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Abstract: This paper deals with a class of chemical process with measurable time-varying disturbances, 
which is modeled within the framework of singular perturbation in non-standard form. The results in singular 
perturbation theory consider the systems in a standard form, therefore, a transformation to change a system 
representation from non-standard to standard form should be found. After this transformation is made, a 
systematic approach to control this class of systems and disturbance rejection using feedback linearization is 
proposed. The application of the developed method is illustrated through a catalytic continuous stirred tank 
reactor.  

 

1. INTRODUCTION 

The majority of chemical processes is inherently nonlinear 
and is often characterized by the presence of dynamical 
phenomena occurring in multiple time-scales (Breusegem 
and Bastin 1991). Typical examples of nonlinear multiple-
time scale systems include reaction networks (Breusegem and 
Bastin 1991), catalytic reactors (Chang and Aluko 1984), DC 
motor models (Kokotovic, Khalil and Oreill 1986) and 
electrical circuits (Khalil 1996).  

Singular perturbation theory has proven to be the natural 
framework scale systems. This model of finite-dimensional 
dynamic systems, extensively studied in the mathematical 
literature by Tikhonov, Levinson, Vasil’eva, etc., was also 
the first model to be used in control and systems theory 
(Kokotovic, Khalil and Oreill 1986).  

However, these results consider the systems in a standard 
form. In some cases, the singularly perturbed systems are 
often modeled as a non-standard form. In these cases 
Although there is a guideline for finding this transformation 
in Kokotovice et al. (Kokotovic, Khalil and Oreill 1986), but 
it is heuristic and especially difficult to apply in nonlinear 
cases (Glizer 2004).  

For a class of singularly perturbed systems there have been 
numerous research papers for analysis and controller design 
(Choi, Son and Lim 2006, Glizer 2004, Krishnan and 
McClamroch 1994, Shao 2004, Zigang and Basar 1994). 
Usually singularly perturbed systems are controlled by 
composite control that is designed to stabilize the fast and 
slow subsystems (Kokotovic, Khalil and Oreill 1986). This 
composite-control scheme is easy to design and results in 
simple control structure. Feedback linearization by the main 
feature that reduces the nonlinear control design to a linear 
control is a systematic approach to the control of nonlinear 
singularly perturbed systems (Choi, Shin and Lim 2005). 

In this paper, a class of two-time-scale nonlinear systems 
modeled within the non-standard singular perturbation 
framework, with measurable time-varying disturbances, is 
considered. After finding a transformation to change to 
standard form, by using an ε -independent diffeomorphism, 
nonlinear singularly perturbed system will be transformed 
into the linear singularly perturbed form (Choi, Shin and Lim 
2005, Khorasani 1987). Fast and slow controllers are 
designed for each subsystem and applied to the model. 

The reminder of the paper is organized as follows: Section 2 
contains the problem formulation. Section 3 presents a 
method for changing non-standard form into standard model. 
In section 4 the design procedure of the feedback 
linearization-based controller for singularly perturbed system 
is introduced. The practicability of the proposed scheme is 
demonstrated with the control of a catalytic continuous 
stirred tank reactor modeled as a singularly perturbed system 
in non-standard form in section 5. Finally, section 6 
concludes this paper. 

2. PROBLEM STATEMENT 

Modeling a two-time-scale process in a singularly perturbed 
form is in the explicit state-variable form in which the 
derivatives of some of the states are multiplied by a small 
positive scalarε . That is, 
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Where f  and g  are assumed to be sufficiently many times 
continuously differentiable functions of their 
arguments ,z ,ε t . The scalar ε  represents all the small 
parameters to be neglected and is defined by taking into 
account the physicochemical characteristic of the process 
(Kokotovic, Khalil and Oreill 1986, Breusegem and Bastin 
1991). 
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In control and systems theory, the model (1) is a step toward 
reduced-order modeling, i.e. when 0=ε , the dimension of the 
state space reduces from mn +  to n  because the second part 
of (1) degenerates into the 

 ),0,,(0 tg zx=  (2) 

If and if only in the domain of interest, the equation of (2) has 
been 1≥k  distinct real root, the model (1) is in standard form 
because this model changed to a well-defined n -dimensional 
reduced model corresponds to each root. Else for using the 
singular perturbation theory must to find a way to convert 
non-standard model into the standard form.  

