using the divided state.

The output of the real system can be reprensed as follows.

ya =
[
O C̃a

] [
xa1

xa2

]
. (26)

When the new state z is defined as z = [xa1 , ε , xm]T ,
the transform equation between x and z is represented as
follows.[

xa1

xa2

xm

]
=

⎡
⎣ I O O

O C̃a(xa)† C̃a(xa)†Cm(xm)
O O I

⎤
⎦

[
xa1

ε
xm

]

⇔ x=L(x)z . (27)
In a similar way , a transform equation between ẋ and ż
is represented as follows.
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[
ẋa1

ẋa2

ẋm

]
=

⎡
⎣ I O O

O C̃a(xa)† C̃a(xa)†Cm(xm)
O O I

⎤
⎦

[
ẋa1

ε̇
ẋm

]
+

⎡
⎢⎣

O
d Ca(xa)†

dt
ε+

d Ca(xa)†

dt
Cm(xm)xm+

O

O

Ca(xa)†
d Cm(xm)

dt
xm

⎤
⎥⎦ (28)

⇔ ẋ=L(x)ż +N(x, ẋ) . (29)

4.4 Control design

The state x of the augmented system represented by (19)
can be transformed to the state z which includes error
coordinates by using the state transformation equations
shown in former subsection. Thus, following equation is
obtained.

ẋ = A(x)x+B(x)u (30)

⇔ L(x)ż +N(x, ẋ) = A(x)L(x)z +B(x)u (31)

⇔ ż = L(x)−1A(x)L(x)z + L(x)−1B(x)u

− L(x)−1N(x, ẋ) (32)

⇔ ż = Ā(x)z + B̄(x)u− N̄(x, ẋ) , (33)
where

Ā(x) =L(x)−1A(x)L(x) (34)

B̄(x) =L(x)−1B(x) (35)

N̄(x, ẋ) =L(x)−1N(x, ẋ) . (36)

Then, (33) can be rewritten as

ż = Ā(x)z + B̄(x)u− N̄(x, ẋ) (37)

⇔
⎡
⎣ ẋa1

ε̇
ẋm

⎤
⎦ =

[
Ā11(x) Ā12(x)
O Am(x)

] ⎡
⎣ xa1

ε
xm

⎤
⎦

+
[
B̄11(x) B̄12(x)
O Bm(x)

] [
ua

um

]
−

[
N̄1(x, ẋ)
N̄2(x, ẋ)

]
(38)

=
[
Ā11(x) Ā12(x)
O Am(x)

] ⎡
⎣ xa1

ε
xm

⎤
⎦ +

[
B̄11(x)
O

]
ua

+
[
B̄12(x)
Bm(x)

]
um −

[
N̄1(x, ẋ)
N̄2(x, ẋ)

]
. (39)

If B̄11(x) is row full rank matrix, the input ua for the real
system can be defined as

ua = ūa −
[
B̄11(x)
O

]† ([
B̄12(x)
Bm(x)

]
um −

[
N̄1(x, ẋ)
N̄2(x, ẋ)

])
.

(40)

If B̄11(x) is not row full rank matrix, a following term is
treated as a disturbance.

[
B̄12(x)
Bm(x)

]
um −

[
N̄1(x, ẋ)
N̄2(x, ẋ)

]
(41)

Then, the input ua for the real system can be defined as

ua = ūa . (42)
Thus, (39) can be rewritten as⎡

⎣ ẋa1

ε̇
ẋm

⎤
⎦ =

[
Ā11(x) Ā12(x)
O Am(x)

] ⎡
⎣ xa1

ε
xm

⎤
⎦ +

[
B̄11(x)
O

]
ūa

⇔ ż = Amf (x)z +Bmf (x)ūa . (43)

The error coordinates ε have to converge to 0 so that
the virtual constraints represented by (20) are effected to
the augmented system (43). Thus, in order to derive the
input for the real system, a following evaluation function
is introduced.

J =
∫ ∞

0

(
zTQz + ūT

aRūa

)
dt (44)

R is a weight matrix for the input. Q is a weight matrix
for the state and can be represented as

Q =
[
Q1 O
O O

]
. (45)

The input which makes (44) minimum is given as following

ūa = −F1[xT
a1, ε

T ]T − F2xm , (46)
where

F1 = R−1B̄11(x)P11(x) (47)

F2 = R−1B̄11(x)P12(x). (48)
And P11(x) , P12(x) are positive definite symmetric matrix
and satisfy following equations.

0 = Ā11(x)TP11(x) + P11(x)Ā11(x) +Q−
P11(x)B̄11(x)R−1B̄11(x)TP11(x) (49)

0 = Ā11(x)TP12 + P11Ā12(x) + P12Am(x) −
P11(x)B̄11(x)R−1B̄11(x)TP12(x) (50)

Therefore, the input of real system can be derived by (40)
and (46).

4.5 Zero dynamics

If the control input for the real system makes the virtual
constraints (20) invariant, the state xa1 which is not
transformed to error coordinates has zero dynamics.

If xa1 is represned as

ẋa1 = α(xa1, xa2) + β(xa1, xa2)ua . (51)
then the zero dynamics can be represented as

ẋa1 = α(xa1, xa2)
∣∣∣ xa2 = C̃a(xa)

†
Cm(xm)xm

(52)
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Table 1. Parameters

Items Value
Mass of cart mc 0.5[kg]

Mass of pendulum mp 0.01[kg]
Length of pendulum l 0.2[m]
Inertia of pendulum j 0.005[kg · m2]

Viscous friction of pendulum cp 0.0003
Viscous friction of cart cc 0.0001

Mass of spring-mass-damper system mv 1.0[kg]
Spring modulus k 0.1
Damper modulus d 0.01

5. SIMULATION AND VALIDATION

A Simulation is presented to verify the effectiveness of the
proposed method. In a simulation shown in this section,
the real system is the cart-pendulum system which is a
underactuated nonlinear system. And the virtual system
is the spring-mass-damper system. In this simulation, we
design a controller so that the angle and angular velocity of
the cart-pendulum system are coincident with the output
of the virtual system. The parameters which are utilized
in the simulation are shown in table.5.

5.1 The real system and the virtual system used in
simulation

The state dependent linear representation of the cart-
pendulum system is shown in following.

ẋa =
[

O I
−M−1G −M−1C

]
xa +

[
O

M−1[0 1]T

]
ua

(53)

ya =
[

1 0 0 0
0 0 1 0

]
xa , xa = [θ lx θ̇ l̇x]T , (54)

where

M(θ) =
[
j +mpl

2 mpl cos θ
mpl cos θ mc +mp

]
(55)

C(θ, θ̇) =
[

cp 0
mpl sin θθ̇ cc

]
(56)

G(θ) =
[
mpgl sin θ/θ 0

0 0

]
. (57)

The state space representation of the virtual system is
shown in following.

ẋm =
[

0 1
−k/mv −d/mv

]
xm +

[
0

1/mv

]
um

⇔ ẋm =Amxm +Bmum

ym =
[

1 0
0 1

]
xm , xm = [x1 ẋ1]T . (58)

Then, a virtual constraint which makes the output of the
real system and the output of the virtual system coincident
is represented as

ε= [O, C̃a]
[
xa1

xa2

]
− Cmxm (59)

= C̃axa2 − Cmxm , (60)
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Fig. 1. An angle of the pendulum and a position of spring-
mass-damper system. (blue line: the virtual system,
green line: the real system)

where xa1 = [lx, l̇x]T , xa2 = [θ, θ̇]T and

C̃a =
[

1 0
0 1

]
. (61)

In order to utilize the state transformation equation which
is shown in (27) and (29), the state of the real system is
required to be transformed by using the following state
transformation matrix. The state transformed real system
is utilized for designing a controller.

T =

⎡
⎢⎣

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎤
⎥⎦ (62)

5.2 Simulation result

In this simulation, the initial condition of the real system
is xa(0) = [0, 0, 0, 0]T , the initial condition of the
virtual system is xm(0) = [0.5, 0]T . The control interval is
20[msec], And we utilize the following input for the virtual
system.

um =
{

0.5 sin(2πt) , t < 5.0
−0.5 sin(2πt) , t >= 5.0 . (63)

The weight matrices which used in (44) are

Q1 = diag(150.0, 0.0, 140.0, 0.0) (64)

R= 0.005 . (65)

The simulation results are shown in Fig.1.2.3 In Fig.1 and
2, the blue line is the trajectory of the virtual system.
The green line is the trajectory of the real model. Fig.1
and Fig.2 show that the angle and angular velocity of the
pendulum can track the position and velocity of the virtual
model almost perfectly.

5.3 Zero dynamics of a cart

If the feedback input makes the virtual constraints invari-
ant, following relations are obtained by (60).

θ = x1 , θ̇ = ẋ1 , θ̈ = ẍ1 .

Thus, zero dynamics of a cart is represented as following
equation when the virtual constraints are invariant.
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(mpl cosx1) ẍ1 + (mc +mp) l̈x + (mpl sinx1) ẋ1
2

+ cc l̇x = 0 . (66)

Then, if the position and velocity of the virtual system
which is the spring-mass-damper system are stabilized to
0 , zero dynamics of a cart is represented as following

(mc +mp) l̈x + cc l̇x = 0 , (67)

where mc, mp, cc are positive constant. Thus, (67) is
stable.