In many chemical processes the main nonlinearities are 
associated with the slow variables and these two-time-scale 
nonlinear systems can be considered in a specific singularly 
perturbed system that the singular perturbation parameter ε  
appears only in the left-hand side of equations, while the fast 
variable enters in a linear fashion as the following state-space 
representation: 
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Where nR∈x  and mR∈z  denote vectors of state variables, 
Ru∈  denotes the manipulated input, 

)](,),(),([ 21 tdtdtdd qL=  denotes the vector of disturbance 
inputs, which are assumed to be measurable and sufficiently 
smooth function of time, and Ry∈  denotes the controlled 
output. 

Furthermore, )(1 xf , )(2 xf , )(1 xg and )(2 xg are analytic vector 
fields, )(1 xQ , )(2 xQ  and )(1 xw , )(2 xw  are analytic matrices of 
dimensions mn× , mm× , qn× , qm×  respectively, and )(xh  
is an analytic scalar function. 

By setting 0=ε , the system (3) takes the form 

 dWugQf s )()()()( 1111 xxzxxx +++=&  (4) 
 0)()()()( 2222 =+++ dxWugQf s xzxx  (5) 

Where sz  denotes a quasi-steady state for z . By assuming 
that the system (3) is in standard form, the invariability of the 
matrix )(2 xQ  guarantees that the system of algebraic 
equation (5) admits a unique solution for sz , and the system 
decomposes into separate reduced-order systems evolving on 
different time scales. Else it must be converted into the 
standard form. 

Performing a two-time-scale decomposition, the 
corresponding slow subsystem is given by 
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Where sy denotes the output associated with the slow 
subsystem and 
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Note the input u  and the disturbance input vector d  appear 
in an affine because of the linearity in z  in the original 
system. 

3. FROM NON-STANDARD TO STANDARD FORM 

Suppose that the two-time-scale nonlinear system (3) is in 
non-standard form, i.e. systems for which the matrix )(2 xQ  is 
singular for some x∈x . The direct consequence of it is the 
absence of a well-defined quasi-steady-state for the fast 
variable z  (Breusegem and Bastin 1991) and thus the lack of 
a well-defined open-loop reduced system.  

To achieve regularization of the fast dynamic, because of the 
fast variable is in linear fashion, appropriate feedback of the 
state vector z  will be employed. Thus a control law 
considered of the form 

 zx)(ˆ Tkuu +=  (8) 
Where )(xTk  is a vector field in mR , and û  is an auxiliary 
input. Under the control law, the system (3) takes the form 
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In addition )(xTk  is chosen in such a manner that the matrix 
)()()( 22 xkxgxQ T+  is Hurwitz uniformly in x∈x . Now, the 

new model is in standard form that can be composed into 
separate reduced-order systems (Breusegem and Bastin 1991, 
Glizer 2004). 

4. DESIGN PROCEDURE 

Usually singularly perturbed systems are controlled by 
composite control that is designed to stabilize the fast and 
slow subsystems (Kokotovic, Khalil and Oreill 1986). 

In this part feedback linearization is used to the control of a 
class of nonlinear singularly perturbed systems and the ε -
independent diffeomorphism is engaged to transform the 
nonlinear systems into the linear singularly perturbed form. 

The system (1) is rewritten as follows 
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For notational convenience the following function is defined. 
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Assume that the pair },{ gf  is input-state lineazable part of 
nonlinear system representation. By the theory that is 
proposed in (Choi, Shin and Lim 2005) there exists a 
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diffeomorphism )(ζξ T=  which transforms (1) into (14) if 
and only if the following conditions hold: 
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Where .1,,1,},{ −=∈∈Λ mjRbgspan ij L  

(c) }{~ gspang ∈  
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Where 
jia ,
 and 

jib ,
 are real numbers. 

Assuming that 0)(~)( ≠+ ξβξβo  around the equilibrium point, 
the ε -independent feedback linearization control law can be 
applied. 

 ))(~)(/())(~)(( 00 ξβξβξαξα ++−−= vu  (15) 

Since the slow and fast dynamics are separated, two linear 
controllers for each reduced subsystem can be designed 
(

ffssfs vvv ξξ kk +=+= ). 

The fast controller is designed ( T
rfnff kk ],,[ 1 −= Lk ) so that it 

stabilizes the fast dynamics. Then the fast dynamics is given 
by 
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At 0=ε  the slow manifold is given as the following relation 
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Where the Hurwitz matrix 
fA  is 
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Then the resulting slow dynamics is given by 
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This linear system is controllable and thus the stabilizing 
controller sv can be designed (Choi, Shin and Lim 2005). 