If a motion of the virtual system is around an origin,
the time response of the spring-mass-damper system is
represented as

x1(t) =
∫ t

0

g(t− τ)um(τ)dτ , (68)

g(t) =L−1 {G(s)} ,

G(s) =
1

(s− α)(s− β)
, �(α) < 0, �(β) < 0

the virtual system is a stable. Then, the time response of
lx can be obtained as following equation by linearizing (66)
around x1 � 0.

lx(t) =
∫ t

0

(
a3

a1
+

(
a2 − a3

a1

)
e−a1(t−τ)

)
x1(τ)dτ(69)

a1, a2, , a3 are positive constant.

Thus, lx is represented by the convolution integral of
multiplication of non-divergent term and stable term. lx
is stable.

6. CONCLUSION

This paper presents a model-following control of under-
actuated nonlinear systems based on virtual constraints.
To realize the virtual characteristics, the control method
lets the output of the real system follow the output of the
virtual reference. The Projection method can be utilized
for the derivation of models of the systems which has which
has virtual characteristics. These control system design has
been explained by using a cart-pendulum system as an
example of this study. Some numerical simulations have
been performed to confirm that the real system tracks the
virtual system , and the effectiveness has been verified.

REFERENCES

A.M.Bloch, J.Baillieul, P.Crouch, and J.E.Marsden. Nonholonomic
Mechanics and Control. Springer, 2003.

A.Shiriaev, J.W.Perram, and C.Canudas de Wit. Constructive
tool for orbital stabilization of underactuated nonlinear systems:
virtual constraintsapproach. IEEE Transactionson Automatic
Control, 50(8):1164–1176, 2005.

W. Blajer. A projection method approach to constrained dynamic
analysis. J. Appl. Mech. 59, pages 51–64, 1992.

W. Blajer. Projective formulation of lagrange’s and boltzmann-
hamel equations for multibody systems. ZAMM 75 SI, pages
107–108, 1995.

W. Blajer. A geometrical interpretation and uniform matrix for-
mulationof multibody system dynamics. ZAMM 81, 4:247–259,
2001.

W. Blajer and Arczewski.K. A unified approach to the modeling
ofholonomic and nonholonomic mechanical systems. volume 2 of
Mathematical Modeling of Systems, pages 157–174, 1996.

J. R. Cloutier and J.C. Cockburn. The state-dependent nonlinear
regulator with state constraints. American Control Conference,
pages 390–395, 2001.

H.Ohsaki, M.Iwase, and S.Hatakeyama. A consideration of nonlinear
system modeling using the projection method. SICE Annual
Conference 2007, 9 2007.

J.R.Cloutier. State-dependent riccati equation techniques:
Anoverview. American Control Conference, pages 932–936, 1997.

K.Komiya and K.Furuta. Design of model-following servo controller.
IEEE Transactions on Auto-matic Control, 27(3):725–727, 1982.

K.Watanabe, M.Iwase, S.Hatakeyama, and T.Maruyama. Control
strategy for a snake-like robot based on constraint force and
its validation. Number 155 in 2007 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics, 2007. in USB.

M.Kinoshita, M.Iwase, and S.Hatakeyama. Stabilization of inverted
pendulum on a cart with slope conditions by using controlled
lagrangian. volume 49 of 49th Jido Seigyo Rengo Koenkai, pages
SA9–2–2, 2006. in Japanese.

A. Ohata, A. Sugiki, Y. Ohta, S. Suzuki, and K. Fnruta. Engine
modeling based on projection method and conservation laws. 2004
IEEE International Conference on Control Applications, 9 2004.

A. Shiriaev, L.Freidovich, A.Robertsson, and R.Johansson. Virtual-
constraints-based design of stable oscillations of furuta pendulum:
Theory and experiments. CDC ’06, pages 6144–6149, 2006.

S.Terashima, M.Iwase, K.Furuta, S.Suzuki, and S.Hatakeyama. A
design of servo controller for nonlinear systems using state depen-
dent riccati equation. volume 4 of Decision and Control, 2003.
Proceedings. 42nd IEEE Conference, pages 3864–3869, 2003.

T. Tsuji and M. Kaneko. Non-contact impedance control for
redundant manipulator. IEEE Trans. Syst., 29:184–193, 3 1999.

T. Tsuji, M. Terauchi, and Y.Tanaka. Online learning of virtual
impedance parameters in non-contact impedance control using
neural networks. IEEE Trans. Syst, 34:2112–2118, 10 2004.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4839