5. SIMULATION RESULTS 

In this section, the proposed control methodology will be 
applied to a chemical process with time-scale multiplicity. 
Consider the catalytic continues stirred tank reactor shown in 
Fig.1, where a homogeneous reaction BA →  and a catalytic 

CA →  take place. The first reaction leads to the generation 
of the side-product B, while the second reaction leads to the 
production of the desired product C (Breusegem and Bastin 
1991). 

 

Fig. 1- A catalytic continues stirred tank reactor 

The inlet stream 1F  consists of pure species A of 
concentration 0AC , and temperature 0AT . The process dynamic 
model consists of the following set of material and energy 
balances: 
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Where rV  denote the volume of the homogenous phase, 

AhC , hT  and ACC , CT  denote the concentration and temperature 
of species A in homogeneous and catalytic phases, 

hk , Ck , hE , CE , hH∆  and CH∆  denote the pre-exponential 
factors, the activation energies and the enthalpies of the two 

  BA →  

       CA →  

001 ,, AA TCF

CBhAh CCTCF ,,,,2
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reactions, CK  and CU , WU  denote mass and heat transfer 
coefficients of the wall and the catalyst. 

The control objective is the regulation of the temperature of 
the catalyst by manipulating the inlet flow rate 1F , in order to 
remain the generation of the product species C at the desired 
level. The inlet concentration and temperature of the 
species A , 0AC  and 0AT , as well as wall temperature WT  are 
assumed to be the measurable disturbances. The value of the 
system parameters and the corresponding steady-state values 
of the system variable are given in Table 1. 

Table1. Process parameters 
 

Nominal value in Steady-State  Parameter  
1min0.500 −L  2F  

11231.0 −− KkgKcal  hCρ  

1131.2 −− KkgKcal  cCρ  

19.0 −LKg  hρ  

10.90 −LKg  Cρ  

0.1618  CC AK  

11min0.6667 −− KKcal  CC AU  

11min0.3340 −− KKcal  rW AU  

11987.1 −− KKmolKcal  R  
11 min68.164 −−molL  hK  

13100.8 −× KgKcal  hE  

1min0.2000 −  cK  

13100.9 −× KgKcal  cE  

12006.69 −KmolKcal  hH∆  

10781.99 −− KmolKcal  cH∆  

L1.145  cV  

L0.1000  Vs  
10.5 −Lmol  AhC  

k690  hT  

175.3 −Lmol  AcC  

K720  cT  

1min0.500 −L  SF1  

10.10 −Lmol  SAC 0  

K0.305  SAT 0
  

K0.310  WST  

 
The process exhibits two-time-scale behavior owing to the 
large heat capacity of the catalytic phase. This implies 
that rV , AhC , hT  and ACC  are the fast process variable, while 

CT  is the slow process variable. In order to obtain a 
singularly perturbed representation of the process, the 
parameter ε  is defined as 
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The original set of equation can be put in the following 
singularly perturbed form: 
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From the structure of the differential equation for 1z  in the 
above system, it is clear that the fast dynamic of the process 
are singular. Since the process is in non-standard form, in the 
first step, the regularization law of the form 

 1ˆ zuu −=  (27) 

was used to transform the original two-time-scale system into 
a new one in standard form with exponentially stable 
dynamics. 

The relative orders of output, 1x with respect to the input, 
û and the disturbance input vector d  is one. After that by 
using feedback linearization the control law for the closed 
loop reduced system can be designed. 

 110ˆ ββ −−= xvu  (28) 

Where the parameters 0β  and 1β  were chosen to be 0.10 =β , 
1.11 =β . 

In simulation, the capability of the controller to keep the 
output of the system at the operating steady state in the 
presence of time-varying disturbances is evaluated. The 
following disturbances were imposed at 0=t  

1
1
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T
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Where min2.0=T  
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The corresponding output and input profiles for control of 
temperature are shown in Fig. 2 and 3. 
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Fig. 2- control signal as inlet flow rate 
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Fig. 3- Control of the temperature of the catalyst in order to 

remain the generation of the product at the desired level 
 

6.  CONCLUSIONS 

In this paper, a class of non-standard nonlinear two-time-
scale control systems with time-varing disturbances was 
considered. 

Because of the results in singular perturbation theory, 
consider the systems in a standard form; a transformation to 
change a system representation from non-standard to standard 
form is proposed. After this transformation is made, a 
systematic approach to control this class of systems and 
disturbance rejection using feedback linearization is 
formulated.With this fotmulation, the standard nonlinear 
systems ared transformed into the linearized form so that a 
linear controller can be systematically designed. The 
application of the method is illustrated in the control of a 
catalytic continuous stirred tank reactor. 
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